docker.io/datajuicer/dj-competition:ft-v0.1 linux/amd64

docker.io/datajuicer/dj-competition:ft-v0.1 - 国内下载镜像源 浏览次数:69
```html

这是一个由DataJuicer提供的Docker镜像,名称为dj-competition。该镜像很可能包含了DataJuicer公司提供的用于数据科学竞赛或机器学习竞赛的工具和环境。 具体包含哪些软件包、库和工具需要参考DataJuicer官方文档。

```
源镜像 docker.io/datajuicer/dj-competition:ft-v0.1
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1
镜像ID sha256:806ef74a2bc340e50b4368e7f937086094715733ceab27420990cc2119ac010f
镜像TAG ft-v0.1
大小 16.08GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD /bin/bash
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 69 次
贡献者 ls*****t@outlook.com
镜像创建 2023-10-26T04:10:33.88276648Z
同步时间 2024-12-31 04:01
更新时间 2025-02-20 16:34
环境变量
PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 NV_CUDA_CUDART_VERSION=11.7.60-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7 CUDA_VERSION=11.7.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.7.0-1 NV_NVTX_VERSION=11.7.50-1 NV_LIBNPP_VERSION=11.7.3.21-1 NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1 NV_LIBCUSPARSE_VERSION=11.7.3.50-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7 NV_LIBCUBLAS_VERSION=11.10.1.25-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1 NCCL_VERSION=2.13.4-1 NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7 NVIDIA_PRODUCT_NAME=CUDA NVIDIA_CUDA_END_OF_LIFE=1 NV_CUDA_CUDART_DEV_VERSION=11.7.60-1 NV_NVML_DEV_VERSION=11.7.50-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1 NV_LIBNPP_DEV_VERSION=11.7.3.21-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1 NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1 NV_NVPROF_VERSION=11.7.50-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.5.0.96 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7 PYTORCH_VERSION=2.0.1
镜像标签
8.5.0.96: com.nvidia.cudnn.version nvidia_driver: com.nvidia.volumes.needed NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer
镜像安全扫描 查看Trivy扫描报告

系统OS: ubuntu 20.04 扫描引擎: Trivy 扫描时间: 2024-12-31 04:04

低危漏洞:259 中危漏洞:2217 高危漏洞:127 严重漏洞:8

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1  docker.io/datajuicer/dj-competition:ft-v0.1

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1  docker.io/datajuicer/dj-competition:ft-v0.1

Shell快速替换命令

sed -i 's#datajuicer/dj-competition:ft-v0.1#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1  docker.io/datajuicer/dj-competition:ft-v0.1'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1  docker.io/datajuicer/dj-competition:ft-v0.1'

镜像构建历史


# 2023-10-26 12:10:33  66.35MB 
/bin/bash
                        
# 2023-10-18 17:30:36  15.73MB 
/bin/bash
                        
# 2023-10-10 19:39:32  25.73KB 执行命令并创建新的镜像层
RUN /bin/sh -c cd data-juicer && pip install -v -e .[all] && cd .. # buildkit
                        
# 2023-10-10 19:39:22  32.26KB 执行命令并创建新的镜像层
RUN /bin/sh -c cd lm-evaluation-harness && pip install -e . && cd .. # buildkit
                        
# 2023-10-10 19:39:13  0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c rm Dockerfile && rm build_image.sh # buildkit
                        
# 2023-10-10 19:39:12  49.41MB 复制新文件或目录到容器中
COPY . . # buildkit
                        
# 2023-09-27 17:45:46  38.58KB 
/bin/sh -c rm -rf data-juicer sft_trainer lm-evaluation-harness
                        
# 2023-09-27 17:45:45  111.82MB 
/bin/sh -c cd lm-evaluation-harness && pip install -e . && cd ..
                        
# 2023-09-27 17:45:09  11.18MB 
/bin/sh -c cd sft_trainer && pip install -r requirements.txt  && cd ..
                        
# 2023-09-27 17:44:52  2.48GB 
/bin/sh -c cd data-juicer && cat environments/* | xargs pip install && cd ..
                        
# 2023-09-27 17:40:27  65.52MB 
/bin/sh -c #(nop) COPY dir:3fdb3d3308243cadcaeeba6555bc0fa5062921bbf7b1bd47db277ca8e3496f20 in . 
                        
# 2023-09-27 13:40:11  38.64KB 
/bin/sh -c pip config set global.index-url  https://mirrors.aliyun.com/pypi/simple/
                        
# 2023-09-27 13:40:09  14.18MB 
/bin/sh -c python -m pip install --upgrade pip
                        
# 2023-09-27 13:38:57  177.10KB 
/bin/sh -c pip install git+https://github.com/HYLcool/simhash-py.git
                        
# 2023-09-26 18:53:57  47.36MB 
/bin/sh -c apt install -y git wget
                        
# 2023-09-26 18:53:35  48.18MB 
/bin/sh -c apt update
                        
# 2023-05-13 07:31:56  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2023-05-13 07:31:56  0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=2.0.1
                        
# 2023-05-13 07:31:56  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-05-13 07:31:56  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-05-13 07:31:56  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-05-13 07:31:56  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-05-13 07:31:56  0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.0.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.7.0 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then         DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends gcc;         rm -rf /var/lib/apt/lists/*;     fi # buildkit
                        
# 2023-05-13 07:31:56  6.38GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2023-05-13 07:25:22  3.25MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.0.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.7.0 /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends         ca-certificates         libjpeg-dev         libpng-dev         && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-05-13 07:25:22  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
                        
# 2023-05-13 07:25:22  0.00B 定义构建参数
ARG CUDA_VERSION
                        
# 2023-05-13 07:25:22  0.00B 定义构建参数
ARG TARGETPLATFORM
                        
# 2023-05-13 07:25:22  0.00B 定义构建参数
ARG TRITON_VERSION
                        
# 2023-05-13 07:25:22  0.00B 定义构建参数
ARG PYTORCH_VERSION
                        
# 2022-12-17 09:09:24  1.94GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-17 09:09:24  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.5.0.96
                        
# 2022-12-17 09:09:24  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-17 09:09:24  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-17 09:09:24  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7
                        
# 2022-12-17 09:09:24  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7
                        
# 2022-12-17 09:09:24  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2022-12-17 09:09:24  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.5.0.96
                        
# 2022-12-15 04:13:58  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2022-12-15 04:13:58  374.63KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2022-12-15 04:13:57  2.82GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     libtinfo5 libncursesw5     cuda-cudart-dev-11-7=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-7=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-7=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-7=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-7=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-7=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 04:13:57  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-15 04:13:57  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.13.4-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.7.50-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.7.3.21-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.7.50-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.7.60-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.7.0-1
                        
# 2022-12-15 04:03:03  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2022-12-15 04:03:03  0.00B 设置环境变量 NVIDIA_CUDA_END_OF_LIFE
ENV NVIDIA_CUDA_END_OF_LIFE=1
                        
# 2022-12-15 04:03:03  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2022-12-15 04:03:03  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2022-12-15 04:03:03  3.04KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2022-12-15 04:03:03  258.24KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2022-12-15 04:03:02  1.82GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-7=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-7=${NV_NVTX_VERSION}     libcusparse-11-7=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 04:03:02  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-15 04:03:02  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.13.4-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.10.1.25-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.3.50-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.7.3.21-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.7.50-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.7.0-1
                        
# 2022-12-15 03:58:37  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2022-12-15 03:58:37  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2022-12-15 03:58:37  16.05KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2022-12-15 03:58:37  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2022-12-15 03:58:37  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2022-12-15 03:58:37  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2022-12-15 03:58:37  119.68MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-7=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 03:58:22  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.7.0
                        
# 2022-12-15 03:58:22  18.28MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 03:58:22  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-15 03:58:22  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-15 03:58:22  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7
                        
# 2022-12-15 03:58:22  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.7.60-1
                        
# 2022-12-15 03:58:22  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511
                        
# 2022-12-15 03:58:22  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2022-12-09 09:20:21  0.00B 
/bin/sh -c #(nop)  CMD ["bash"]
                        
# 2022-12-09 09:20:21  72.79MB 
/bin/sh -c #(nop) ADD file:9d282119af0c42bc823c95b4192a3350cf2cad670622017356dd2e637762e425 in / 
                        
                    

镜像信息

{
    "Id": "sha256:806ef74a2bc340e50b4368e7f937086094715733ceab27420990cc2119ac010f",
    "RepoTags": [
        "datajuicer/dj-competition:ft-v0.1",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition:ft-v0.1"
    ],
    "RepoDigests": [
        "datajuicer/dj-competition@sha256:c62b33215a28ba07b329b377eff33bce728658c089a173d97bf577248cf2b0a9",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/datajuicer/dj-competition@sha256:c62b33215a28ba07b329b377eff33bce728658c089a173d97bf577248cf2b0a9"
    ],
    "Parent": "",
    "Comment": "",
    "Created": "2023-10-26T04:10:33.88276648Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "19.03.2",
    "Author": "",
    "Config": {
        "Hostname": "18cdbeba2646",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": true,
        "OpenStdin": true,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.7 brand=tesla,driver\u003e=450,driver\u003c451 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=510,driver\u003c511 brand=unknown,driver\u003e=510,driver\u003c511 brand=nvidia,driver\u003e=510,driver\u003c511 brand=nvidiartx,driver\u003e=510,driver\u003c511 brand=quadro,driver\u003e=510,driver\u003c511 brand=quadrortx,driver\u003e=510,driver\u003c511 brand=titan,driver\u003e=510,driver\u003c511 brand=titanrtx,driver\u003e=510,driver\u003c511 brand=geforce,driver\u003e=510,driver\u003c511 brand=geforcertx,driver\u003e=510,driver\u003c511",
            "NV_CUDA_CUDART_VERSION=11.7.60-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7",
            "CUDA_VERSION=11.7.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.7.0-1",
            "NV_NVTX_VERSION=11.7.50-1",
            "NV_LIBNPP_VERSION=11.7.3.21-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1",
            "NV_LIBCUSPARSE_VERSION=11.7.3.50-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7",
            "NV_LIBCUBLAS_VERSION=11.10.1.25-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1",
            "NCCL_VERSION=2.13.4-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NVIDIA_CUDA_END_OF_LIFE=1",
            "NV_CUDA_CUDART_DEV_VERSION=11.7.60-1",
            "NV_NVML_DEV_VERSION=11.7.50-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1",
            "NV_LIBNPP_DEV_VERSION=11.7.3.21-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1",
            "NV_NVPROF_VERSION=11.7.50-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.5.0.96",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7",
            "PYTORCH_VERSION=2.0.1"
        ],
        "Cmd": [
            "/bin/bash"
        ],
        "Image": "datajuicer/dj-competition:ft-v0.1",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.5.0.96",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 16082590767,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/46828a308cabe227fe563d03137269cd58a6bc80ee78c3f5095c948bad5cbbbb/diff:/var/lib/docker/overlay2/46986cdb4689dbdd8c59343b2e3b2043f3862a5a1074d6602a721142b265ad66/diff:/var/lib/docker/overlay2/d6f6750e7b53ee6518f434e68c11b373601a5ccd9a542774535e6b22dcefff3d/diff:/var/lib/docker/overlay2/691f1bad742c50274b1c362b81d0af0a58451c4f5af53daae0221e26e9f249e2/diff:/var/lib/docker/overlay2/1f1f4e7b33c0578a55470b423ccccf32daf3229e27d048401c5462221679cb11/diff:/var/lib/docker/overlay2/3ad3b39ad586c4b2c2e91dbd3ed759d5329008d0027128166fe7fb23363a2d60/diff:/var/lib/docker/overlay2/6acae2e38d69a2d107e9b2977acf81c2d3b7a16154a4ff9a12dded959dbab9d5/diff:/var/lib/docker/overlay2/049af6932d90880c7bbbc279ca6a818d9562d462f92c89297cceea2bec5fa3c1/diff:/var/lib/docker/overlay2/efdbd5587f6a959f21c856eeb13b8f5b6e6e96450e02a0dee6d1ccb4744e9fee/diff:/var/lib/docker/overlay2/272f76cd8cda1bc8031077694e9a51371e737a41f2d384b4fe703b0e0041a311/diff:/var/lib/docker/overlay2/8c2bde8c60d4753d5a1ae19267633333e0ab1eb063c13c129457b1755d64c697/diff:/var/lib/docker/overlay2/f77c3a8d2d33ee3df52a8a740200110561908dbd75cf6be935592eba23bdaca4/diff:/var/lib/docker/overlay2/34217d98eb71819aebe7198585062fcd4a7d9a51f83113154d68e2cc45381df3/diff:/var/lib/docker/overlay2/0c85a3b201f7762500d14a6f866076a2a86e6d1d5885e382ffbb3b46e136d307/diff:/var/lib/docker/overlay2/d93f4e117748fbe1a46424cf0162cfb79dcace4bc04bc7483f937072ac23ab00/diff:/var/lib/docker/overlay2/516997d51e938aff89eeac3484a4feaa32dfb28a61a34dbcfb6a94067c05509b/diff:/var/lib/docker/overlay2/71053fca62e41be35afada7afd456b9a581ab5f53452b66c6f84b7525a149d7f/diff:/var/lib/docker/overlay2/298b80811532269a0162cf3005ee02fd2e5de99085c9fa727f34c3cda4acc024/diff:/var/lib/docker/overlay2/51950330e6ae16c5c0c631d16e705df5526aa7cc8cb96a0a3321897e9fddfc93/diff:/var/lib/docker/overlay2/eb927ffd110f9a8f8076a9e70f00cb8e8737e75c737ae259ad7a001c8cb61583/diff:/var/lib/docker/overlay2/c0d23f533e8ac0ef9397ee345d1ff55e9e27702c18f127c2c6a77ade9e98b795/diff:/var/lib/docker/overlay2/f7ca0cc06ea9820e4eb1bef808f8a10fa8cfb83c90ab786c3125f3a9c560ed02/diff:/var/lib/docker/overlay2/c4b4806da6a9c6992d9402f894f395927aa8f9d5061a202bb182b5feb03afc56/diff:/var/lib/docker/overlay2/18e7f5abfca9150a02022586d7480c9a342833802a18033cbafb6cf2b9044da2/diff:/var/lib/docker/overlay2/794f6101083625b8c42fa46552c0a4fab070d6d96d50fee158cea6c289155f46/diff:/var/lib/docker/overlay2/178d1346adf32e4517b7c3f97884f9c619e562a6d6db28ec2864aa23619f38c0/diff:/var/lib/docker/overlay2/9b6a7b46e16f95e13fd9a85930d8f4fcbcbdc1a9d30de91d42e1973e6875db7a/diff:/var/lib/docker/overlay2/e4104c5a45818678ceebef84079b6f7b838771fc296bb7ea02b86a88f909ba97/diff:/var/lib/docker/overlay2/ddb8888767dc117af3813663908610f6769690e7adde62442f996bd413057f0f/diff:/var/lib/docker/overlay2/d60c286e715efa3be33daad67196b9e801e8721a5b4b69c665893709f6a36cf3/diff:/var/lib/docker/overlay2/c5106ed7126547e974f7a651d8e52640a5b4eb7d8049d2e843395497ddd7b9b4/diff",
            "MergedDir": "/var/lib/docker/overlay2/fa5f4c40b5d626d7aac6ba108aa96199416d2fd042bdda8852040ab6dddfef48/merged",
            "UpperDir": "/var/lib/docker/overlay2/fa5f4c40b5d626d7aac6ba108aa96199416d2fd042bdda8852040ab6dddfef48/diff",
            "WorkDir": "/var/lib/docker/overlay2/fa5f4c40b5d626d7aac6ba108aa96199416d2fd042bdda8852040ab6dddfef48/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:0002c93bdb3704dd9e36ce5153ef637f84de253015f3ee330468dccdeacad60b",
            "sha256:b1a30caae1b901e4f37d1246569629689cc5d611ed45e7fa48411d71ccbf7f2e",
            "sha256:c638c9ad4d00af1f7f91cc3bd0b058e43718f3a276f4c0c83c32c86287d11e02",
            "sha256:29d81efb70cded94cad18a73eb9c0b8daf74b51599164f80a29c11740a8a58da",
            "sha256:02b35daccca6836ed83b176eea233faec76f4763ce30f51bf41c5377554aa8dc",
            "sha256:ff2d63ace99b381d7c25560ff58b478052dd24fdef514e58ab151daa87be4b3e",
            "sha256:a135fd5c90399fcb72fd1b5d01fe79e880d427b62cda9cfbecfcaea92c58c380",
            "sha256:9586853ba917934ed7eb1c6934fc20e43d54d49f496591e1c5a1f444442f72af",
            "sha256:3657184a5238a93028b5d8a496a028ea19f1cc99d396058f58f8273a7efdba24",
            "sha256:f626e92b1911f3362f9fd3779b4613e9e6606d7537462bb225949e8fd8735d0e",
            "sha256:f2e94848333a5f4e41be37b8edcd9dcdd2ed246376e24967ab8f42b5d339ff5f",
            "sha256:0d262b16f3104d2efa81699ac5779fb2932935ecea2223de991f4e383987d626",
            "sha256:4197bec0af74cb69e8c5b789d2f822bf8d2dc346ee6edb23e6c9685182a06dcc",
            "sha256:78af4ff9cb2f4d775c0feffd705217fcb8859c5940cc31dac286c69cd6801e8d",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:cc25370f74406e80fa3b80a8cae72620d5761577a66ebde391fa25ffa37d3c2d",
            "sha256:8a5211bf139ac1598d5d4820cdaf7a45eeea48f50dbfc886f83014b38a1b8521",
            "sha256:ed4e35a8c31dc8ab87fd32040775b80085e9ad1477b77f3ec0fa9f05fd736443",
            "sha256:1dfc5e55194ad50bf24736cb5dc0dc2437e8840fb1ff0c1a9812fc2e757d8462",
            "sha256:7784786488831920ef9f1980bfc47681a5eac457e688ca32e141a72e9484b84f",
            "sha256:c0165bf78d4114f1c093502741c2fcb54c4456941ef5110be439e26f94a17adb",
            "sha256:6852a1939510bc7e362b063b8d5ff90b6f7ceff4a5c878ea380a6d72eaf3c01c",
            "sha256:93ccb97f4ddfe648b8969bd425b199c4774cbb32bc3772c0f1b767daac177184",
            "sha256:8f180403f233e98b8ae09681b1e9fa485d80e4b80c571f43104cb46cfd742eed",
            "sha256:4181fbaa4d08c98e94f612f0f281e475fdabcd8d14b8a4eb567118f6910e3e9b",
            "sha256:1ff4001ad8456b760e40773693acf8116fe305d737feb7d1a7c5bba12c3c7fa4",
            "sha256:6f11d5d8a1036d92140d28bf5727858a59399b52e6ff8749111c78c476a406df",
            "sha256:91bceb7073a7ef3b3768a57ef8c3438ff986a37eed083b1b5e58dd908d35eacc",
            "sha256:114bd7657f69a5b0641abe3242867e38c07fe2699d299bffdd648d7d487239fa",
            "sha256:04fc21ad5f7266b924fc160d188a9b34fff4ef697a8ac1ee2190eb628a2f7de4",
            "sha256:b5d29ce8e4451c7a5e0c559140f899578ae42bdc18ed897be9f10f1d2d2b5002",
            "sha256:e5f556f025045dad767a4e597c7466141f8380f6f8a79291cb483f6931217746"
        ]
    },
    "Metadata": {
        "LastTagTime": "2024-12-31T03:57:37.196558683+08:00"
    }
}

更多版本

docker.io/datajuicer/dj-competition:ft-v0.1

linux/amd64 docker.io16.08GB2024-12-31 04:01
68