docker.io/wechatopenai/weknora-docreader:main linux/arm64

docker.io/wechatopenai/weknora-docreader:main - 国内下载镜像源 浏览次数:15 温馨提示: 这是一个 linux/arm64 系统架构镜像
源镜像 docker.io/wechatopenai/weknora-docreader:main
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64
镜像ID sha256:b9d6b382b8dbf98e0eaad393ecb0f582f4743c517385cfdec09d5109ab2827b4
镜像TAG main-linuxarm64
大小 4.85GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD uv run -m docreader.main
启动入口
工作目录 /app
OS/平台 linux/arm64
浏览量 15 次
贡献者 14*******8@qq.com
镜像创建 2025-12-05T10:07:02.152839694Z
同步时间 2025-12-16 14:34
更新时间 2025-12-17 10:40
开放端口
50051/tcp
环境变量
PATH=/app/.venv/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LANG=C.UTF-8 GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D PYTHON_VERSION=3.10.18 PYTHON_SHA256=ae665bc678abd9ab6a6e1573d2481625a53719bc517e9a634ed2b9fefae3817f VIRTUAL_ENV=/app/.venv
镜像标签
2025-12-16T04:27:57.551Z: org.opencontainers.image.created LLM-powered framework for deep document understanding, semantic retrieval, and context-aware answers using RAG paradigm.: org.opencontainers.image.description NOASSERTION: org.opencontainers.image.licenses 495a306d0dc18083dbb00d38eac23751086bc759: org.opencontainers.image.revision https://github.com/Tencent/WeKnora: org.opencontainers.image.source WeKnora: org.opencontainers.image.title https://github.com/Tencent/WeKnora: org.opencontainers.image.url main: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64  docker.io/wechatopenai/weknora-docreader:main

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64  docker.io/wechatopenai/weknora-docreader:main

Shell快速替换命令

sed -i 's#wechatopenai/weknora-docreader:main#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64  docker.io/wechatopenai/weknora-docreader:main'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64  docker.io/wechatopenai/weknora-docreader:main'

镜像构建历史


# 2025-12-05 18:07:02  0.00B 设置默认要执行的命令
CMD ["uv" "run" "-m" "docreader.main"]
                        
# 2025-12-05 18:07:02  0.00B 声明容器运行时监听的端口
EXPOSE [50051/tcp]
                        
# 2025-12-05 18:07:02  1.05MB 复制新文件或目录到容器中
COPY /app/docreader docreader # buildkit
                        
# 2025-12-05 15:29:30  734.35KB 复制新文件或目录到容器中
COPY docreader/pyproject.toml docreader/uv.lock ./ # buildkit
                        
# 2025-12-05 15:29:30  123.02MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=arm64 /bin/sh -c python -m playwright install-deps webkit # buildkit
                        
# 2025-12-05 15:28:22  266.50MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=arm64 /bin/sh -c python -m playwright install webkit # buildkit
                        
# 2025-12-05 15:27:57  18.03MB 复制新文件或目录到容器中
COPY /root/.paddleocr /root/.paddleocr # buildkit
                        
# 2025-12-05 15:27:57  52.82MB 复制新文件或目录到容器中
COPY /usr/local/bin /usr/local/bin # buildkit
                        
# 2025-12-05 15:27:57  0.00B 设置环境变量 PATH
ENV PATH=/app/.venv/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-12-05 15:27:57  1.61GB 复制新文件或目录到容器中
COPY /app/.venv /app/.venv # buildkit
                        
# 2025-10-15 11:59:51  0.00B 设置环境变量 VIRTUAL_ENV
ENV VIRTUAL_ENV=/app/.venv
                        
# 2025-10-15 11:59:51  11.13MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=arm64 /bin/sh -c GRPC_HEALTH_PROBE_VERSION=v0.4.24 &&     case ${TARGETARCH} in         "amd64") ARCH="amd64" ;;         "arm64") ARCH="arm64" ;;         "arm") ARCH="arm" ;;         *) echo "Unsupported architecture: ${TARGETARCH}" && exit 1 ;;     esac &&     wget -qO/bin/grpc_health_probe https://github.com/grpc-ecosystem/grpc-health-probe/releases/download/${GRPC_HEALTH_PROBE_VERSION}/grpc_health_probe-linux-${ARCH} &&     chmod +x /bin/grpc_health_probe # buildkit
                        
# 2025-10-15 11:59:51  0.00B 定义构建参数
ARG TARGETARCH=arm64
                        
# 2025-10-15 11:59:50  1.76GB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt-get install -y     libjpeg62-turbo     libpq5     wget     gnupg     libgl1     libglib2.0-0     antiword     vim     tar     dpkg     libxinerama1     libfontconfig1     libdbus-glib-1-2     libcairo2     libcups2     libglu1-mesa     libsm6     libreoffice     curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-10-15 11:49:27  0.00B 设置工作目录为/app
WORKDIR /app
                        
# 2025-10-15 11:49:27  473.00B 执行命令并创建新的镜像层
RUN /bin/sh -c sed -i 's@http://deb.debian.org@https://mirrors.tuna.tsinghua.edu.cn@g' /etc/apt/sources.list.d/debian.sources &&     sed -i 's@http://security.debian.org@https://mirrors.tuna.tsinghua.edu.cn@g' /etc/apt/sources.list.d/debian.sources # buildkit
                        
# 2025-08-09 02:20:34  0.00B 设置默认要执行的命令
CMD ["python3"]
                        
# 2025-08-09 02:20:34  36.00B 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 	for src in idle3 pip3 pydoc3 python3 python3-config; do 		dst="$(echo "$src" | tr -d 3)"; 		[ -s "/usr/local/bin/$src" ]; 		[ ! -e "/usr/local/bin/$dst" ]; 		ln -svT "$src" "/usr/local/bin/$dst"; 	done # buildkit
                        
# 2025-08-09 02:20:34  58.17MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 		wget -O python.tar.xz "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"; 	echo "$PYTHON_SHA256 *python.tar.xz" | sha256sum -c -; 	wget -O python.tar.xz.asc "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"; 	GNUPGHOME="$(mktemp -d)"; export GNUPGHOME; 	gpg --batch --keyserver hkps://keys.openpgp.org --recv-keys "$GPG_KEY"; 	gpg --batch --verify python.tar.xz.asc python.tar.xz; 	gpgconf --kill all; 	rm -rf "$GNUPGHOME" python.tar.xz.asc; 	mkdir -p /usr/src/python; 	tar --extract --directory /usr/src/python --strip-components=1 --file python.tar.xz; 	rm python.tar.xz; 		cd /usr/src/python; 	gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"; 	./configure 		--build="$gnuArch" 		--enable-loadable-sqlite-extensions 		--enable-optimizations 		--enable-option-checking=fatal 		--enable-shared 		$(test "${gnuArch%%-*}" != 'riscv64' && echo '--with-lto') 		--with-ensurepip 	; 	nproc="$(nproc)"; 	EXTRA_CFLAGS="$(dpkg-buildflags --get CFLAGS)"; 	LDFLAGS="$(dpkg-buildflags --get LDFLAGS)"; 	make -j "$nproc" 		"EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" 		"LDFLAGS=${LDFLAGS:-}" 	; 	rm python; 	make -j "$nproc" 		"EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" 		"LDFLAGS=${LDFLAGS:--Wl},-rpath='\$\$ORIGIN/../lib'" 		python 	; 	make install; 		bin="$(readlink -ve /usr/local/bin/python3)"; 	dir="$(dirname "$bin")"; 	mkdir -p "/usr/share/gdb/auto-load/$dir"; 	cp -vL Tools/gdb/libpython.py "/usr/share/gdb/auto-load/$bin-gdb.py"; 		cd /; 	rm -rf /usr/src/python; 		find /usr/local -depth 		\( 			\( -type d -a \( -name test -o -name tests -o -name idle_test \) \) 			-o \( -type f -a \( -name '*.pyc' -o -name '*.pyo' -o -name 'libpython*.a' \) \) 		\) -exec rm -rf '{}' + 	; 		ldconfig; 		export PYTHONDONTWRITEBYTECODE=1; 	python3 --version; 		pip3 install 		--disable-pip-version-check 		--no-cache-dir 		--no-compile 		'setuptools==65.5.1' 		'wheel<0.46' 	; 	pip3 --version # buildkit
                        
# 2025-08-09 02:20:34  0.00B 设置环境变量 PYTHON_SHA256
ENV PYTHON_SHA256=ae665bc678abd9ab6a6e1573d2481625a53719bc517e9a634ed2b9fefae3817f
                        
# 2025-08-09 02:20:34  0.00B 设置环境变量 PYTHON_VERSION
ENV PYTHON_VERSION=3.10.18
                        
# 2025-08-09 02:20:34  0.00B 设置环境变量 GPG_KEY
ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D
                        
# 2025-08-09 02:20:34  18.23MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 	apt-get update; 	apt-get install -y --no-install-recommends 		libbluetooth-dev 		tk-dev 		uuid-dev 	; 	rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-08-09 02:20:34  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2025-08-09 02:20:34  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-01-09 09:14:25  560.56MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -ex; 	apt-get update; 	apt-get install -y --no-install-recommends 		autoconf 		automake 		bzip2 		default-libmysqlclient-dev 		dpkg-dev 		file 		g++ 		gcc 		imagemagick 		libbz2-dev 		libc6-dev 		libcurl4-openssl-dev 		libdb-dev 		libevent-dev 		libffi-dev 		libgdbm-dev 		libglib2.0-dev 		libgmp-dev 		libjpeg-dev 		libkrb5-dev 		liblzma-dev 		libmagickcore-dev 		libmagickwand-dev 		libmaxminddb-dev 		libncurses5-dev 		libncursesw5-dev 		libpng-dev 		libpq-dev 		libreadline-dev 		libsqlite3-dev 		libssl-dev 		libtool 		libwebp-dev 		libxml2-dev 		libxslt-dev 		libyaml-dev 		make 		patch 		unzip 		xz-utils 		zlib1g-dev 	; 	rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-01-09 09:14:25  183.37MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 	apt-get update; 	apt-get install -y --no-install-recommends 		git 		mercurial 		openssh-client 		subversion 				procps 	; 	rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-05-11 07:29:59  48.57MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 	apt-get update; 	apt-get install -y --no-install-recommends 		ca-certificates 		curl 		gnupg 		netbase 		sq 		wget 	; 	rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-05-11 07:29:59  138.93MB 
# debian.sh --arch 'arm64' out/ 'bookworm' '@1759104000'
                        
                    

镜像信息

{
    "Id": "sha256:b9d6b382b8dbf98e0eaad393ecb0f582f4743c517385cfdec09d5109ab2827b4",
    "RepoTags": [
        "wechatopenai/weknora-docreader:main",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader:main-linuxarm64"
    ],
    "RepoDigests": [
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/wechatopenai/weknora-docreader@sha256:dc14e9a3aa759e37147b154e1e1352990e2c8535b49000400b46745959bbfced"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-12-05T10:07:02.152839694Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "50051/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/app/.venv/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "LANG=C.UTF-8",
            "GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D",
            "PYTHON_VERSION=3.10.18",
            "PYTHON_SHA256=ae665bc678abd9ab6a6e1573d2481625a53719bc517e9a634ed2b9fefae3817f",
            "VIRTUAL_ENV=/app/.venv"
        ],
        "Cmd": [
            "uv",
            "run",
            "-m",
            "docreader.main"
        ],
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/app",
        "Entrypoint": null,
        "OnBuild": null,
        "Labels": {
            "org.opencontainers.image.created": "2025-12-16T04:27:57.551Z",
            "org.opencontainers.image.description": "LLM-powered framework for deep document understanding, semantic retrieval, and context-aware answers using RAG paradigm.",
            "org.opencontainers.image.licenses": "NOASSERTION",
            "org.opencontainers.image.revision": "495a306d0dc18083dbb00d38eac23751086bc759",
            "org.opencontainers.image.source": "https://github.com/Tencent/WeKnora",
            "org.opencontainers.image.title": "WeKnora",
            "org.opencontainers.image.url": "https://github.com/Tencent/WeKnora",
            "org.opencontainers.image.version": "main"
        }
    },
    "Architecture": "arm64",
    "Os": "linux",
    "Size": 4845331601,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/d168f7e845f217f5b91079f58a7bc275577bc8ca6bbb2aa0af199691357993e7/diff:/var/lib/docker/overlay2/a43fc82d3b081b503127156ca3d8da8bd304dc288e770e2d5598703a3a184fdf/diff:/var/lib/docker/overlay2/0a5b4cb40d4dba15ac2f699e4ec1b1a1850bdd0b915266112dacdee33b02a442/diff:/var/lib/docker/overlay2/f176e878d48620a4caf6ebf0f619a71a7cc853701dc961bf822517b438b24f0c/diff:/var/lib/docker/overlay2/f4fdca751737506002715980f3cf4b561e89c65a3ef27db117bb98fd93e7e407/diff:/var/lib/docker/overlay2/f87cabc9993c3d8d50cffa607cfa4af3fd6916847c0ecbedbf8ec5e7111392c0/diff:/var/lib/docker/overlay2/08fb5dbd55cc65db6d18a56ea7b4a82a49f76097521dbc68a94824f606e862ec/diff:/var/lib/docker/overlay2/78d2a34a5d750fc3614cb49e2a05a67b5b60f0aefbe4dc37f9f6f3cb3db72b9b/diff:/var/lib/docker/overlay2/3decf8d622663e5ca14d53540e008d868805a1f1b6aa0b2cf9fcda7f4b42eec1/diff:/var/lib/docker/overlay2/f672502efafde3318f1442253c581ac2ac2837b54acc426595d9e0c310b2be76/diff:/var/lib/docker/overlay2/56bc954181baf063690021224d5b6534485044ef26e5b342cb4522daa5df7ea7/diff:/var/lib/docker/overlay2/811e4595158f08f44d1747140d766411ca3c9de7b15e3c4197dc62fe59c11dfd/diff:/var/lib/docker/overlay2/f6af73f754bde8dfe7a8371acb615c04e5ece2012c076033f07c1003fa02c7fa/diff:/var/lib/docker/overlay2/a58ca1e50168f3ed9f7eec8341d73c67c14a4b6b1bdfdd6930dedf966d71e0ba/diff:/var/lib/docker/overlay2/84914b648e1398ced5ff48974dd88ff24e89f4df740dd66a90243c50eb014950/diff:/var/lib/docker/overlay2/c7d2469731c9342d2757dc9f0a34e3e8a231080a1e69cc88cc8d8995221d523a/diff:/var/lib/docker/overlay2/f7583a4c560742773def6535697200c1500cc26d77a58ee9c29e0104d7415282/diff",
            "MergedDir": "/var/lib/docker/overlay2/f46e2d99f4a59c8c7943586f728d6ec71a32fd1923958a03cd01c273d9f91d17/merged",
            "UpperDir": "/var/lib/docker/overlay2/f46e2d99f4a59c8c7943586f728d6ec71a32fd1923958a03cd01c273d9f91d17/diff",
            "WorkDir": "/var/lib/docker/overlay2/f46e2d99f4a59c8c7943586f728d6ec71a32fd1923958a03cd01c273d9f91d17/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:d431af9fe594226c9f2c4c2d4384a52670c9fa9d22661129c93913543b07994e",
            "sha256:42bebc001aaf5ba61b504fe2ba4110075a4535a47605cb4d984ebfabfb122236",
            "sha256:64bced7468cc0f707cc2f0805e07711df4556dbd477881b7126d7febc022c03f",
            "sha256:1e1cfefbe5e39c368ce3b48cd3c7d93fcf98bddb9ce2881460e9430cf115392e",
            "sha256:8685492be2128b3ab7dd51078bf9642ba76439b84b9c27bf9104f29045b15c6a",
            "sha256:a07c33441aa1d86e59c325d9cd548b5609e3ee26bf8c3d86ed692e5c5f6cd8e6",
            "sha256:3a1465aa1f0f074e28b06de99aea532f4e31dca16a4a546cef1c13a0e1939d57",
            "sha256:62a37c456da23b439075e0146fdebc578c91769a2a43504f98f0ad01e7ad9a77",
            "sha256:749c820a50b3621de8531a90edff2bd8df8136e98e1b2fe329db1694d0fc4997",
            "sha256:4f93c8991782a23d2373c54150f9e3c5fdba5a725cb9b4c169b42bdce4706de8",
            "sha256:82c0cbef0dd22a7a5df37ac12318d3bd86374636748b3ab4d79974773bbcde86",
            "sha256:7ea30f51124c6c6ff8ca6f79a7c5796dfa470c5d33fb0fec12fe55fa74e3a135",
            "sha256:78b96d285feb7aba6ca6df269b1ded30867c177f7a18e34fa1b285885388efc8",
            "sha256:2e199c8e22cb26300186d1eab2aafad047fda1ca10cca31c08bad6ba21ade8fc",
            "sha256:5cb89d7c70047be6ec8776931b8c7cd81cd0c0408eb98dd7de6df26ba1519e07",
            "sha256:22dd2e912feb3ddc75f6ed52c8ea4aecf250ceca1e360c79df748526cb156ea7",
            "sha256:a52abcc5b59b248a11e4db5456e956c7e215deefcca110dc04a9fac616c19f33",
            "sha256:1b4c05039c7d77beff1e9bcb42a194f3d63f28ae5cffa4f2f98ea81210b4dd74"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-12-16T14:31:03.268523758+08:00"
    }
}

更多版本

docker.io/wechatopenai/weknora-docreader:latest

linux/amd64 docker.io5.17GB2025-09-02 01:43
477

docker.io/wechatopenai/weknora-docreader:v0.2.1

linux/amd64 docker.io5.46GB2025-12-14 12:40
33

docker.io/wechatopenai/weknora-docreader:main

linux/amd64 docker.io5.46GB2025-12-16 14:04
11

docker.io/wechatopenai/weknora-docreader:main

linux/arm64 docker.io4.85GB2025-12-16 14:34
14