docker.io/biochunan/esmfold-image:latest linux/amd64

docker.io/biochunan/esmfold-image:latest - 国内下载镜像源 浏览次数:8

温馨提示:此镜像为latest tag镜像,本站无法保证此版本为最新镜像

源镜像 docker.io/biochunan/esmfold-image:latest
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest
镜像ID sha256:8e6bd8242a1b0bd5eeb32547b2ec70de6134dd94b2b43b3045e923687003df2c
镜像TAG latest
大小 21.24GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 zsh run-esm-fold.sh
工作目录 /root
OS/平台 linux/amd64
浏览量 8 次
贡献者
镜像创建 2024-05-05T02:51:11.633882108+01:00
同步时间 2025-12-23 01:38
更新时间 2025-12-23 04:06
环境变量
PATH=/root/.local/bin:/miniconda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.3 brand=tesla,driver>=418,driver<419 driver>=450 NV_CUDA_CUDART_VERSION=11.3.109-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-3 CUDA_VERSION=11.3.1 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.3.1-1 NV_NVTX_VERSION=11.3.109-1 NV_LIBNPP_VERSION=11.3.3.95-1 NV_LIBNPP_PACKAGE=libnpp-11-3=11.3.3.95-1 NV_LIBCUSPARSE_VERSION=11.6.0.109-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-3 NV_LIBCUBLAS_VERSION=11.5.1.109-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-3=11.5.1.109-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.9.9-1 NCCL_VERSION=2.9.9-1 NV_LIBNCCL_PACKAGE=libnccl2=2.9.9-1+cuda11.3 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=11.3.109-1 NV_NVML_DEV_VERSION=11.3.58-1 NV_LIBCUSPARSE_DEV_VERSION=11.6.0.109-1 NV_LIBNPP_DEV_VERSION=11.3.3.95-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-3=11.3.3.95-1 NV_LIBCUBLAS_DEV_VERSION=11.5.1.109-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-3 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-3=11.5.1.109-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=11.3.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-3=11.3.0-1 NV_NVPROF_VERSION=11.3.111-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-3=11.3.111-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.9.9-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.9.9-1+cuda11.3 LIBRARY_PATH=/usr/local/cuda/lib64/stubs HOME=/root
镜像标签
NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 20.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest  docker.io/biochunan/esmfold-image:latest

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest  docker.io/biochunan/esmfold-image:latest

Shell快速替换命令

sed -i 's#biochunan/esmfold-image:latest#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest  docker.io/biochunan/esmfold-image:latest'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest  docker.io/biochunan/esmfold-image:latest'

镜像构建历史


# 2024-05-05 09:51:11  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["zsh" "run-esm-fold.sh"]
                        
# 2024-05-05 09:51:11  0.00B 设置工作目录为/root
WORKDIR /root
                        
# 2024-05-05 09:51:11  125.00B 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c chmod +x $HOME/run-esm-fold.sh # buildkit
                        
# 2024-05-05 09:51:11  125.00B 复制新文件或目录到容器中
COPY run-esm-fold.sh /root/run-esm-fold.sh # buildkit
                        
# 2024-05-05 09:51:10  0.00B 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c apt-get clean # buildkit
                        
# 2024-05-05 09:51:10  2.77GB 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c curl https://dl.fbaipublicfiles.com/fair-esm/models/esmfold_3B_v1.pt -o esmfold_3B_v1.pt # buildkit
                        
# 2024-05-05 09:50:16  5.68GB 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c curl https://dl.fbaipublicfiles.com/fair-esm/models/esm2_t36_3B_UR50D.pt -o esm2_t36_3B_UR50D.pt # buildkit
                        
# 2024-05-05 09:49:23  6.87KB 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c gdown --fuzzy -O esm2_t36_3B_UR50D-contact-regression.pt 1lW8CVTSzX8bwLxbM8lAu_qXQkrPZuSxA # buildkit
                        
# 2024-05-05 09:49:21  0.00B 设置工作目录为/root/.cache/torch/hub/checkpoints
WORKDIR /root/.cache/torch/hub/checkpoints
                        
# 2024-05-05 09:49:21  0.00B 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c mkdir -p $HOME/.cache/torch/hub/checkpoints # buildkit
                        
# 2024-05-05 09:49:20  6.80GB 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c chmod +x $HOME/create-env.sh   && zsh $HOME/create-env.sh   && rm $HOME/create-env.sh # buildkit
                        
# 2024-05-05 09:44:06  934.00B 复制新文件或目录到容器中
COPY ./create-env.sh /root/create-env.sh # buildkit
                        
# 2024-05-05 09:44:06  41.04MB 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c tar -zxvf $HOME/openfold.tar.gz -C $HOME     && rm $HOME/openfold.tar.gz # buildkit
                        
# 2024-05-05 09:44:05  39.56MB 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c gdown --fuzzy --no-cookies --no-check-certificate -O $HOME/openfold.tar.gz 13HYb90DiUrlnydSluE2yyxjGZ00vVYDf     && gdown --fuzzy --no-cookies --no-check-certificate -O $HOME/esm-main.tar.gz 13HqB428kfL0vhbApgW6jwPdz-I_D0AjZ # buildkit
                        
# 2024-05-05 09:43:53  0.00B 设置工作目录为/root
WORKDIR /root
                        
# 2024-05-05 09:43:53  0.00B 设置环境变量 PATH
ENV PATH=/root/.local/bin:/miniconda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-05-05 09:43:53  1.97MB 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c pip install gdown==5.0.1 # buildkit
                        
# 2024-05-05 09:43:51  68.36KB 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c source /miniconda/etc/profile.d/conda.sh   && conda init zsh # buildkit
                        
# 2024-05-05 09:43:49  0.00B 设置环境变量 PATH
ENV PATH=/miniconda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-05-05 09:43:49  0.00B 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c rm Miniconda3-${CONDA_VER}-Linux-${OS_TYPE}.sh # buildkit
                        
# 2024-05-05 09:43:47  640.03MB 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c bash Miniconda3-${CONDA_VER}-Linux-${OS_TYPE}.sh -p /miniconda -b # buildkit
                        
# 2024-05-05 09:43:40  143.35MB 执行命令并创建新的镜像层
RUN |3 CONDA_VER=latest PLATFORM=Linux OS_TYPE=x86_64 /bin/zsh -c curl -LO "http://repo.continuum.io/miniconda/Miniconda3-${CONDA_VER}-Linux-${OS_TYPE}.sh" # buildkit
                        
# 2024-05-05 09:43:38  0.00B 定义构建参数
ARG OS_TYPE=x86_64
                        
# 2024-05-05 09:43:38  0.00B 定义构建参数
ARG PLATFORM=Linux
                        
# 2024-05-05 09:43:38  0.00B 定义构建参数
ARG CONDA_VER=latest
                        
# 2024-05-05 09:43:38  0.00B 
SHELL [/bin/zsh -c]
                        
# 2024-05-05 09:43:38  1.85KB 执行命令并创建新的镜像层
RUN /bin/sh -c chsh -s /bin/zsh # buildkit
                        
# 2024-05-05 09:43:37  10.31MB 执行命令并创建新的镜像层
RUN /bin/sh -c sh -c "$(curl -fsSL https://raw.githubusercontent.com/robbyrussell/oh-my-zsh/master/tools/install.sh)" || true # buildkit
                        
# 2024-05-05 09:43:36  177.33MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update   && apt-get install -yq   zsh   curl   vim   git   && apt-get clean # buildkit
                        
# 2024-05-05 09:43:36  0.00B 设置环境变量 HOME
ENV HOME=/root
                        
# 2023-11-10 16:25:55  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 16:25:55  374.41KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 16:25:54  3.08GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     libtinfo5 libncursesw5     cuda-cudart-dev-11-3=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-3=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-3=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-3=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-3=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-3=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 16:25:54  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 16:25:54  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.9.9-1+cuda11.3
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.9.9-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.9.9-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-3=11.3.111-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.3.111-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-3=11.3.0-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=11.3.0-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-3=11.5.1.109-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-3
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.5.1.109-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-3=11.3.3.95-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.3.3.95-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.6.0.109-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.3.58-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.3.109-1
                        
# 2023-11-10 16:25:54  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.3.1-1
                        
# 2023-11-10 16:15:23  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 16:15:23  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 16:15:23  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 16:15:23  256.87KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 16:15:23  1.74GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-3=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-3=${NV_NVTX_VERSION}     libcusparse-11-3=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 16:15:23  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 16:15:23  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.9.9-1+cuda11.3
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.9.9-1
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.9.9-1
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-3=11.5.1.109-1
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.5.1.109-1
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-3
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.6.0.109-1
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-3=11.3.3.95-1
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.3.3.95-1
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.3.109-1
                        
# 2023-11-10 16:15:23  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.3.1-1
                        
# 2023-11-10 16:08:24  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 16:08:24  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 16:08:24  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 16:08:24  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 16:08:24  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 16:08:24  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 16:08:24  34.23MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-3=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 16:08:13  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.3.1
                        
# 2023-11-10 16:08:13  18.32MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 16:08:13  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 16:08:13  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 16:08:13  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-3
                        
# 2023-11-10 16:08:13  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.3.109-1
                        
# 2023-11-10 16:08:13  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand driver>
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.3 brand=tesla,driver>=418,driver<419 driver>=450
                        
# 2023-11-10 16:08:13  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-03 18:45:52  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-03 18:45:51  72.79MB 
/bin/sh -c #(nop) ADD file:4809da414c2d478b4d991cbdaa2df457f2b3d07d0ff6cf673f09a66f90833e81 in / 
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=20.04
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:8e6bd8242a1b0bd5eeb32547b2ec70de6134dd94b2b43b3045e923687003df2c",
    "RepoTags": [
        "biochunan/esmfold-image:latest",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image:latest"
    ],
    "RepoDigests": [
        "biochunan/esmfold-image@sha256:ab1eda38872ce4c9ec0a6c6817efc27925fc63dac67f974350c972ce22e130ed",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/biochunan/esmfold-image@sha256:9fc00d23bba00553e195f7686a9d8cc2b3cb15de7bb9bc5bf7f2ed9949bca5cf"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-05-05T02:51:11.633882108+01:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/root/.local/bin:/miniconda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.3 brand=tesla,driver\u003e=418,driver\u003c419 driver\u003e=450",
            "NV_CUDA_CUDART_VERSION=11.3.109-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-3",
            "CUDA_VERSION=11.3.1",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.3.1-1",
            "NV_NVTX_VERSION=11.3.109-1",
            "NV_LIBNPP_VERSION=11.3.3.95-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-3=11.3.3.95-1",
            "NV_LIBCUSPARSE_VERSION=11.6.0.109-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-3",
            "NV_LIBCUBLAS_VERSION=11.5.1.109-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-3=11.5.1.109-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.9.9-1",
            "NCCL_VERSION=2.9.9-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.9.9-1+cuda11.3",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=11.3.109-1",
            "NV_NVML_DEV_VERSION=11.3.58-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.6.0.109-1",
            "NV_LIBNPP_DEV_VERSION=11.3.3.95-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-3=11.3.3.95-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.5.1.109-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-3",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-3=11.5.1.109-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=11.3.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-3=11.3.0-1",
            "NV_NVPROF_VERSION=11.3.111-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-3=11.3.111-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.9.9-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.9.9-1+cuda11.3",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "HOME=/root"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/root",
        "Entrypoint": [
            "zsh",
            "run-esm-fold.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "20.04"
        },
        "Shell": [
            "/bin/zsh",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 21237032914,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/e844cb882fcf1fb5c8b18ded242a942f1be1557058fad59f2e6c4a47a9db6604/diff:/var/lib/docker/overlay2/7139fd468fe74b8966dcc26802cd31930a3984b06258f62c6b027b1d3d2d9935/diff:/var/lib/docker/overlay2/4ad37ccbecfb0baac124c9cd2f61623e30dc7116924448449549a49f8acb49d3/diff:/var/lib/docker/overlay2/a3a6893336c03bd984d50fb51517d6569b2482af64fe7616567103b3b05ff301/diff:/var/lib/docker/overlay2/6f420c32884a6a2432e166c3e6adbb718201536b1474902ed24d7d1e651b84fc/diff:/var/lib/docker/overlay2/9596fa75916f5a00e03a9111668efd3647d23e4d58a5293c00078b5d113ff8e7/diff:/var/lib/docker/overlay2/a477b25b800058ac38491113d9a64daa84caa71773ca74e0dd33d01378ba5401/diff:/var/lib/docker/overlay2/b8d997a6f33f5602dd6b92550ea9fa32c11f9dcf0107e2df019a13a55cbdad97/diff:/var/lib/docker/overlay2/4e5e76308715d0afae2d1f8bccfd69467e3bd8dcc9ce338aef7cf93a070de89d/diff:/var/lib/docker/overlay2/a6f91f58554253804f0ee29108d408a9a75445ff7cfbbb892cc0b45b62b0abef/diff:/var/lib/docker/overlay2/044c00d7eaec0321b76005a8e704fcf3a12eb0387b29b0647629d1a844c7b33d/diff:/var/lib/docker/overlay2/56722bfef3006662c9648ba7221eab9c833f4ce5ac9f160c65e5df6fd91a6435/diff:/var/lib/docker/overlay2/3b892a6289ed076fc6f1587edf0e4008acdc2631388e3a0a20238b569c3070fe/diff:/var/lib/docker/overlay2/354d71c1e51b422a9cb4e369b576128f680c0e8282b252d54060ebb6afd87d0b/diff:/var/lib/docker/overlay2/991de46ccec52af66239815456b45ec39617c60e659f8e593530bd6b7265fe57/diff:/var/lib/docker/overlay2/59337ae2d9b2dc7f4ff20b26d6b3e8fcc4d392f1ac03c07258db53e87639e3aa/diff:/var/lib/docker/overlay2/1b585f977c892e58314768e137ec3a6063d50520fc6079e6f3d9f42b72e12d5e/diff:/var/lib/docker/overlay2/4ec2752be1871706257efd69d76ff2227b075081501174c37a69faa4937060c7/diff:/var/lib/docker/overlay2/66904674b735698cb0760f018dbffc176408a8c564f5c8ec1ee306ac859472fb/diff:/var/lib/docker/overlay2/c75e51b072254241044c7247cb333028357237d9b30837f3b8aefaa4040f6ddf/diff:/var/lib/docker/overlay2/6e01367df21166a34b9507811fcc8b86de6ed9c4f672258b897e61ba060db142/diff:/var/lib/docker/overlay2/88e1d57a85085576b26b101b91063e3a2c11e9ba72544a7448d8a60adaf8f1c5/diff:/var/lib/docker/overlay2/2d44e8194d7158dffb195861dc7d6ca919ce9a5d29fe11f2d29c19e7918b6e41/diff:/var/lib/docker/overlay2/2b853087af595efb18441845449b609e5ae9a483efc4ca81db1366267a7651d4/diff:/var/lib/docker/overlay2/8f7265f38467b6d2b9878657f50bf280c5fbc1f57f521a06fdb0487444d44d41/diff:/var/lib/docker/overlay2/a132c64ca9ec6397afc3e1e91f62f2afab9dffa27b7b084466f58fceaa4f6763/diff:/var/lib/docker/overlay2/d95a37d05dafb158dbb0f3756dfc46aede1091d840dbff2210146025ba506ff3/diff:/var/lib/docker/overlay2/59daba5d1ac8afd84fde1807374707676a32346b8b9e530de51cfb9823ee07c8/diff:/var/lib/docker/overlay2/9d96a32733d4f0e7dcc31afb39d2d787a3af52cea0078ce41a02e8e4ff23178d/diff:/var/lib/docker/overlay2/994841ceb2adfa73b4df28b290de6687dbc0c933719346780733fec5b113a585/diff:/var/lib/docker/overlay2/acdd2d11130f3cc5221b37a39b03025da333ad1210510e6fa22c20a44959cc9c/diff:/var/lib/docker/overlay2/5408abd3ec726f4d055e10fddd8f488a8839c8a355fe1fb064cdc9fee660e07b/diff",
            "MergedDir": "/var/lib/docker/overlay2/f6bbb9266eb4fef2106d33803717cb18fc85f575ffdbdf71777352d9952b0e31/merged",
            "UpperDir": "/var/lib/docker/overlay2/f6bbb9266eb4fef2106d33803717cb18fc85f575ffdbdf71777352d9952b0e31/diff",
            "WorkDir": "/var/lib/docker/overlay2/f6bbb9266eb4fef2106d33803717cb18fc85f575ffdbdf71777352d9952b0e31/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:6c3e7df31590f02f10cb71fc4eb27653e9b428df2e6e5421a455b062bd2e39f9",
            "sha256:ce8a348429442989d235ee596c241a88d7d294980ee15af3d1c3bcd24c01ea85",
            "sha256:2d89da12200210082900bbfb382900c160775b9b2e3c726859b39434043be234",
            "sha256:a9ce30c0e62e15778cc4a9e8cbab4cc8a110d93bb22fa4cf26984a5842e7fd68",
            "sha256:c1664a4d233759ffce0401b2922a4f4abfbd91030791fa9e221929934c0a0515",
            "sha256:1a8bf5c71bf6b62abbf48d3ba39427d99615ac4d7d368c598ab1ccd372e6f1d7",
            "sha256:0e08a8f43981b3968873945cd3091f92b7a9b818f6675864d6ec83d2d2026f77",
            "sha256:0bceba9dc290411cb9df6eb8c72784f0bdc3bf42649932f887443d1dea19fd9a",
            "sha256:8524482cf441dc1afdcc569e3a4a6becb825216cac79c93e49711e7e3fd54f3c",
            "sha256:a21913d8681b526a358ee622760a0aae70a5a668b0ddffb5b0d340b144d1f8fe",
            "sha256:72d82c163a83c13f765d8be553ecd64b1b93d6bb4f77c7614c94f5928c8db4a4",
            "sha256:758620da1a4c1dd7e04df5ecad19ca8b7e78e91c7a6e7677f29b6bef6e363329",
            "sha256:9e7bf7b48b07debadbd177dce369eccda8b5e8c09adf3783c42b983db7845cff",
            "sha256:6653522911c6b1060bf133650663b1026830adb6d569db7e8b23ab9b6d1c4389",
            "sha256:a945111ce7fcc3bbdf5cecce7a06195f9bb842f56e13c2a5d7c77810133d74b5",
            "sha256:aef19a47269785a61c7e8e01460071ec2bfe10e946ffd802fe5f22a2d7c7cee3",
            "sha256:34f124e4e1b2f16ca272e3a650e36b564935e429c610ecc2a45d93b198d10db3",
            "sha256:d85348df23c851e0302bf0474d7fd03131bbb6617d862bd5708609f24953dc65",
            "sha256:1d5be36ac3d4fffa5549e91f4bb3c6d0da6aa9c125abce336f600b065f57f517",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:bfdf4197da47ea09f0767af421a976b6d25674bf0ade3245d51506d8591928b4",
            "sha256:bbf06ecc450b37e7686d307aecf5ee930456923f3388d4218b77ffd2bcfdcd99",
            "sha256:4cbf108adb8a5ceaa999b178271591192a868b2067b6a3961d39b0048dbb69e5",
            "sha256:028932baefe7ceb17c35f098813b098bca6fda14386d5c9dbaea2e0422af5c2d",
            "sha256:b680c92fa38ef54e6157b90b07c988d1044a465f310e341a4cc00604319381cf",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:e3d24700809ad9471e7244463291592402b853bc7678cc470e32c5abb3f708cb",
            "sha256:0b8826ee998a87f25fc897954a0afd2fd35d72a91ec7a704b08f15f2d4c513db",
            "sha256:f3ece9a37593abc1a367653489244e62c11a0b477f05a86af3647f2058dfa356",
            "sha256:7b26726326232eeb5d9917af854df8895565a6ece5bcca6e96da7bd16b21fe65",
            "sha256:04b31231506aac1a9e21ad6ab4abbbe0a3c1a9b8e2cf29106122424a5ef3249f",
            "sha256:602c38782eb55eb4f1450d3d99a4d7cb8226bad869a6ef03d178ff23bf648a35",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-12-23T01:13:03.968234446+08:00"
    }
}

更多版本

docker.io/biochunan/esmfold-image:latest

linux/amd64 docker.io21.24GB2025-12-23 01:38
7