镜像构建历史
# 2025-02-17 18:55:58 0.00B 设置默认要执行的命令
CMD ["/bin/sh" "-c" "/bin/zsh"]
# 2025-02-17 18:55:58 265.30KB 执行命令并创建新的镜像层
RUN /bin/sh -c cp /code/tools/rnnoise_new /usr/bin && chmod a+x /usr/bin/rnnoise_new # buildkit
# 2025-02-17 18:55:56 1.49GB 复制新文件或目录到容器中
COPY . . # buildkit
# 2025-01-09 10:20:01 243.94MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && pip3 install ormsgpack -i https://mirrors.aliyun.com/pypi/simple/ && pip3 install silero-vad -i https://pypi.tuna.tsinghua.edu.cn/simple/ && pip3 install websocket-client funasr aiofiles -i https://mirrors.aliyun.com/pypi/simple/ # buildkit
# 2024-10-09 13:49:25 0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c rm -rf /code/* # buildkit
# 2024-10-09 13:49:25 0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
# 2024-10-09 13:49:23 0.00B 设置工作目录为/code
WORKDIR /code
# 2024-07-26 16:10:28 0.00B
/bin/sh -c #(nop) CMD ["/bin/sh" "-c" "/bin/zsh"]
# 2024-07-26 16:10:28 1.17GB
/bin/sh -c #(nop) COPY dir:33e52ffa5b2daef7f8e22bc9a8164bf193b9843a2fa052120cf227fdcd60b705 in .
# 2024-07-26 16:10:10 3.09GB
/bin/sh -c mkdir -p /root/.cache/whisper && cd /root/.cache/whisper && wget http://172.16.101.58:8888/whisper/large-v3.pt && cd /code
# 2024-07-26 16:02:22 10.97MB
/bin/sh -c . /root/.bashrc && conda activate python310 && pip3 install openai-whisper -i https://mirrors.aliyun.com/pypi/simple/
# 2024-07-16 18:11:38 0.00B
/bin/sh -c #(nop) ENV DEBIAN_FRONTEND=noninteractive
# 2024-07-16 18:11:38 0.00B
/bin/sh -c #(nop) WORKDIR /code
# 2024-07-16 11:36:53 0.00B 设置默认要执行的命令
CMD ["/bin/sh" "-c" "/bin/zsh"]
# 2024-07-16 11:36:53 2.33GB 复制新文件或目录到容器中
COPY . . # buildkit
# 2024-07-16 11:25:24 0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c rm -f *.whl # buildkit
# 2024-07-16 11:25:23 11.71MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && wget http://172.16.101.58:8888/obs/huaweicloud-sdk-python-obs-3.22.2.zip && pip3 install pycryptodome==3.10.1 cachetools -i https://mirrors.aliyun.com/pypi/simple/ && unzip huaweicloud-sdk-python-obs-3.22.2.zip && cd huaweicloud-sdk-python-obs-3.22.2/src && python setup.py install # buildkit
# 2024-07-15 14:28:13 12.94MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && pip3 install aliyun-python-sdk-core==2.13.3 librosa pydub -i https://mirrors.aliyun.com/pypi/simple/ # buildkit
# 2024-07-12 14:55:50 3.11MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && pip3 install vector_quantize_pytorch pyaudio -i https://mirrors.aliyun.com/pypi/simple/ # buildkit
# 2024-07-12 14:55:36 59.19MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt-get install libasound2-dev portaudio19-dev libasound-dev portaudio19-dev libportaudio2 libportaudiocpp0 -y # buildkit
# 2024-07-12 14:54:47 118.39MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && pip3 install transformers natsort rich loralib uvicorn -i https://mirrors.aliyun.com/pypi/simple/ # buildkit
# 2024-07-12 12:22:35 3.09MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && pip3 install hydra-core einops -i https://mirrors.aliyun.com/pypi/simple/ # buildkit
# 2024-07-12 12:22:31 146.11MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && pip3 install lightning wandb matplotlib -i https://mirrors.aliyun.com/pypi/simple/ # buildkit
# 2024-07-12 12:20:35 0.00B 设置环境变量 SHELL
ENV SHELL=/usr/bin/zsh
# 2024-07-12 12:20:35 2.55KB 执行命令并创建新的镜像层
RUN /bin/sh -c chsh -s /usr/bin/zsh # buildkit
# 2024-07-12 12:20:35 851.45MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && wget http://172.16.101.58:8888/nvidia/xgboost-2.1.0-py3-none-manylinux_2_28_x86_64.whl && pip3 install xgboost-2.1.0-py3-none-manylinux_2_28_x86_64.whl -i https://mirrors.aliyun.com/pypi/simple/ # buildkit
# 2024-07-12 12:07:23 326.24MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && pip3 install librosa pyrootutils kui loguru num2words nltk -i https://mirrors.aliyun.com/pypi/simple/ # buildkit
# 2024-07-12 12:01:49 187.30MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && wget http://172.16.101.58:8888/nvidia/scipy-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl && pip3 install scipy-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl -i https://mirrors.aliyun.com/pypi/simple/ # buildkit
# 2024-07-12 11:50:41 10.09GB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda activate python310 && conda config --set ssl_verify false && conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia # buildkit
# 2024-07-11 20:29:38 345.93MB 执行命令并创建新的镜像层
RUN /bin/sh -c . /root/.bashrc && conda config --add channels http://mirrors.lzu.edu.cn/anaconda/pkgs/main/ && conda config --add channels http://mirrors.lzu.edu.cn/anaconda/pkgs/free/ && conda config --set show_channel_urls yes && conda create -n python310 python=3.10 && conda activate python310 # buildkit
# 2024-07-11 20:28:59 480.58MB 执行命令并创建新的镜像层
RUN /bin/sh -c cd /code && wget --no-check-certificate https://mirror.lzu.edu.cn/anaconda/miniconda/Miniconda3-py310_23.5.1-0-Linux-x86_64.sh && bash Miniconda3-py310_23.5.1-0-Linux-x86_64.sh -b -p /opt/conda && rm -f Miniconda3-py310_23.5.1-0-Linux-x86_64.sh && ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && echo ". /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc # buildkit
# 2024-07-11 18:05:56 589.26MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get install -y git curl build-essential ffmpeg libsm6 libxext6 zlib1g-dev aria2 zsh openssh-server sudo protobuf-compiler cmake libsox-dev && apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
# 2024-07-11 15:20:28 221.47MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt-get install -y gcc make zlib1g-dev libbz2-dev libxml2-dev libffi-dev libssl-dev libxslt1-dev vim wget unzip # buildkit
# 2024-07-11 15:20:28 0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
# 2024-07-11 15:12:40 0.00B 设置工作目录为/code
WORKDIR /code
# 2023-11-10 13:52:16 2.45GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends ${NV_CUDNN_PACKAGE} ${NV_CUDNN_PACKAGE_DEV} && apt-mark hold ${NV_CUDNN_PACKAGE_NAME} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:52:16 0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.0.131
# 2023-11-10 13:52:16 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:52:16 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:52:16 0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1
# 2023-11-10 13:52:16 0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
# 2023-11-10 13:52:16 0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
# 2023-11-10 13:52:16 0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.0.131
# 2023-11-10 13:25:51 0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
# 2023-11-10 13:25:51 385.69KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
# 2023-11-10 13:25:51 4.79GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION} cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION} cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION} cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION} cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION} ${NV_NVPROF_DEV_PACKAGE} ${NV_LIBNPP_DEV_PACKAGE} libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION} ${NV_LIBCUBLAS_DEV_PACKAGE} ${NV_LIBNCCL_DEV_PACKAGE} ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:25:51 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:25:51 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
# 2023-11-10 13:13:35 0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
# 2023-11-10 13:13:35 0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
# 2023-11-10 13:13:35 2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
# 2023-11-10 13:13:35 3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
# 2023-11-10 13:13:35 261.40KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
# 2023-11-10 13:13:35 2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-libraries-12-1=${NV_CUDA_LIB_VERSION} ${NV_LIBNPP_PACKAGE} cuda-nvtx-12-1=${NV_NVTX_VERSION} libcusparse-12-1=${NV_LIBCUSPARSE_VERSION} ${NV_LIBCUBLAS_PACKAGE} ${NV_LIBNCCL_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:13:35 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:13:35 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
# 2023-11-10 13:08:12 0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# 2023-11-10 13:08:12 0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
# 2023-11-10 13:08:12 17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
# 2023-11-10 13:08:12 0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
# 2023-11-10 13:08:12 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2023-11-10 13:08:12 46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
# 2023-11-10 13:08:11 149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION} ${NV_CUDA_COMPAT_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:07:58 0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
# 2023-11-10 13:07:58 10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends gnupg2 curl ca-certificates && curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb && dpkg -i cuda-keyring_1.0-1_all.deb && apt-get purge --autoremove -y curl && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:07:58 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:07:58 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:07:58 0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
# 2023-11-10 13:07:58 0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
# 2023-11-10 13:07:58 0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
# 2023-11-10 13:07:58 0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
# 2023-10-05 15:33:32 0.00B
/bin/sh -c #(nop) CMD ["/bin/bash"]
# 2023-10-05 15:33:32 77.82MB
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in /
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) LABEL org.opencontainers.image.version=22.04
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) LABEL org.opencontainers.image.ref.name=ubuntu
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) ARG LAUNCHPAD_BUILD_ARCH
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) ARG RELEASE
镜像信息
{
"Id": "sha256:e030373ac56cc7ea056fb1a02ebfa36b1d0bd84da234ae65c5d1c6c12a7bc14f",
"RepoTags": [
"guiji2025/fish-speech-ziming:1.0.39",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/guiji2025/fish-speech-ziming:1.0.39"
],
"RepoDigests": [
"guiji2025/fish-speech-ziming@sha256:74636f912e305f93359986f383e0a08734f5d5ab0528f5a62e26b4e7f048bc07",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/guiji2025/fish-speech-ziming@sha256:74636f912e305f93359986f383e0a08734f5d5ab0528f5a62e26b4e7f048bc07"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2025-02-17T18:55:58.756660273+08:00",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"NVARCH=x86_64",
"NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
"NV_CUDA_CUDART_VERSION=12.1.105-1",
"NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
"CUDA_VERSION=12.1.1",
"LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
"NVIDIA_VISIBLE_DEVICES=all",
"NVIDIA_DRIVER_CAPABILITIES=compute,utility",
"NV_CUDA_LIB_VERSION=12.1.1-1",
"NV_NVTX_VERSION=12.1.105-1",
"NV_LIBNPP_VERSION=12.1.0.40-1",
"NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
"NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
"NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
"NV_LIBCUBLAS_VERSION=12.1.3.1-1",
"NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
"NV_LIBNCCL_PACKAGE_NAME=libnccl2",
"NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
"NCCL_VERSION=2.17.1-1",
"NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
"NVIDIA_PRODUCT_NAME=CUDA",
"NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
"NV_NVML_DEV_VERSION=12.1.105-1",
"NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
"NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
"NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
"NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
"NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
"NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
"NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
"NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
"NV_NVPROF_VERSION=12.1.105-1",
"NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
"NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
"NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
"NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
"LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
"NV_CUDNN_VERSION=8.9.0.131",
"NV_CUDNN_PACKAGE_NAME=libcudnn8",
"NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1",
"NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1",
"DEBIAN_FRONTEND=noninteractive",
"SHELL=/usr/bin/zsh"
],
"Cmd": [
"/bin/sh",
"-c",
"/bin/zsh"
],
"ArgsEscaped": true,
"Image": "",
"Volumes": null,
"WorkingDir": "/code",
"Entrypoint": [
"/opt/nvidia/nvidia_entrypoint.sh"
],
"OnBuild": null,
"Labels": {
"com.nvidia.cudnn.version": "8.9.0.131",
"maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
"org.opencontainers.image.ref.name": "ubuntu",
"org.opencontainers.image.version": "22.04"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 31264790798,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/c9110870b937b6cbb894308d20b9a77e3508d8320c89cdf956b9bb3b932aaf3b/diff:/var/lib/docker/overlay2/c03d861a5f5b01f1d04779ce176c7d4423b81bff5d9620b2954a36fe90f95b0b/diff:/var/lib/docker/overlay2/ce352c54b0bbe332faf9912eba2af624c884a2e25c06f86ab0ed1937f018f069/diff:/var/lib/docker/overlay2/7691592ff1e9bad54aed84dd664a334e3fcdf84c57db0393197046201cb21c04/diff:/var/lib/docker/overlay2/74a6709569c7e1644d615ceb09288fcc2b6466367644ae8905643808506497c3/diff:/var/lib/docker/overlay2/0e1fd2d6a9c840eef4811b16c40f5f3faee7d2a214baeb4e20e6cebf5cebdc3f/diff:/var/lib/docker/overlay2/f615929677fcc2435baee6b0562e2d2b73ad7e4e3baf28e7c7f1d8c19495f478/diff:/var/lib/docker/overlay2/92ec7b4fc088e6c360b144a6d0b38f92572f06c12ebe76ae3dac3c665c8e85fd/diff:/var/lib/docker/overlay2/adaeda13b8259e408d3c9f4c07bb71e760750b2c23a1fb1089d601b8f1d0e2f3/diff:/var/lib/docker/overlay2/11a480239bb4ef93d44e9a353ec63fa4a44b377c1f850a322f4f0f69fba173d7/diff:/var/lib/docker/overlay2/7e89b35525b89beb15ff52a019d3a8c2c56bf960bdff4567a5f6f6a5bc37a056/diff:/var/lib/docker/overlay2/8487e4e9a15f02c0f1db4ff1fc350022617de35d2b9ee6d7db13548ca514ce05/diff:/var/lib/docker/overlay2/e984fc0c3cc75373c7a7b1a006f15a74622cf388e3271967ec007784ecb7e372/diff:/var/lib/docker/overlay2/3dc6f1d2281342ee0165648fdf04ca6e467673179d7ddd067d792ff195bb64c6/diff:/var/lib/docker/overlay2/f42955eb7a7253a16591e2489dc1af04f5d23bf1b8629d15b25c113614afbd1b/diff:/var/lib/docker/overlay2/3cef8c66890ab486511a2a1c4c569063dff5930147cad583826044f593357958/diff:/var/lib/docker/overlay2/b833592e4bea11fa9010d63d0f2c07a0c8bbf331eed2eb36615d103b6a75e3a8/diff:/var/lib/docker/overlay2/66647c01467e787bc7440329a882d99128ad62d5480658167a8e3aa03bc473f4/diff:/var/lib/docker/overlay2/c16a089f62e43425c9eb8fda78e541bf14701690602ad67d31870ced44ffff9b/diff:/var/lib/docker/overlay2/4b028b3e2114f0db8d1a406458e81a21257f32fb3be9736f91fb8eb6f167861d/diff:/var/lib/docker/overlay2/60bc6030a81977f69dcfa0311ade0c51c10a7f869fa50142b767d63d4c518613/diff:/var/lib/docker/overlay2/67f46101dc24490a8b1e79e369163944ce19c71cde69d989511a967288fca11f/diff:/var/lib/docker/overlay2/be346319c50b3054d508e9ae7e9234127a94c5e9dd861c26508d216aa6e2b767/diff:/var/lib/docker/overlay2/50371a55aea808dcceb920a7857bc0044b5af172856fd4cf370d1ce8da5c0659/diff:/var/lib/docker/overlay2/224a9bcb75061fbb3ea28101d95e1268fe5373ebc88e5b680bc6292d5192c493/diff:/var/lib/docker/overlay2/13e1209f6714a2258cfe2cb26826d4cbd4e3cdf07599b8417940fedb95597479/diff:/var/lib/docker/overlay2/d826c27954e5657dc48d3960cc5cf971b98953615926773b9a980339c2374be0/diff:/var/lib/docker/overlay2/16656859196f01a90926db06ab7a9d9cbce4f628fa7aff0b448a6c308d385112/diff:/var/lib/docker/overlay2/5210552f0ec5a2d65f6917e13da344f714a21d438a783bc7d1c9a16af914a184/diff:/var/lib/docker/overlay2/be84fd046e39347d46e4b19d9ade2d51d1d70a40309bf0d63332c77ffc1f2679/diff:/var/lib/docker/overlay2/1ef02b89f822d9d60aa56a95101e13f21f422b3558bf567b4df864493d31a4da/diff:/var/lib/docker/overlay2/f2b8a1741c2536d6b61852d9568bf817fd9a63ac9fb8df11b7a19b0311f91954/diff:/var/lib/docker/overlay2/d20e9b5612f25be51b5fb44e91e45f61eb67c9d70660e670db49ee1998fb1c2a/diff:/var/lib/docker/overlay2/2c7cec8897aabb0388b4470488bf4951e8d7ad022433c73c763425f5d5813956/diff:/var/lib/docker/overlay2/d5234d942bac7845ea7dd140d4747fdec66c2c50467795afa6f2e577139027fd/diff:/var/lib/docker/overlay2/65edf56aea7268f113e7a860fa1cd5ba2b0ee61494b5b888524b08f97f620da5/diff:/var/lib/docker/overlay2/88cc313884619d0e223457ae9dff69f41729fa11bbd330fa57b65d5955229f89/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
"MergedDir": "/var/lib/docker/overlay2/6dc8479823ce9db8d69c3f47d73d7226da774ed1f0d069308b55220393077b58/merged",
"UpperDir": "/var/lib/docker/overlay2/6dc8479823ce9db8d69c3f47d73d7226da774ed1f0d069308b55220393077b58/diff",
"WorkDir": "/var/lib/docker/overlay2/6dc8479823ce9db8d69c3f47d73d7226da774ed1f0d069308b55220393077b58/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
"sha256:566cd9dd29d693cf0360da8a73391b843bb6ac8f11b4148acf69c4dc79fa87c5",
"sha256:6ec2b659c9ab00e2b0fc0acd056577e609cc28649650ec7068b81686f6d1a996",
"sha256:8afeff4e91d72f3de9232ffc0803f70236e316c27b23ee003e6d47fbfcb6e1c4",
"sha256:bea30ebbe84377ed36503599c2087cd6bda6f4c96cb59525d238d4a00cf902d3",
"sha256:b15b1df4adac82b2b46124c743a32d5e982cb6b5ee8a3c04949f809abf8962c9",
"sha256:83ecbf43a888c43f43b0cd9ec7cf551770790c7aeab17f9536b8820db2c5d45d",
"sha256:83687aeafbbf74a164a51590ffa36c46e9c41ce4ba3eae9daba1d381c64e5f4b",
"sha256:3416903c2cc4c9f83472b397741f30365f53543862b03ff5727b42b1a2f938cb",
"sha256:24e1e08aaa60ea10f478c1b68d9444b8ea74bff76e2547712984b5136e79018e",
"sha256:7aee75a70a2ff35d4990fab501a025afa498f416cb726ace747ccd7fad6500d4",
"sha256:0f7c883f1a4f4710753cfa1185d8e60584e41f04fe1693bd8c3ee6700b29c7f3",
"sha256:6501e96677587d6db5065352154871fb60655c83b44f6120ed2a8b9010b4d407",
"sha256:5dd17216aebcf76244d36c83a73cd80ede86a7b54406f3b60ae7169ac4107c84",
"sha256:187711af6aafe902a3e512468548bacb8a9ae334b542c15d8fc49099a4ada344",
"sha256:8778154fba940589c38a2b8ffe8b7a6276bc72672679cd87278cc378253b0444",
"sha256:f63def441c84c058684bb39b138feaf104784ec23d394c4886f7107d0f53c3de",
"sha256:fdf6758feae3d25710d2b625a58b7e60acc4b043b63ee30d828b64daecf1bd79",
"sha256:663ef9bab0553c1da8c71f4a26dbffefd8797d4cc3ee669bcc5babb33b7cc176",
"sha256:17042eb0220b006aaa1b57d182821d77cd42dda729f770b9194c323429bb9c7a",
"sha256:3760ddf680b14d9b92e537d846790cab5fa02cd1246c2cc7321972650bcd80d6",
"sha256:f2019b9ebc43c00d936af729f055239707986b6bd5b06b388c01c9a963d3c8ff",
"sha256:063591484cb3cf3e941bf03ef02ec45ae13e9e4af42ca566111ee7311eb78c61",
"sha256:5cc51f0353235f86bb7be66add4672eff391ba3255c1c289bd804105b562694d",
"sha256:318467db2c0be57d6b2c2585bdacb41b55d438c539027289257d81eb0790044f",
"sha256:00779d72fcb744b5227ee6b7816065a399a17ba83b961f1a4c718bff8067835e",
"sha256:05e80d2aea83f40de51802dc2fd525e245c1676860c851551614c820859ddb9b",
"sha256:3aa95c79ea143c0e1912dd6bfaf26d808c16654fc47573b2ef0761f64237fc7f",
"sha256:8c5eb43a09936dd48bcf689a3c1c2e4a033a81e62f2564f8516b5ccba74809ec",
"sha256:0770d1485f99d360342a2124d622615ad9674be44c371521580cfe8bacae4101",
"sha256:883d37d8bb325653ec989af717277d945169eac4bca562bb51d69cb3fb363420",
"sha256:cc698a30940011ebcd2268efd98649e7caa318c30c88314070e496c83a3183a8",
"sha256:7c9455a60e16cac2a7937c242fb08a62c7006eef609e4013ae5fee78b99e727a",
"sha256:20bca3cbe72f728d11a9802998d70a41e7a922bf11bedebc8dc117a12fd209d1",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:8097372b01abdd240bc6cc53dcf2e08ff277b3c1f4b946cac70a533eea15cdf3",
"sha256:9a6d2f404c9a33de00f7c5c0060df55cf5afc82ef105a4ba641c25d850a44873",
"sha256:978b49c205e4a8c287ec3df4e515d4c6ed7d09a5092f878c24994c01a63ff5de",
"sha256:3b5cfeb68d4f49b24fe573b11b07e6e90c7f417536e6f6d4f6b9c9f9dade4a69"
]
},
"Metadata": {
"LastTagTime": "2025-03-10T03:33:06.821645834+08:00"
}
}