PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
NVARCH=x86_64
NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511
NV_CUDA_CUDART_VERSION=11.7.60-1
NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7
CUDA_VERSION=11.7.0
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NV_CUDA_LIB_VERSION=11.7.0-1
NV_NVTX_VERSION=11.7.50-1
NV_LIBNPP_VERSION=11.7.3.21-1
NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1
NV_LIBCUSPARSE_VERSION=11.7.3.50-1
NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7
NV_LIBCUBLAS_VERSION=11.10.1.25-1
NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1
NV_LIBNCCL_PACKAGE_NAME=libnccl2
NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1
NCCL_VERSION=2.13.4-1
NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7
NVIDIA_PRODUCT_NAME=CUDA
NVIDIA_CUDA_END_OF_LIFE=1
NV_CUDA_CUDART_DEV_VERSION=11.7.60-1
NV_NVML_DEV_VERSION=11.7.50-1
NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1
NV_LIBNPP_DEV_VERSION=11.7.3.21-1
NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1
NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1
NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7
NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1
NV_NVPROF_VERSION=11.7.50-1
NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1
NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1
NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7
LIBRARY_PATH=/usr/local/cuda/lib64/stubs
NV_CUDNN_VERSION=8.5.0.96
NV_CUDNN_PACKAGE_NAME=libcudnn8
NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7
NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7
PYTORCH_VERSION=2.0.1
镜像构建历史
# 2023-10-26 12:10:33 66.35MB
/bin/bash
# 2023-10-18 17:30:36 15.73MB
/bin/bash
# 2023-10-10 19:39:32 25.73KB 执行命令并创建新的镜像层
RUN /bin/sh -c cd data-juicer && pip install -v -e .[all] && cd .. # buildkit
# 2023-10-10 19:39:22 32.26KB 执行命令并创建新的镜像层
RUN /bin/sh -c cd lm-evaluation-harness && pip install -e . && cd .. # buildkit
# 2023-10-10 19:39:13 0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c rm Dockerfile && rm build_image.sh # buildkit
# 2023-10-10 19:39:12 49.41MB 复制新文件或目录到容器中
COPY . . # buildkit
# 2023-09-27 17:45:46 38.58KB
/bin/sh -c rm -rf data-juicer sft_trainer lm-evaluation-harness
# 2023-09-27 17:45:45 111.82MB
/bin/sh -c cd lm-evaluation-harness && pip install -e . && cd ..
# 2023-09-27 17:45:09 11.18MB
/bin/sh -c cd sft_trainer && pip install -r requirements.txt && cd ..
# 2023-09-27 17:44:52 2.48GB
/bin/sh -c cd data-juicer && cat environments/* | xargs pip install && cd ..
# 2023-09-27 17:40:27 65.52MB
/bin/sh -c #(nop) COPY dir:3fdb3d3308243cadcaeeba6555bc0fa5062921bbf7b1bd47db277ca8e3496f20 in .
# 2023-09-27 13:40:11 38.64KB
/bin/sh -c pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
# 2023-09-27 13:40:09 14.18MB
/bin/sh -c python -m pip install --upgrade pip
# 2023-09-27 13:38:57 177.10KB
/bin/sh -c pip install git+https://github.com/HYLcool/simhash-py.git
# 2023-09-26 18:53:57 47.36MB
/bin/sh -c apt install -y git wget
# 2023-09-26 18:53:35 48.18MB
/bin/sh -c apt update
# 2023-05-13 07:31:56 0.00B 设置工作目录为/workspace
WORKDIR /workspace
# 2023-05-13 07:31:56 0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=2.0.1
# 2023-05-13 07:31:56 0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
# 2023-05-13 07:31:56 0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# 2023-05-13 07:31:56 0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
# 2023-05-13 07:31:56 0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2023-05-13 07:31:56 0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.0.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.7.0 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends gcc; rm -rf /var/lib/apt/lists/*; fi # buildkit
# 2023-05-13 07:31:56 6.38GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
# 2023-05-13 07:25:22 3.25MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.0.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.7.0 /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends ca-certificates libjpeg-dev libpng-dev && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-05-13 07:25:22 0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
# 2023-05-13 07:25:22 0.00B 定义构建参数
ARG CUDA_VERSION
# 2023-05-13 07:25:22 0.00B 定义构建参数
ARG TARGETPLATFORM
# 2023-05-13 07:25:22 0.00B 定义构建参数
ARG TRITON_VERSION
# 2023-05-13 07:25:22 0.00B 定义构建参数
ARG PYTORCH_VERSION
# 2022-12-17 09:09:24 1.94GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends ${NV_CUDNN_PACKAGE} ${NV_CUDNN_PACKAGE_DEV} && apt-mark hold ${NV_CUDNN_PACKAGE_NAME} && rm -rf /var/lib/apt/lists/* # buildkit
# 2022-12-17 09:09:24 0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.5.0.96
# 2022-12-17 09:09:24 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2022-12-17 09:09:24 0.00B 定义构建参数
ARG TARGETARCH
# 2022-12-17 09:09:24 0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7
# 2022-12-17 09:09:24 0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7
# 2022-12-17 09:09:24 0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
# 2022-12-17 09:09:24 0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.5.0.96
# 2022-12-15 04:13:58 0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
# 2022-12-15 04:13:58 374.63KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
# 2022-12-15 04:13:57 2.82GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends libtinfo5 libncursesw5 cuda-cudart-dev-11-7=${NV_CUDA_CUDART_DEV_VERSION} cuda-command-line-tools-11-7=${NV_CUDA_LIB_VERSION} cuda-minimal-build-11-7=${NV_CUDA_LIB_VERSION} cuda-libraries-dev-11-7=${NV_CUDA_LIB_VERSION} cuda-nvml-dev-11-7=${NV_NVML_DEV_VERSION} ${NV_NVPROF_DEV_PACKAGE} ${NV_LIBNPP_DEV_PACKAGE} libcusparse-dev-11-7=${NV_LIBCUSPARSE_DEV_VERSION} ${NV_LIBCUBLAS_DEV_PACKAGE} ${NV_LIBNCCL_DEV_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2022-12-15 04:13:57 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2022-12-15 04:13:57 0.00B 定义构建参数
ARG TARGETARCH
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7
# 2022-12-15 04:13:57 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.13.4-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.7.50-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.7.3.21-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.7.50-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.7.60-1
# 2022-12-15 04:13:57 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.7.0-1
# 2022-12-15 04:03:03 0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
# 2022-12-15 04:03:03 0.00B 设置环境变量 NVIDIA_CUDA_END_OF_LIFE
ENV NVIDIA_CUDA_END_OF_LIFE=1
# 2022-12-15 04:03:03 0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
# 2022-12-15 04:03:03 2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
# 2022-12-15 04:03:03 3.04KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
# 2022-12-15 04:03:03 258.24KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
# 2022-12-15 04:03:02 1.82GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-libraries-11-7=${NV_CUDA_LIB_VERSION} ${NV_LIBNPP_PACKAGE} cuda-nvtx-11-7=${NV_NVTX_VERSION} libcusparse-11-7=${NV_LIBCUSPARSE_VERSION} ${NV_LIBCUBLAS_PACKAGE} ${NV_LIBNCCL_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2022-12-15 04:03:02 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2022-12-15 04:03:02 0.00B 定义构建参数
ARG TARGETARCH
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7
# 2022-12-15 04:03:02 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.13.4-1
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.10.1.25-1
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.3.50-1
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.7.3.21-1
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.7.50-1
# 2022-12-15 04:03:02 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.7.0-1
# 2022-12-15 03:58:37 0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# 2022-12-15 03:58:37 0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
# 2022-12-15 03:58:37 16.05KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
# 2022-12-15 03:58:37 0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
# 2022-12-15 03:58:37 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2022-12-15 03:58:37 46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
# 2022-12-15 03:58:37 119.68MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-cudart-11-7=${NV_CUDA_CUDART_VERSION} ${NV_CUDA_COMPAT_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2022-12-15 03:58:22 0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.7.0
# 2022-12-15 03:58:22 18.28MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends gnupg2 curl ca-certificates && curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - && echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list && apt-get purge --autoremove -y curl && rm -rf /var/lib/apt/lists/* # buildkit
# 2022-12-15 03:58:22 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2022-12-15 03:58:22 0.00B 定义构建参数
ARG TARGETARCH
# 2022-12-15 03:58:22 0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7
# 2022-12-15 03:58:22 0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.7.60-1
# 2022-12-15 03:58:22 0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511
# 2022-12-15 03:58:22 0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
# 2022-12-09 09:20:21 0.00B
/bin/sh -c #(nop) CMD ["bash"]
# 2022-12-09 09:20:21 72.79MB
/bin/sh -c #(nop) ADD file:9d282119af0c42bc823c95b4192a3350cf2cad670622017356dd2e637762e425 in /
镜像信息
{
"Id": "sha256:806ef74a2bc340e50b4368e7f937086094715733ceab27420990cc2119ac010f",
"RepoTags": [
"datajuicer/dj-competition:ft-v0.1",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1"
],
"RepoDigests": [
"datajuicer/dj-competition@sha256:c62b33215a28ba07b329b377eff33bce728658c089a173d97bf577248cf2b0a9",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition@sha256:c62b33215a28ba07b329b377eff33bce728658c089a173d97bf577248cf2b0a9"
],
"Parent": "",
"Comment": "",
"Created": "2023-10-26T04:10:33.88276648Z",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "19.03.2",
"Author": "",
"Config": {
"Hostname": "18cdbeba2646",
"Domainname": "",
"User": "",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"Tty": true,
"OpenStdin": true,
"StdinOnce": false,
"Env": [
"PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"NVARCH=x86_64",
"NVIDIA_REQUIRE_CUDA=cuda\u003e=11.7 brand=tesla,driver\u003e=450,driver\u003c451 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=510,driver\u003c511 brand=unknown,driver\u003e=510,driver\u003c511 brand=nvidia,driver\u003e=510,driver\u003c511 brand=nvidiartx,driver\u003e=510,driver\u003c511 brand=quadro,driver\u003e=510,driver\u003c511 brand=quadrortx,driver\u003e=510,driver\u003c511 brand=titan,driver\u003e=510,driver\u003c511 brand=titanrtx,driver\u003e=510,driver\u003c511 brand=geforce,driver\u003e=510,driver\u003c511 brand=geforcertx,driver\u003e=510,driver\u003c511",
"NV_CUDA_CUDART_VERSION=11.7.60-1",
"NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7",
"CUDA_VERSION=11.7.0",
"LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
"NVIDIA_VISIBLE_DEVICES=all",
"NVIDIA_DRIVER_CAPABILITIES=compute,utility",
"NV_CUDA_LIB_VERSION=11.7.0-1",
"NV_NVTX_VERSION=11.7.50-1",
"NV_LIBNPP_VERSION=11.7.3.21-1",
"NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1",
"NV_LIBCUSPARSE_VERSION=11.7.3.50-1",
"NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7",
"NV_LIBCUBLAS_VERSION=11.10.1.25-1",
"NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1",
"NV_LIBNCCL_PACKAGE_NAME=libnccl2",
"NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1",
"NCCL_VERSION=2.13.4-1",
"NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7",
"NVIDIA_PRODUCT_NAME=CUDA",
"NVIDIA_CUDA_END_OF_LIFE=1",
"NV_CUDA_CUDART_DEV_VERSION=11.7.60-1",
"NV_NVML_DEV_VERSION=11.7.50-1",
"NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1",
"NV_LIBNPP_DEV_VERSION=11.7.3.21-1",
"NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1",
"NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1",
"NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7",
"NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1",
"NV_NVPROF_VERSION=11.7.50-1",
"NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1",
"NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
"NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1",
"NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7",
"LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
"NV_CUDNN_VERSION=8.5.0.96",
"NV_CUDNN_PACKAGE_NAME=libcudnn8",
"NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7",
"NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7",
"PYTORCH_VERSION=2.0.1"
],
"Cmd": [
"/bin/bash"
],
"Image": "datajuicer/dj-competition:ft-v0.1",
"Volumes": null,
"WorkingDir": "/workspace",
"Entrypoint": [
"/opt/nvidia/nvidia_entrypoint.sh"
],
"OnBuild": null,
"Labels": {
"com.nvidia.cudnn.version": "8.5.0.96",
"com.nvidia.volumes.needed": "nvidia_driver",
"maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 16082590767,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/46828a308cabe227fe563d03137269cd58a6bc80ee78c3f5095c948bad5cbbbb/diff:/var/lib/docker/overlay2/46986cdb4689dbdd8c59343b2e3b2043f3862a5a1074d6602a721142b265ad66/diff:/var/lib/docker/overlay2/d6f6750e7b53ee6518f434e68c11b373601a5ccd9a542774535e6b22dcefff3d/diff:/var/lib/docker/overlay2/691f1bad742c50274b1c362b81d0af0a58451c4f5af53daae0221e26e9f249e2/diff:/var/lib/docker/overlay2/1f1f4e7b33c0578a55470b423ccccf32daf3229e27d048401c5462221679cb11/diff:/var/lib/docker/overlay2/3ad3b39ad586c4b2c2e91dbd3ed759d5329008d0027128166fe7fb23363a2d60/diff:/var/lib/docker/overlay2/6acae2e38d69a2d107e9b2977acf81c2d3b7a16154a4ff9a12dded959dbab9d5/diff:/var/lib/docker/overlay2/049af6932d90880c7bbbc279ca6a818d9562d462f92c89297cceea2bec5fa3c1/diff:/var/lib/docker/overlay2/efdbd5587f6a959f21c856eeb13b8f5b6e6e96450e02a0dee6d1ccb4744e9fee/diff:/var/lib/docker/overlay2/272f76cd8cda1bc8031077694e9a51371e737a41f2d384b4fe703b0e0041a311/diff:/var/lib/docker/overlay2/8c2bde8c60d4753d5a1ae19267633333e0ab1eb063c13c129457b1755d64c697/diff:/var/lib/docker/overlay2/f77c3a8d2d33ee3df52a8a740200110561908dbd75cf6be935592eba23bdaca4/diff:/var/lib/docker/overlay2/34217d98eb71819aebe7198585062fcd4a7d9a51f83113154d68e2cc45381df3/diff:/var/lib/docker/overlay2/0c85a3b201f7762500d14a6f866076a2a86e6d1d5885e382ffbb3b46e136d307/diff:/var/lib/docker/overlay2/d93f4e117748fbe1a46424cf0162cfb79dcace4bc04bc7483f937072ac23ab00/diff:/var/lib/docker/overlay2/516997d51e938aff89eeac3484a4feaa32dfb28a61a34dbcfb6a94067c05509b/diff:/var/lib/docker/overlay2/71053fca62e41be35afada7afd456b9a581ab5f53452b66c6f84b7525a149d7f/diff:/var/lib/docker/overlay2/298b80811532269a0162cf3005ee02fd2e5de99085c9fa727f34c3cda4acc024/diff:/var/lib/docker/overlay2/51950330e6ae16c5c0c631d16e705df5526aa7cc8cb96a0a3321897e9fddfc93/diff:/var/lib/docker/overlay2/eb927ffd110f9a8f8076a9e70f00cb8e8737e75c737ae259ad7a001c8cb61583/diff:/var/lib/docker/overlay2/c0d23f533e8ac0ef9397ee345d1ff55e9e27702c18f127c2c6a77ade9e98b795/diff:/var/lib/docker/overlay2/f7ca0cc06ea9820e4eb1bef808f8a10fa8cfb83c90ab786c3125f3a9c560ed02/diff:/var/lib/docker/overlay2/c4b4806da6a9c6992d9402f894f395927aa8f9d5061a202bb182b5feb03afc56/diff:/var/lib/docker/overlay2/18e7f5abfca9150a02022586d7480c9a342833802a18033cbafb6cf2b9044da2/diff:/var/lib/docker/overlay2/794f6101083625b8c42fa46552c0a4fab070d6d96d50fee158cea6c289155f46/diff:/var/lib/docker/overlay2/178d1346adf32e4517b7c3f97884f9c619e562a6d6db28ec2864aa23619f38c0/diff:/var/lib/docker/overlay2/9b6a7b46e16f95e13fd9a85930d8f4fcbcbdc1a9d30de91d42e1973e6875db7a/diff:/var/lib/docker/overlay2/e4104c5a45818678ceebef84079b6f7b838771fc296bb7ea02b86a88f909ba97/diff:/var/lib/docker/overlay2/ddb8888767dc117af3813663908610f6769690e7adde62442f996bd413057f0f/diff:/var/lib/docker/overlay2/d60c286e715efa3be33daad67196b9e801e8721a5b4b69c665893709f6a36cf3/diff:/var/lib/docker/overlay2/c5106ed7126547e974f7a651d8e52640a5b4eb7d8049d2e843395497ddd7b9b4/diff",
"MergedDir": "/var/lib/docker/overlay2/fa5f4c40b5d626d7aac6ba108aa96199416d2fd042bdda8852040ab6dddfef48/merged",
"UpperDir": "/var/lib/docker/overlay2/fa5f4c40b5d626d7aac6ba108aa96199416d2fd042bdda8852040ab6dddfef48/diff",
"WorkDir": "/var/lib/docker/overlay2/fa5f4c40b5d626d7aac6ba108aa96199416d2fd042bdda8852040ab6dddfef48/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:0002c93bdb3704dd9e36ce5153ef637f84de253015f3ee330468dccdeacad60b",
"sha256:b1a30caae1b901e4f37d1246569629689cc5d611ed45e7fa48411d71ccbf7f2e",
"sha256:c638c9ad4d00af1f7f91cc3bd0b058e43718f3a276f4c0c83c32c86287d11e02",
"sha256:29d81efb70cded94cad18a73eb9c0b8daf74b51599164f80a29c11740a8a58da",
"sha256:02b35daccca6836ed83b176eea233faec76f4763ce30f51bf41c5377554aa8dc",
"sha256:ff2d63ace99b381d7c25560ff58b478052dd24fdef514e58ab151daa87be4b3e",
"sha256:a135fd5c90399fcb72fd1b5d01fe79e880d427b62cda9cfbecfcaea92c58c380",
"sha256:9586853ba917934ed7eb1c6934fc20e43d54d49f496591e1c5a1f444442f72af",
"sha256:3657184a5238a93028b5d8a496a028ea19f1cc99d396058f58f8273a7efdba24",
"sha256:f626e92b1911f3362f9fd3779b4613e9e6606d7537462bb225949e8fd8735d0e",
"sha256:f2e94848333a5f4e41be37b8edcd9dcdd2ed246376e24967ab8f42b5d339ff5f",
"sha256:0d262b16f3104d2efa81699ac5779fb2932935ecea2223de991f4e383987d626",
"sha256:4197bec0af74cb69e8c5b789d2f822bf8d2dc346ee6edb23e6c9685182a06dcc",
"sha256:78af4ff9cb2f4d775c0feffd705217fcb8859c5940cc31dac286c69cd6801e8d",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:cc25370f74406e80fa3b80a8cae72620d5761577a66ebde391fa25ffa37d3c2d",
"sha256:8a5211bf139ac1598d5d4820cdaf7a45eeea48f50dbfc886f83014b38a1b8521",
"sha256:ed4e35a8c31dc8ab87fd32040775b80085e9ad1477b77f3ec0fa9f05fd736443",
"sha256:1dfc5e55194ad50bf24736cb5dc0dc2437e8840fb1ff0c1a9812fc2e757d8462",
"sha256:7784786488831920ef9f1980bfc47681a5eac457e688ca32e141a72e9484b84f",
"sha256:c0165bf78d4114f1c093502741c2fcb54c4456941ef5110be439e26f94a17adb",
"sha256:6852a1939510bc7e362b063b8d5ff90b6f7ceff4a5c878ea380a6d72eaf3c01c",
"sha256:93ccb97f4ddfe648b8969bd425b199c4774cbb32bc3772c0f1b767daac177184",
"sha256:8f180403f233e98b8ae09681b1e9fa485d80e4b80c571f43104cb46cfd742eed",
"sha256:4181fbaa4d08c98e94f612f0f281e475fdabcd8d14b8a4eb567118f6910e3e9b",
"sha256:1ff4001ad8456b760e40773693acf8116fe305d737feb7d1a7c5bba12c3c7fa4",
"sha256:6f11d5d8a1036d92140d28bf5727858a59399b52e6ff8749111c78c476a406df",
"sha256:91bceb7073a7ef3b3768a57ef8c3438ff986a37eed083b1b5e58dd908d35eacc",
"sha256:114bd7657f69a5b0641abe3242867e38c07fe2699d299bffdd648d7d487239fa",
"sha256:04fc21ad5f7266b924fc160d188a9b34fff4ef697a8ac1ee2190eb628a2f7de4",
"sha256:b5d29ce8e4451c7a5e0c559140f899578ae42bdc18ed897be9f10f1d2d2b5002",
"sha256:e5f556f025045dad767a4e597c7466141f8380f6f8a79291cb483f6931217746"
]
},
"Metadata": {
"LastTagTime": "2024-12-31T03:57:37.196558683+08:00"
}
}