ghcr.io/sasha0552/vllm:v0.8.5 linux/amd64

ghcr.io/sasha0552/vllm:v0.8.5 - 国内下载镜像源 浏览次数:8

该镜像 ghcr.io/sasha0552/vllm 包含了 vLLM 的 Docker 容器镜像。vLLM 是一个用于高效运行大型语言模型 (LLM) 的库,它专注于在资源受限的环境中提供良好的性能。此镜像提供了一种便捷的方式来部署和使用 vLLM。

源镜像 ghcr.io/sasha0552/vllm:v0.8.5
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5
镜像ID sha256:1ca458d236b0cf98abafa69f3e7264123f761c35267d27afe4d6130db76f1cf2
镜像TAG v0.8.5
大小 16.51GB
镜像源 ghcr.io
CMD
启动入口 python3 -m vllm.entrypoints.openai.api_server
工作目录 /vllm-workspace
OS/平台 linux/amd64
浏览量 8 次
贡献者
镜像创建 2025-05-01T21:26:28.636129031Z
同步时间 2025-07-19 01:37
更新时间 2025-07-19 14:07
环境变量
PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.55-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.0-1 NV_NVTX_VERSION=12.1.66-1 NV_LIBNPP_VERSION=12.0.2.50-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.0.2.50-1 NV_LIBCUSPARSE_VERSION=12.0.2.55-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.0.26-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.0.26-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NVIDIA_CUDA_END_OF_LIFE=1 NV_CUDA_CUDART_DEV_VERSION=12.1.55-1 NV_NVML_DEV_VERSION=12.1.55-1 NV_LIBCUSPARSE_DEV_VERSION=12.0.2.55-1 NV_LIBNPP_DEV_VERSION=12.0.2.50-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.0.2.50-1 NV_LIBCUBLAS_DEV_VERSION=12.1.0.26-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.0.26-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.0-1 NV_NVPROF_VERSION=12.1.55-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.55-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 LIBRARY_PATH=/usr/local/cuda/lib64/stubs DEBIAN_FRONTEND=noninteractive UV_HTTP_TIMEOUT=500 VLLM_USAGE_SOURCE=production-docker-image
镜像标签
NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5  ghcr.io/sasha0552/vllm:v0.8.5

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5  ghcr.io/sasha0552/vllm:v0.8.5

Shell快速替换命令

sed -i 's#ghcr.io/sasha0552/vllm:v0.8.5#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5  ghcr.io/sasha0552/vllm:v0.8.5'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5  ghcr.io/sasha0552/vllm:v0.8.5'

镜像构建历史


# 2025-05-02 05:26:28  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["python3" "-m" "vllm.entrypoints.openai.api_server"]
                        
# 2025-05-02 05:26:28  0.00B 设置环境变量 VLLM_USAGE_SOURCE
ENV VLLM_USAGE_SOURCE=production-docker-image
                        
# 2025-05-02 05:26:28  325.11MB 执行命令并创建新的镜像层
RUN |1 TARGETPLATFORM=linux/amd64 /bin/sh -c if [ "$TARGETPLATFORM" = "linux/arm64" ]; then         uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3];     else         uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.3' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3];     fi # buildkit
                        
# 2025-05-02 05:26:25  0.00B 设置环境变量 UV_HTTP_TIMEOUT
ENV UV_HTTP_TIMEOUT=500
                        
# 2025-05-02 05:26:25  0.00B 定义构建参数
ARG TARGETPLATFORM
                        
# 2025-05-02 05:26:25  68.15MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c uv pip install --system -r requirements/build.txt # buildkit
                        
# 2025-05-02 05:26:23  133.00B 复制新文件或目录到容器中
COPY requirements/build.txt requirements/build.txt # buildkit
                        
# 2025-05-02 05:26:23  27.29KB 复制新文件或目录到容器中
COPY ./vllm/collect_env.py . # buildkit
                        
# 2025-05-02 05:26:23  487.03KB 复制新文件或目录到容器中
COPY benchmarks benchmarks # buildkit
                        
# 2025-05-02 05:26:23  525.89KB 复制新文件或目录到容器中
COPY examples examples # buildkit
                        
# 2025-05-02 05:26:23  765.23MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c . /etc/environment && if [ "$TARGETPLATFORM" != "linux/arm64" ]; then     uv pip install --system https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.1.post2/flashinfer_python-0.2.1.post2+cu124torch2.6-cp38-abi3-linux_x86_64.whl ; fi # buildkit
                        
# 2025-05-02 05:26:15  7.44GB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c uv pip install --system dist/*.whl --verbose &&     export PIP_EXTRA_INDEX_URL="https://sasha0552.github.io/pascal-pkgs-ci/" &&     python3 -m pip install transient-package &&     transient-package install --source triton --target triton-pascal &&     sed -e "s/.major < 7/.major < 6/g"         -e "s/.major >= 7/.major >= 6/g"         -i         /usr/local/lib/python3.12/dist-packages/torch/_inductor/scheduler.py         /usr/local/lib/python3.12/dist-packages/torch/utils/_triton.py # buildkit
                        
# 2025-05-02 05:25:30  0.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c if [ "$TARGETPLATFORM" = "linux/arm64" ]; then         uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 "torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319";          uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 --pre pytorch_triton==3.3.0+gitab727c40;     fi # buildkit
                        
# 2025-05-02 05:25:30  56.86KB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/ # buildkit
                        
# 2025-05-02 05:25:30  0.00B 设置环境变量 UV_HTTP_TIMEOUT
ENV UV_HTTP_TIMEOUT=500
                        
# 2025-05-02 05:25:30  60.65MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c python3 -m pip install uv # buildkit
                        
# 2025-05-02 05:25:28  825.33MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c echo 'tzdata tzdata/Areas select America' | debconf-set-selections     && echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections     && apt-get update -y     && apt-get install -y ccache software-properties-common git curl wget sudo vim python3-pip     && apt-get install -y ffmpeg libsm6 libxext6 libgl1     && add-apt-repository ppa:deadsnakes/ppa     && apt-get update -y     && apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv libibverbs-dev     && update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1     && update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION}     && ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config     && curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION}     && python3 --version && python3 -m pip --version # buildkit
                        
# 2025-05-02 05:24:42  136.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') &&     echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment # buildkit
                        
# 2025-05-02 05:24:41  0.00B 定义构建参数
ARG TARGETPLATFORM
                        
# 2025-05-02 05:24:41  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2025-05-02 05:24:41  0.00B 设置工作目录为/vllm-workspace
WORKDIR /vllm-workspace
                        
# 2025-05-02 05:24:41  0.00B 定义构建参数
ARG PYTHON_VERSION=3.12
                        
# 2025-05-02 05:24:41  0.00B 定义构建参数
ARG CUDA_VERSION=12.4.1
                        
# 2023-11-10 14:02:16  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 14:02:16  385.64KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:02:04  4.81GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:02:04  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:02:04  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.55-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.55-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.0-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.0-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.0.26-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.0.26-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.0.2.50-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.0.2.50-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.0.2.55-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.55-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.55-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.0-1
                        
# 2023-11-10 13:49:20  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 13:49:20  0.00B 设置环境变量 NVIDIA_CUDA_END_OF_LIFE
ENV NVIDIA_CUDA_END_OF_LIFE=1
                        
# 2023-11-10 13:49:20  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 13:49:20  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 13:49:20  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 13:49:20  261.38KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:49:19  1.99GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:49:19  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:49:19  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.0.26-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.0.26-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.0.2.55-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.0.2.50-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.0.2.50-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.66-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.0-1
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:44:29  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:44:29  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:44:29  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.0
                        
# 2023-11-10 13:44:18  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:44:18  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:44:18  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.55-1
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:1ca458d236b0cf98abafa69f3e7264123f761c35267d27afe4d6130db76f1cf2",
    "RepoTags": [
        "ghcr.io/sasha0552/vllm:v0.8.5",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm:v0.8.5"
    ],
    "RepoDigests": [
        "ghcr.io/sasha0552/vllm@sha256:44732de2aed4f5e406abe8cf5f6c893b69bb4e56b494fb2125fe3af4ac7b15b7",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/sasha0552/vllm@sha256:88abec3edc006ec929cc21dbbbefb01ae12dfd441e2a0aec4966c9394f443cc6"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-05-01T21:26:28.636129031Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.55-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.0-1",
            "NV_NVTX_VERSION=12.1.66-1",
            "NV_LIBNPP_VERSION=12.0.2.50-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.0.2.50-1",
            "NV_LIBCUSPARSE_VERSION=12.0.2.55-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.0.26-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.0.26-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NVIDIA_CUDA_END_OF_LIFE=1",
            "NV_CUDA_CUDART_DEV_VERSION=12.1.55-1",
            "NV_NVML_DEV_VERSION=12.1.55-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.0.2.55-1",
            "NV_LIBNPP_DEV_VERSION=12.0.2.50-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.0.2.50-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.1.0.26-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.0.26-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.0-1",
            "NV_NVPROF_VERSION=12.1.55-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.55-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "DEBIAN_FRONTEND=noninteractive",
            "UV_HTTP_TIMEOUT=500",
            "VLLM_USAGE_SOURCE=production-docker-image"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/vllm-workspace",
        "Entrypoint": [
            "python3",
            "-m",
            "vllm.entrypoints.openai.api_server"
        ],
        "OnBuild": null,
        "Labels": {
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 16514036444,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/052fbf7b13bf505e2a4ff77c491597dbf82696f9b079e80b7bbf652ba799c5b4/diff:/var/lib/docker/overlay2/2888320a4202f8c54b0770e00c88a730bbb0491fbc11ba60f3c16f326af8f4dc/diff:/var/lib/docker/overlay2/53dc62e2854476d1dacbdfa79f8b4c3c978b518b01c22cf33b15c4706aa3325d/diff:/var/lib/docker/overlay2/f1c4c0ad84320373e9d9c2e23706d8b3218353c953e5265b49bebdcf4761b57c/diff:/var/lib/docker/overlay2/3e80c7bba2a3ca120189cfeda5088c8ed71986c265c7a574914f7d48dc1514d1/diff:/var/lib/docker/overlay2/7513ed59d00d9c53875d63bb8657f73d439e4fc71b9e7ff0b0c96232e30cec07/diff:/var/lib/docker/overlay2/07568d799288d14f928deafb5c3417854a32a5b43880d9943ecab3084a361cd6/diff:/var/lib/docker/overlay2/7767806eb5d59099b0e9c10b84d5d39ec56e59ae9b5b0beecfaedd217d879bd4/diff:/var/lib/docker/overlay2/c04298b821ec3787f5554e083b98ae42087f826763f35afcf1b7c569f687cec0/diff:/var/lib/docker/overlay2/36c735009d002e88ed9878bf3aae52d67c5e6bbf1fd6c3ae4dc6d6d661293b70/diff:/var/lib/docker/overlay2/266ef6c48ead89bb34532d50461d388b52d87c0950de2fbc8f3ba6477d924161/diff:/var/lib/docker/overlay2/d18429519142675e8bf6981091b56bfaf957c1b102c282a411986a899f556fa9/diff:/var/lib/docker/overlay2/48bda6f97eae763161f351d4e0574ec86b72cf2e88ae588160e856037488d3e0/diff:/var/lib/docker/overlay2/2deda18e54b5c27dfb6eb321551daa7249b37c14e6913a4f3208ec584f333262/diff:/var/lib/docker/overlay2/ace2383c065b28eb096551c3f3730f2fec6c02ea17c21a6c89c4eb08d7010aa7/diff:/var/lib/docker/overlay2/ad9909645812c361e364bef3d3d61ae213a9a0041fe70d565729395c475803b8/diff:/var/lib/docker/overlay2/3c6d5ea9f0137b810f2c5e9b2257e63f58baacba2c75b4c4722277357320216b/diff:/var/lib/docker/overlay2/2a4834c047db7ca33b0935fcf59cac785026edf2e275d07c484267f9dc406a9a/diff:/var/lib/docker/overlay2/6b5a2a88bc3906ccf1dd2ff2b3a48162e98f477f8153c2a3f46a4803c2a30c64/diff:/var/lib/docker/overlay2/86c98ab0ed88b61b06cf59d67d016cbf05a2c7cea2a7a4fe53a6be12a6bb87d7/diff:/var/lib/docker/overlay2/dddcc2c36b2b15125b046f443eaf956385215dd4fe1629756f29c2e1077ee125/diff:/var/lib/docker/overlay2/7c0ec148c160c668fe5b36bcb65f7d5badb55eb5dcdea8490e826c2a41b578a9/diff:/var/lib/docker/overlay2/b213e3c8abc27592f101ffbb1d0f2c437b5effe9b384d0f550f46a4f894f180d/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/62f248072baaeac5f418a728e1a22b4f9be69dbd7e00d9f3f6a0c9f6199b445d/merged",
            "UpperDir": "/var/lib/docker/overlay2/62f248072baaeac5f418a728e1a22b4f9be69dbd7e00d9f3f6a0c9f6199b445d/diff",
            "WorkDir": "/var/lib/docker/overlay2/62f248072baaeac5f418a728e1a22b4f9be69dbd7e00d9f3f6a0c9f6199b445d/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:7b9433fba79bfc9269aab8277ea9975364db1c1f775a7ee6b14b5dffa045b294",
            "sha256:765423415d690bf8ca1510e7147d5b86dba15dcf1a3b1a515f1a85cc5dd439bb",
            "sha256:e4b1bddcbe6378dfa58bf1faa040813b74938129eb4bb06cbf083240335c5c54",
            "sha256:cd77f58b80cdcfac5fcdef06b2033fedc1115073afae035a14b6692cb5cd6650",
            "sha256:8d113b7b997c1bc18469d2373662f02c8bbcf7182f8c5d8e0e1eea082cc234a4",
            "sha256:40f0eb1871b906cf31a54649bf4f7657e2a60da6d6a9adfb8598a469b8495e77",
            "sha256:6ac15100dff644720d396a534fcd373774b1aefca621211930855e5db5ebae52",
            "sha256:600c676771a0a21056d45f5fb4441c538380564d4a7127a41e260d74fc6b0519",
            "sha256:57b23d1076fd4d119609493ebbd5b837d9553387d081148c8d908f1245e2bb55",
            "sha256:6667c783780703607df00f8f7dafcfd77402d54db003c392f3ea743f9eabe359",
            "sha256:3728056e4e4dd7e27e8d4b2cb40c8dd84386447c75b5ac87158d6101e9a1bcdd",
            "sha256:55117c249edf1eb5426a1b96b5afc906d1a34a95c042204235e5ca19f3afb807",
            "sha256:953b3860f3f8fffe2224a9e245da67b3957e7e6d3557ef54bf2ff3532f6e5201",
            "sha256:8b0b27f72ed65e5af7bb7e79da84ed33ea57ebff484716e9d4d9691cd5340276",
            "sha256:ec114ce2075f54efb191f2683d72d667adb996c29a9057a500917c244d71df3e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:df19669ef5c26914e8e799b3fc057d39dccb556f910d2367fae19e2d8d114281",
            "sha256:ad3f09f6ac128943984fb797c084f2ae8a83e44d63ffd1319406a27068a094bc",
            "sha256:cdc50f89b2f54b54120c4f114d4d21740c3a3967a67323464898634efe3cccb0",
            "sha256:fdd8101d67d638205b0eb0a8020b1ff856a5f181d63ed309d6b0c7b4cdc816ed",
            "sha256:98212387ea76b0cef5e0c703d4f5862cf76c6cbf83602993eb4602fecc6340ea",
            "sha256:fbc6aa853c661e8c5bb9d8caa7ed1f95488fbb4f66849b39c2ce8f45a66eab69",
            "sha256:26f06719549e1a5c8304136aa86b4b77915d1d46fa5bd1953931f99b4c1e3ea2",
            "sha256:ef01429147b2b0f3d686c62f6ec717768d1d7126213c29a7e13a0af42fa98d2b"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-07-19T01:25:06.542359607+08:00"
    }
}

更多版本

ghcr.io/sasha0552/vllm:v0.8.5

linux/amd64 ghcr.io16.51GB2025-07-19 01:37
7