docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter linux/amd64

docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter - 国内下载镜像源 浏览次数:26

这是一个基于Nvidia CUDA的FFmpeg Docker镜像。它预先安装了FFmpeg以及必要的Nvidia驱动和库文件,允许在Docker容器内高效地进行Nvidia GPU加速的视频编码和解码工作。

源镜像 docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter
镜像ID sha256:37b430162e0421b8a50bb4f3ed4423b346caa9a3111d377a99e782686e5a2b35
镜像TAG v5.0.2-jupyter
大小 15.16GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD jupyter lab
启动入口 tini -g --
工作目录 /home/anaconda
OS/平台 linux/amd64
浏览量 26 次
贡献者
镜像创建 2023-10-27T11:58:13.598404249Z
同步时间 2025-05-26 00:31
更新时间 2025-05-31 00:16
开放端口
8888/tcp
环境变量
PATH=/usr/local/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=tesla,driver>=515,driver<516 brand=unknown,driver>=515,driver<516 brand=nvidia,driver>=515,driver<516 brand=nvidiartx,driver>=515,driver<516 brand=geforce,driver>=515,driver<516 brand=geforcertx,driver>=515,driver<516 brand=quadro,driver>=515,driver<516 brand=quadrortx,driver>=515,driver<516 brand=titan,driver>=515,driver<516 brand=titanrtx,driver>=515,driver<516 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.105-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.1 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.1-1 NV_NVTX_VERSION=12.1.105-1 NV_LIBNPP_VERSION=12.1.0.40-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 NV_LIBCUSPARSE_VERSION=12.1.0.106-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.3.1-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=12.1.105-1 NV_NVML_DEV_VERSION=12.1.105-1 NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1 NV_LIBNPP_DEV_VERSION=12.1.0.40-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1 NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1 NV_NVPROF_VERSION=12.1.105-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.9.0.131 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1 DEBIAN_FRONTEND=noninteractive ANACONDA_ENV=base ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_GID=100 ANACONDA_UID=1000 ANACONDA_USER=anaconda HOME=/home/anaconda LANG=en_US.UTF-8 LANGUAGE=en_US.UTF-8 LC_ALL=en_US.UTF-8 SHELL=/bin/bash JUPYTER_LAB_VERSION=4.0.3 JUPYTER_NB_CK_VERSION=2.3.1 JUPYTER_IPYWIDGETS_VERSION=8.0.7 JUPYTER_IPYKERNEL=6.24.0 FFMPEG_VERSION=5.0.2
镜像标签
8.9.0.131: com.nvidia.cudnn.version FFmpeg GPU Container w/ Jupyter Notebooks: description NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter  docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter  docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter

Shell快速替换命令

sed -i 's#dolfly/ffmpeg-nvidia:v5.0.2-jupyter#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter  docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter  docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter'

镜像构建历史


# 2023-10-27 19:58:13  0.00B 设置工作目录为/home/anaconda
WORKDIR /home/anaconda
                        
# 2023-10-27 19:58:13  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-27 19:58:13  2.47MB 执行命令并创建新的镜像层
RUN |1 FFMPEG_VERSION=5.0.2 /bin/bash -o pipefail -c apt-get --purge -y autoremove     wget     && rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/* ${HOME}/FFmpeg*     && rm -rvf /home/${ANACONDA_PATH}/.cache/yarn     && fix-permissions ${HOME}     && fix-permissions ${ANACONDA_PATH} # buildkit
                        
# 2023-10-27 19:58:11  0.00B 执行命令并创建新的镜像层
RUN |1 FFMPEG_VERSION=5.0.2 /bin/bash -o pipefail -c conda clean -afy # buildkit
                        
# 2023-10-27 19:58:10  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-27 19:58:10  3.89KB 执行命令并创建新的镜像层
RUN |1 FFMPEG_VERSION=5.0.2 /bin/bash -o pipefail -c echo 'PATH="/usr/local/ffmpeg-nvidia/bin:$PATH"' >> ${HOME}/.bashrc # buildkit
                        
# 2023-10-27 19:58:10  0.00B 执行命令并创建新的镜像层
RUN |1 FFMPEG_VERSION=5.0.2 /bin/bash -o pipefail -c cd ${HOME}     && rm -rvf ${HOME}/ffmpeg-${FFMPEG_VERSION}.tar.gz ${HOME}/ffmpeg-${FFMPEG_VERSION} # buildkit
                        
# 2023-10-27 19:58:09  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-27 19:58:09  624.55MB 执行命令并创建新的镜像层
RUN |1 FFMPEG_VERSION=5.0.2 /bin/bash -o pipefail -c cd ${HOME}/ffmpeg-${FFMPEG_VERSION}     && make install # buildkit
                        
# 2023-10-27 19:58:04  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-27 19:58:04  1.33GB 执行命令并创建新的镜像层
RUN |1 FFMPEG_VERSION=5.0.2 /bin/bash -o pipefail -c wget -O ${HOME}/ffmpeg-${FFMPEG_VERSION}.tar.gz https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.gz     && tar -xvf ${HOME}/ffmpeg-${FFMPEG_VERSION}.tar.gz     && cd ${HOME}/ffmpeg-${FFMPEG_VERSION}     && ./configure --prefix=/usr/local/ffmpeg-nvidia     --extra-cflags=-I/usr/local/cuda/include     --extra-ldflags=-L/usr/local/cuda/lib64     --toolchain=hardened     --enable-gpl     --disable-stripping     --disable-filter=resample     --enable-cuvid     --enable-gnutls     --enable-ladspa     --enable-libaom     --enable-libass     --enable-libbluray     --enable-libbs2b     --enable-libcaca     --enable-libcdio     --enable-libcodec2     --enable-libfdk-aac     --enable-libflite     --enable-libfontconfig     --enable-libfreetype     --enable-libfribidi     --enable-libgme     --enable-libgsm     --enable-libjack     --enable-libmp3lame     --enable-libmysofa     --enable-libnpp     --enable-libopenjpeg     --enable-libopenmpt     --enable-libopus     --enable-libpulse     --enable-librsvg     --enable-librubberband     --enable-libshine     --enable-libsnappy     --enable-libsoxr     --enable-libspeex     --enable-libssh     --enable-libtheora     --enable-libtwolame     --enable-libvorbis     --enable-libvidstab     --enable-libvpx     --enable-libwebp     --enable-libx265     --enable-libxml2     --enable-libxvid     --enable-libzmq     --enable-libzvbi     --enable-lv2     --enable-nvenc     --enable-nonfree     --enable-omx     --enable-openal     --enable-opencl     --enable-opengl     --enable-sdl2     && make -j 8 # buildkit
                        
# 2023-10-27 19:50:18  0.00B 设置工作目录为/home/anaconda
WORKDIR /home/anaconda
                        
# 2023-10-27 19:50:18  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-27 19:50:18  1.16GB 执行命令并创建新的镜像层
RUN |1 FFMPEG_VERSION=5.0.2 /bin/bash -o pipefail -c apt-get -y install     cleancss     doxygen     debhelper-compat     flite1-dev     frei0r-plugins-dev     ladspa-sdk libaom-dev     libaribb24-dev     libass-dev     libbluray-dev     libbs2b-dev     libbz2-dev     libcaca-dev     libcdio-paranoia-dev     libchromaprint-dev     libcodec2-dev     libdc1394-dev     libdrm-dev     libfdk-aac-dev     libffmpeg-nvenc-dev     libfontconfig1-dev     libfreetype6-dev     libfribidi-dev     libgl1-mesa-dev     libgme-dev     libgnutls28-dev     libgsm1-dev     libiec61883-dev     libavc1394-dev     libjack-jackd2-dev     liblensfun-dev     liblilv-dev     liblzma-dev     libmp3lame-dev     libmysofa-dev     libnvidia-compute-470-server     libnvidia-decode-470-server     libnvidia-encode-470-server     libopenal-dev     libomxil-bellagio-dev     libopencore-amrnb-dev     libopencore-amrwb-dev     libopenjp2-7-dev     libopenmpt-dev     libopus-dev     libpulse-dev     librubberband-dev     librsvg2-dev     libsctp-dev     libsdl2-dev     libshine-dev     libsnappy-dev     libsoxr-dev     libspeex-dev     libssh-gcrypt-dev     libtesseract-dev     libtheora-dev     libtwolame-dev     libva-dev     libvdpau-dev     libvidstab-dev     libvo-amrwbenc-dev     libvorbis-dev     libvpx-dev     libwavpack-dev     libwebp-dev     libx264-dev     libx265-dev     libxcb-shape0-dev     libxcb-shm0-dev     libxcb-xfixes0-dev     libxml2-dev     libxv-dev     libxvidcore-dev     libxvmc-dev     libzmq3-dev     libzvbi-dev     nasm     node-less     ocl-icd-opencl-dev     pkg-config     texinfo     tree     wget     zlib1g-dev # buildkit
                        
# 2023-10-27 19:49:27  276.21MB 执行命令并创建新的镜像层
RUN |1 FFMPEG_VERSION=5.0.2 /bin/bash -o pipefail -c apt-get update --fix-missing     && apt-get -y upgrade     && apt-get -y dist-upgrade # buildkit
                        
# 2023-10-27 19:49:27  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-27 19:49:27  0.00B 设置环境变量 FFMPEG_VERSION
ENV FFMPEG_VERSION=5.0.2
                        
# 2023-10-27 19:49:27  0.00B 定义构建参数
ARG FFMPEG_VERSION=5.0.2
                        
# 2023-10-27 19:49:27  0.00B 添加元数据标签
LABEL description=FFmpeg GPU Container w/ Jupyter Notebooks
                        
# 2023-10-27 14:47:41  0.00B 设置工作目录为/home/anaconda
WORKDIR /home/anaconda
                        
# 2023-10-27 14:47:41  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-27 14:47:41  4.29KB 执行命令并创建新的镜像层
RUN |5 JUPYTER_LAB_VERSION=4.0.3 JUPYTER_HUB_VERSION=4.0.1 JUPYTER_NB_CK_VERSION=2.3.1 JUPYTER_IPYWIDGETS_VERSION=8.0.7 JUPYTER_IPYKERNEL=6.24.0 /bin/bash -o pipefail -c sed -re "s/c.ServerApp/c.NotebookApp/g"     /etc/jupyter/jupyter_server_config.py > /etc/jupyter/jupyter_notebook_config.py     && fix-permissions /etc/jupyter/ # buildkit
                        
# 2023-10-27 14:47:41  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-27 14:47:41  2.47KB 复制新文件或目录到容器中
COPY scripts/jupyter_server_config.py scripts/docker_healthcheck.py /etc/jupyter/ # buildkit
                        
# 2023-10-27 14:47:41  0.00B 设置默认要执行的命令
CMD ["jupyter" "lab"]
                        
# 2023-10-27 14:47:41  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["tini" "-g" "--"]
                        
# 2023-10-27 14:47:41  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2023-10-27 14:47:41  144.99MB 执行命令并创建新的镜像层
RUN |5 JUPYTER_LAB_VERSION=4.0.3 JUPYTER_HUB_VERSION=4.0.1 JUPYTER_NB_CK_VERSION=2.3.1 JUPYTER_IPYWIDGETS_VERSION=8.0.7 JUPYTER_IPYKERNEL=6.24.0 /bin/bash -o pipefail -c conda clean -afy     && fix-permissions ${HOME}     && fix-permissions ${ANACONDA_PATH} # buildkit
                        
# 2023-10-27 14:47:33  77.57KB 执行命令并创建新的镜像层
RUN |5 JUPYTER_LAB_VERSION=4.0.3 JUPYTER_HUB_VERSION=4.0.1 JUPYTER_NB_CK_VERSION=2.3.1 JUPYTER_IPYWIDGETS_VERSION=8.0.7 JUPYTER_IPYKERNEL=6.24.0 /bin/bash -o pipefail -c jupyter lab --generate-config # buildkit
                        
# 2023-10-27 14:47:31  780.91MB 执行命令并创建新的镜像层
RUN |5 JUPYTER_LAB_VERSION=4.0.3 JUPYTER_HUB_VERSION=4.0.1 JUPYTER_NB_CK_VERSION=2.3.1 JUPYTER_IPYWIDGETS_VERSION=8.0.7 JUPYTER_IPYKERNEL=6.24.0 /bin/bash -o pipefail -c conda install -c conda-forge     jupyterlab=${JUPYTER_LAB_VERSION}     nb_conda_kernels=${JUPYTER_NB_CK_VERSION}     ipywidgets=${JUPYTER_IPYWIDGETS_VERSION}     ipykernel=${JUPYTER_IPYKERNEL} # buildkit
                        
# 2023-10-27 14:45:01  160.86MB 执行命令并创建新的镜像层
RUN |5 JUPYTER_LAB_VERSION=4.0.3 JUPYTER_HUB_VERSION=4.0.1 JUPYTER_NB_CK_VERSION=2.3.1 JUPYTER_IPYWIDGETS_VERSION=8.0.7 JUPYTER_IPYKERNEL=6.24.0 /bin/bash -o pipefail -c conda update -c defaults conda # buildkit
                        
# 2023-10-27 14:44:17  0.00B 设置工作目录为/home/anaconda
WORKDIR /home/anaconda
                        
# 2023-10-27 14:44:17  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-27 14:44:17  0.00B 设置环境变量 JUPYTER_IPYKERNEL
ENV JUPYTER_IPYKERNEL=6.24.0
                        
# 2023-10-27 14:44:17  0.00B 设置环境变量 JUPYTER_IPYWIDGETS_VERSION
ENV JUPYTER_IPYWIDGETS_VERSION=8.0.7
                        
# 2023-10-27 14:44:17  0.00B 设置环境变量 JUPYTER_NB_CK_VERSION
ENV JUPYTER_NB_CK_VERSION=2.3.1
                        
# 2023-10-27 14:44:17  0.00B 设置环境变量 JUPYTER_LAB_VERSION
ENV JUPYTER_LAB_VERSION=4.0.3
                        
# 2023-10-27 14:44:17  0.00B 定义构建参数
ARG JUPYTER_IPYKERNEL=6.24.0
                        
# 2023-10-27 14:44:17  0.00B 定义构建参数
ARG JUPYTER_IPYWIDGETS_VERSION=8.0.7
                        
# 2023-10-27 14:44:17  0.00B 定义构建参数
ARG JUPYTER_NB_CK_VERSION=2.3.1
                        
# 2023-10-27 14:44:17  0.00B 定义构建参数
ARG JUPYTER_HUB_VERSION=4.0.1
                        
# 2023-10-27 14:44:17  0.00B 定义构建参数
ARG JUPYTER_LAB_VERSION=4.0.3
                        
# 2023-10-27 14:44:17  0.00B 添加元数据标签
LABEL description=Anaconda 3 GPU Container w/ Jupyter Notebooks
                        
# 2023-10-27 14:39:17  0.00B 设置工作目录为/home/anaconda
WORKDIR /home/anaconda
                        
# 2023-10-27 14:39:17  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-27 14:39:17  0.00B 设置默认要执行的命令
CMD ["/bin/bash"]
                        
# 2023-10-27 14:39:17  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["tini" "-g" "--"]
                        
# 2023-10-27 14:39:17  762.70KB 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c apt-get --purge -y remove wget curl     && apt-get --purge -y autoremove     && rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*     && rm -rvf /home/${ANACONDA_PATH}/.cache/yarn # buildkit
                        
# 2023-10-27 14:39:14  43.00B 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c ln -s ${ANACONDA_PATH}/etc/profile.d/conda.sh /etc/profile.d/conda.sh     && fix-permissions /etc/profile.d/conda.sh # buildkit
                        
# 2023-10-27 14:39:14  239.24MB 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c conda clean -afy     && fix-permissions ${HOME}     && fix-permissions ${ANACONDA_PATH} # buildkit
                        
# 2023-10-27 14:39:08  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-27 14:39:08  659.83KB 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c conda install -y tini # buildkit
                        
# 2023-10-27 14:38:51  26.00B 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c conda config --add channels conda-forge # buildkit
                        
# 2023-10-27 14:38:50  486.19MB 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c conda update -c defaults conda # buildkit
                        
# 2023-10-27 14:37:51  391.66MB 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c wget --verbose -O ~/${ANACONDA_VERSION}.sh https://github.com/conda-forge/miniforge/releases/download/${ANACONDA_VERSION}/${ANACONDA_INSTALLER}     && /bin/bash /home/${ANACONDA_USER}/${ANACONDA_VERSION}.sh -b -u -p ${ANACONDA_PATH}     && chown -R ${ANACONDA_USER} ${ANACONDA_PATH}     && rm -rvf ~/${ANACONDA_VERSION}.sh     && echo ". ${ANACONDA_PATH}/etc/profile.d/conda.sh" >> ~/.bashrc     && echo "conda activate \${ANACONDA_ENV}" >> ~/.bashrc     && find ${ANACONDA_PATH} -follow -type f -name '*.a' -delete     && find ${ANACONDA_PATH} -follow -type f -name '*.js.map' -delete     && fix-permissions ${HOME}     && fix-permissions ${ANACONDA_PATH} # buildkit
                        
# 2023-10-27 14:37:39  0.00B 设置工作目录为/home/anaconda
WORKDIR /home/anaconda
                        
# 2023-10-27 14:37:39  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-27 14:37:39  338.79KB 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c echo "auth requisite pam_deny.so" >> /etc/pam.d/su     && sed -i.bak -e 's/^%admin/#%admin/' /etc/sudoers     && sed -i.bak -e 's/^%sudo/#%sudo/' /etc/sudoers     && useradd -m -s /bin/bash -N -u ${ANACONDA_UID} ${ANACONDA_USER}     && mkdir -p ${ANACONDA_PATH}     && chown -R ${ANACONDA_USER}:${ANACONDA_GID} ${ANACONDA_PATH}     && chmod g+w /etc/passwd     && chmod a+rx /usr/local/bin/fix-permissions     && fix-permissions ${HOME}     && fix-permissions ${ANACONDA_PATH} # buildkit
                        
# 2023-10-27 14:37:39  1.07KB 复制新文件或目录到容器中
COPY scripts/fix-permissions /usr/local/bin/fix-permissions # buildkit
                        
# 2023-10-27 14:37:39  3.77KB 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c sed -i 's/^#force_color_prompt=yes/force_color_prompt=yes/' /etc/skel/.bashrc # buildkit
                        
# 2023-10-27 14:37:38  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-10-27 14:37:38  0.00B 设置环境变量 ANACONDA_ENV ANACONDA_PATH ANACONDA_GID ANACONDA_UID ANACONDA_USER HOME LANG LANGUAGE LC_ALL SHELL
ENV ANACONDA_ENV=base ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_GID=100 ANACONDA_UID=1000 ANACONDA_USER=anaconda HOME=/home/anaconda LANG=en_US.UTF-8 LANGUAGE=en_US.UTF-8 LC_ALL=en_US.UTF-8 SHELL=/bin/bash
                        
# 2023-10-27 14:37:38  3.05MB 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c echo "en_US.UTF-8 UTF-8" > /etc/locale.gen     && locale-gen # buildkit
                        
# 2023-10-27 14:37:36  23.12MB 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c apt-get install -y --no-install-recommends     bzip2     ca-certificates     curl     locales     sudo     wget # buildkit
                        
# 2023-10-27 14:37:32  46.07MB 执行命令并创建新的镜像层
RUN |15 ANACONDA_CONTAINER=v23.3.1 ANACONDA_DIST=Miniconda3 ANACONDA_PYTHON=py310 ANACONDA_CONDA=23.3.1 ANACONDA_OS=Linux ANACONDA_ARCH=x86_64 ANACONDA_FLAVOR=Miniforge3 ANACONDA_PATCH=1 ANACONDA_VERSION=23.3.1-1 ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh ANACONDA_ENV=base ANACONDA_GID=100 ANACONDA_PATH=/usr/local/anaconda3 ANACONDA_UID=1000 ANACONDA_USER=anaconda /bin/bash -o pipefail -c apt-get update --fix-missing # buildkit
                        
# 2023-10-27 14:37:32  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-10-27 14:37:32  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-10-27 14:37:32  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2023-10-27 14:37:32  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-27 14:37:32  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_USER=anaconda
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_UID=1000
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_PATH=/usr/local/anaconda3
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_GID=100
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_ENV=base
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_INSTALLER=Miniforge3-23.3.1-1-Linux-x86_64.sh
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_VERSION=23.3.1-1
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_PATCH=1
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_FLAVOR=Miniforge3
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_ARCH=x86_64
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_OS=Linux
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_CONDA=23.3.1
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_PYTHON=py310
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_DIST=Miniconda3
                        
# 2023-10-27 14:37:32  0.00B 定义构建参数
ARG ANACONDA_CONTAINER=v23.3.1
                        
# 2023-10-27 14:37:32  0.00B 添加元数据标签
LABEL description=Anaconda3 GPU Container
                        
# 2023-06-21 08:24:58  2.45GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-06-21 08:24:58  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.0.131
                        
# 2023-06-21 08:24:58  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-06-21 08:24:58  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-06-21 08:24:58  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1
                        
# 2023-06-21 08:24:58  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
                        
# 2023-06-21 08:24:58  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-06-21 08:24:58  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.0.131
                        
# 2023-06-21 08:00:20  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-06-21 08:00:20  385.79KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-06-21 08:00:19  4.79GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-06-21 08:00:19  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-06-21 08:00:19  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
                        
# 2023-06-21 08:00:19  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-06-21 07:48:37  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-06-21 07:48:37  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-06-21 07:48:37  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-06-21 07:48:37  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-06-21 07:48:37  261.37KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-06-21 07:48:36  2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-06-21 07:48:36  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-06-21 07:48:36  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
                        
# 2023-06-21 07:48:36  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-06-21 07:43:10  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-06-21 07:43:10  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-06-21 07:43:10  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-06-21 07:43:09  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-06-21 07:43:09  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-06-21 07:43:09  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-06-21 07:43:09  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-06-21 07:42:55  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
                        
# 2023-06-21 07:42:55  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-06-21 07:42:55  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-06-21 07:42:55  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-06-21 07:42:55  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-06-21 07:42:55  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
                        
# 2023-06-21 07:42:55  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=tesla,driver>=515,driver<516 brand=unknown,driver>=515,driver<516 brand=nvidia,driver>=515,driver<516 brand=nvidiartx,driver>=515,driver<516 brand=geforce,driver>=515,driver<516 brand=geforcertx,driver>=515,driver<516 brand=quadro,driver>=515,driver<516 brand=quadrortx,driver>=515,driver<516 brand=titan,driver>=515,driver<516 brand=titanrtx,driver>=515,driver<516 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-06-21 07:42:55  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-06-06 01:00:39  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-06-06 01:00:39  77.81MB 
/bin/sh -c #(nop) ADD file:0ad2ee2cfb186802f49c9bf4148674d1c6fc201f83478ec01ffaa7086d491323 in / 
                        
# 2023-06-06 01:00:37  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-06-06 01:00:37  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-06-06 01:00:37  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-06-06 01:00:37  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:37b430162e0421b8a50bb4f3ed4423b346caa9a3111d377a99e782686e5a2b35",
    "RepoTags": [
        "dolfly/ffmpeg-nvidia:v5.0.2-jupyter",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter"
    ],
    "RepoDigests": [
        "dolfly/ffmpeg-nvidia@sha256:7c776ce0b714733d685885884b78e9c4c6d64f30fdde13731693588cc9c1bfc1",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/dolfly/ffmpeg-nvidia@sha256:042fd7a351d95dcd4c8d2c807c1411bbaecc1cb8a7eeebcfd972174961c9b3a2"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2023-10-27T11:58:13.598404249Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "1000",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=450,driver\u003c451 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=510,driver\u003c511 brand=unknown,driver\u003e=510,driver\u003c511 brand=nvidia,driver\u003e=510,driver\u003c511 brand=nvidiartx,driver\u003e=510,driver\u003c511 brand=geforce,driver\u003e=510,driver\u003c511 brand=geforcertx,driver\u003e=510,driver\u003c511 brand=quadro,driver\u003e=510,driver\u003c511 brand=quadrortx,driver\u003e=510,driver\u003c511 brand=titan,driver\u003e=510,driver\u003c511 brand=titanrtx,driver\u003e=510,driver\u003c511 brand=tesla,driver\u003e=515,driver\u003c516 brand=unknown,driver\u003e=515,driver\u003c516 brand=nvidia,driver\u003e=515,driver\u003c516 brand=nvidiartx,driver\u003e=515,driver\u003c516 brand=geforce,driver\u003e=515,driver\u003c516 brand=geforcertx,driver\u003e=515,driver\u003c516 brand=quadro,driver\u003e=515,driver\u003c516 brand=quadrortx,driver\u003e=515,driver\u003c516 brand=titan,driver\u003e=515,driver\u003c516 brand=titanrtx,driver\u003e=515,driver\u003c516 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.105-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.1",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.1-1",
            "NV_NVTX_VERSION=12.1.105-1",
            "NV_LIBNPP_VERSION=12.1.0.40-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
            "NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
            "NV_NVML_DEV_VERSION=12.1.105-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
            "NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
            "NV_NVPROF_VERSION=12.1.105-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.9.0.131",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1",
            "DEBIAN_FRONTEND=noninteractive",
            "ANACONDA_ENV=base",
            "ANACONDA_PATH=/usr/local/anaconda3",
            "ANACONDA_GID=100",
            "ANACONDA_UID=1000",
            "ANACONDA_USER=anaconda",
            "HOME=/home/anaconda",
            "LANG=en_US.UTF-8",
            "LANGUAGE=en_US.UTF-8",
            "LC_ALL=en_US.UTF-8",
            "SHELL=/bin/bash",
            "JUPYTER_LAB_VERSION=4.0.3",
            "JUPYTER_NB_CK_VERSION=2.3.1",
            "JUPYTER_IPYWIDGETS_VERSION=8.0.7",
            "JUPYTER_IPYKERNEL=6.24.0",
            "FFMPEG_VERSION=5.0.2"
        ],
        "Cmd": [
            "jupyter",
            "lab"
        ],
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home/anaconda",
        "Entrypoint": [
            "tini",
            "-g",
            "--"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.0.131",
            "description": "FFmpeg GPU Container w/ Jupyter Notebooks",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        },
        "Shell": [
            "/bin/bash",
            "-o",
            "pipefail",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 15161560452,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/f9a6b5b4606e8e79d16e2555d98ded3f4c88e8a58fbbb298681404a84be00326/diff:/var/lib/docker/overlay2/4e23b7782956cd8cc2cad104a394153ea82c9187224925305134270a65f57a13/diff:/var/lib/docker/overlay2/d65d3061ff904b0b93bcd26f225ff2a1757814e29330fd5a1e9b48b68284811e/diff:/var/lib/docker/overlay2/0f1fb769d92f4ba3d13447f91d4896e27275d7a159c6824d51a31c2b79a691c3/diff:/var/lib/docker/overlay2/b38784f90367c396b17fade12c1214996bde8c589c197506082aeeab1418dd0e/diff:/var/lib/docker/overlay2/b07b35dcf3ed0a03902be25e3ed9b7109344d0e44bec9ddc56ea763f7ff79e03/diff:/var/lib/docker/overlay2/0a6616bb5c84e981fb4b08c95ce28a25c219acc63b96455d97a6437778c11288/diff:/var/lib/docker/overlay2/77d16fe43866dd3ba42d4b203bfac01efcf4f43c4b5f2cac7dec7d5865779dd1/diff:/var/lib/docker/overlay2/b091d2971cf3c8f6b6e23708d503b7966a20e3abb6acde409f3d11f6670ecc91/diff:/var/lib/docker/overlay2/3e6bfa569c7c25c6eb3342d5e4c65c1e503af3b04d83e87f015e9b642c5b3f57/diff:/var/lib/docker/overlay2/b31bb8c2ee8adeb51875399a84a4e9cda02d3e58ba1368c56ff7c65b0391d7e0/diff:/var/lib/docker/overlay2/45634e4c9eee3cdf830312c0f73de9381f1e7cfc37bbc8cad2d7b4227a29097b/diff:/var/lib/docker/overlay2/3a2e72b9c53acd0bd7e1bd265f55d391c4c6e6a4c1839360af67822265e25c44/diff:/var/lib/docker/overlay2/9021984178a4b4e2a980b7185fbff4b264f6f3845c548a0e4f93b72991bcc2e9/diff:/var/lib/docker/overlay2/a01a9c32882fd1c3b93789391d25b484f74edf42cde6230e8f282c77864ce195/diff:/var/lib/docker/overlay2/2a96c26a93c96847fbaaaf9225e952c7d6739bb683a510f33e8fcb3feea870ba/diff:/var/lib/docker/overlay2/37341dd7403371b8213c74c484aaf269c06b7b0251abb6a5f39d51033a6969f4/diff:/var/lib/docker/overlay2/21e3cff13de309270d09dd75eefea21ed0edd33d8fecc0c8f0075b145a0deb4b/diff:/var/lib/docker/overlay2/b2716ff7b2f92b0a53ac761d6c7822f778c5aa9846adcfbdff3edd37002358f4/diff:/var/lib/docker/overlay2/cce2ae56c696dd5948e43207f0896596617ff43b3ce863d99eb8199667225eac/diff:/var/lib/docker/overlay2/178a06603575584ea0b81ce1148c165460fe6c0d23e949429859e1cb19579561/diff:/var/lib/docker/overlay2/6d71fe3e81321ac9498dedf5f7fabc717c4d85fd3ed674dd2fb1eb273b51b9b2/diff:/var/lib/docker/overlay2/a2e7e62177437ef58d9fa17c81a6b9162551d0b2b9960a803fb0ad64e7a294c1/diff:/var/lib/docker/overlay2/afe7a3b7461c9463f322baf9a03a32b049e832ae427e86de9c1cf20e6810d10f/diff:/var/lib/docker/overlay2/3f9bb46034fd114a19330c4621620abd520816046eb30fc640404ab739f13f04/diff:/var/lib/docker/overlay2/3c1ac80b6924587e4d0373e6cf71549ecafba4fb6fcc477135b371976fa0c22b/diff:/var/lib/docker/overlay2/104fc31ddfdc9e348e5e8e3ac81f05c46c534af4bd50857385ef0bc56f7d2d95/diff:/var/lib/docker/overlay2/aa5579f3a3ad570fcfd260cdcb117958159f4b6baa863423ee5eb10734c1b9f5/diff:/var/lib/docker/overlay2/51393e234e427bd73a6e8a1d5757deda1b633d6f3e6bbf0296296d7a8358811f/diff:/var/lib/docker/overlay2/e765113dc286308e7e2d6799fa86812b7fb30482157abca9ba87a61b8fab32f7/diff:/var/lib/docker/overlay2/e7b14c2880c7ac0f7513f0cbd60aa09cc1d0d01d0add7c35c19aff1a1d9e750f/diff:/var/lib/docker/overlay2/bea76f27739365723631e17bf01308af2c5269ecfb09695c9874401a64f9ae75/diff:/var/lib/docker/overlay2/78e02f2dd0a5577ff9cae2eb7045db09fdec8c1dee32c47a03ecbd80acb0ce8c/diff:/var/lib/docker/overlay2/64f96f37aad49c19aaa568a0c8535addb996e4a13bc5bab5dc9f3ddd0ba58f63/diff:/var/lib/docker/overlay2/e31125831a9f208b678a230e26f8447b196c99f5e61c606f2cfbba6b8f4dea79/diff:/var/lib/docker/overlay2/a02d9dde07ff611a79772444648e20ca1391ef7da832550baa039932010b8e99/diff:/var/lib/docker/overlay2/451167692baca80237cee7abbbeba4fdc41ff1877186fe7e265c077681fc4972/diff:/var/lib/docker/overlay2/897c4e14b6e5e1d6159699a01fd72152544017cbf8c86830690f997a0b5fa3a4/diff:/var/lib/docker/overlay2/ff5fbf4c36ab7822464598a37ab332ce5ae57c585eb9a790f8995d4d8fc6cb54/diff:/var/lib/docker/overlay2/0fd800b2fba0b5e5fb709e22c8e7a9dbaa298ce10aa8d2fc23d4fc4b184c184a/diff:/var/lib/docker/overlay2/643744a67b6b9bbb80dec833c0f6bdc973e21fd0d0820b75b26a984ee003df34/diff:/var/lib/docker/overlay2/d358635574ce20bb8c0a618de63ec0ec5dc3522d0e208aea7c1fccbcbc9ccb1c/diff:/var/lib/docker/overlay2/afd15f9df4a23b0c425c62a78a8f10012aa02a09b3ca212f6d60ec14f222a9f9/diff:/var/lib/docker/overlay2/829049dcf24bdeac3f201f6f2fbc19dcde57a982acd7cbf2e6ae26b575f5f1e4/diff",
            "MergedDir": "/var/lib/docker/overlay2/cff40fc22e1b00dc7faa3158ba2c7aea2f3fc98338f8db5c31f10bcfc27635ce/merged",
            "UpperDir": "/var/lib/docker/overlay2/cff40fc22e1b00dc7faa3158ba2c7aea2f3fc98338f8db5c31f10bcfc27635ce/diff",
            "WorkDir": "/var/lib/docker/overlay2/cff40fc22e1b00dc7faa3158ba2c7aea2f3fc98338f8db5c31f10bcfc27635ce/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:cdd7c73923174e45ea648d66996665c288e1b17a0f45efdbeca860f6dafdf731",
            "sha256:636d222e4e187764a72b06c129adfd662c3561cd85d5d7f360fccf8412c2dca3",
            "sha256:1fbc446df18184628ab63a253d16e898a76f6b6c54dde55e17126500be72c88e",
            "sha256:1d00171208b30ae899e1535cf105bc9059e49f4aa68b87bda49da7b91695ca2e",
            "sha256:cc2f45826bceb3e7b3985e42cc0d530a14049bc81f968e20dc283ef895488624",
            "sha256:fa4c2d2ffd102560fc86f6099bee6499f8a6d994103ac423b248c9b54293155f",
            "sha256:f88253254c74162e8580da03d42fdd0d4a85994eeac3cd45fc2167108508db05",
            "sha256:195ceaeb3030e2ab852448c38f746814ed569cd66d31cbb1d2af06798a5f197b",
            "sha256:58272f5c70dbecab56573a063f775b337171840c80f6537357a92467a747b9d8",
            "sha256:3ce0148a531bb569b036b39617d8ed6ce421ed5dece3a4162a0c9055c6d98076",
            "sha256:5c8ac23a8629b9b314c3e65227d676b451491e178663d8796eb8038433912001",
            "sha256:04e33ee0e6a5e69e35e78a17e763db8f055ad0895dd16e07d088cdde7fe9c80b",
            "sha256:0a300aaa555e6d1b10553df4e56b99e3fc8e13b4055917925c6c75dd644b41d2",
            "sha256:c967fd687de4b6ce344a102e72a34f62e9a7672e4457d6a9bc1982a5c42e3819",
            "sha256:7c9b0ef746852042aaf187d87a87185eba8e21d54356244282aff33dd4fb4f4a",
            "sha256:695e7c43bff17a6cf1f9a9c4a0711d97db2b67a4618b2ca833eba55050b54932",
            "sha256:509713834a54be0751d5f46e66955effc63ef3e16b97ebf4dcdb78971ae2c375",
            "sha256:2f4b06b25d0f0abfdca31a90d1375a41762f5f08d051d9d133e9618ef4747e33",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:3e45d41c13bfc5ebb90418bd31c4bd465a847fd94758ca7b96dfddd142b10349",
            "sha256:769bcacfbe49bc21b016cb86f035c5c7e0cd658402702663c7e654b29a95291e",
            "sha256:403275fed4c78677a9858bf397c5ad8813380eab9d368531e322c20935d3c5e9",
            "sha256:42839f9e66ff21397649750239ea55c8d090f48a9ba821f0fdc9cd63fb83094c",
            "sha256:f85ec6a8769a2a11fef4654d30dffdda8d8169a721f0d8a15e2e0a48ebfab2a3",
            "sha256:cb3953f37bbb72f8b40ccee4778387cb32cb2537305308b8008c53a3fe4992e1",
            "sha256:09d62e6728d9db63b9c9be8153f620dd0f3a20fc3eb549789566ce1cceef3933",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:a3286d9693e382d14ccbd6e01103c42dd11926a0c5ebc020a39e65df70999ce2",
            "sha256:0d85a2bc754ca6f2c4d61a2a00a09974cf815a693ece4a790baf71b60dd8b601",
            "sha256:c13ef7c71e66b72da841f6c53f9f33a987f8f1c36a40cd9a8b78e4ef7bb2bcee",
            "sha256:8e1090efb1b43bf383726b680557db574c3e77d771a122e7c82eb2c814b706f7",
            "sha256:add96521b6a4322bd5c84c154031d8f99e7d18173857ebba0aafe359b8b994f5",
            "sha256:41e71f9f6b692346462eef67eb708e0af94574d799d39482a4d515307956a131",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:856de2b6313d1290dbd71cc7776d8bfecbfce4f59b748afbcf1f10427c6e232c",
            "sha256:171ef54d2c103489ffe4f7ec3e5105ea4fa6eb5d8135cdb6b7bf7504b68b4a12",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:7318053dd2bb121f0e1120244c65116a807a4be5ab6ad69359a53b9db91b3cd5",
            "sha256:f8cf7f2725ad7ba9e000926881819052855fe84b9d678a4383c27e04aa4f05c8",
            "sha256:881bd8c7e17c4cc709b202d21424cdc40e89a980a5d09ef6da0b0e1db85b3ce0",
            "sha256:75cf7e1e511b668b0c562002147a1aeb57243be22302d268653f72c7e65ee63f",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:5d2c13d98726de5fe4be6ff4da6d0390ccb47f796cea25c9048517d01bcc4701",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-05-26T00:11:37.878031055+08:00"
    }
}

更多版本

docker.io/dolfly/ffmpeg-nvidia:v5.0.2-jupyter

linux/amd64 docker.io15.16GB2025-05-26 00:31
25