docker.io/huggingface/autotrain-advanced:b5c98fb linux/amd64

docker.io/huggingface/autotrain-advanced:b5c98fb - 国内下载镜像源 浏览次数:14 安全受验证的发布者-huggingface

这是一个用于AutoTrain Advanced的Docker容器镜像。AutoTrain是一个自动化机器学习平台,而Advanced版本则提供了更高级的功能和特性,允许用户进行更复杂的模型训练和部署。这个镜像包含了运行AutoTrain Advanced所需的所有依赖项和工具,方便用户快速搭建和使用该平台。

源镜像 docker.io/huggingface/autotrain-advanced:b5c98fb
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb
镜像ID sha256:f5a7820543535f6b760af6e11569eefb5f942192c2790ab485144f8b55ceb922
镜像TAG b5c98fb
大小 15.00GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /app
OS/平台 linux/amd64
浏览量 14 次
贡献者 59******9@qq.com
镜像创建 2025-01-21T08:00:32.326776723Z
同步时间 2025-09-18 00:26
更新时间 2025-09-18 23:51
环境变量
PATH=/app/miniconda/bin:/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.105-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.1 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.1-1 NV_NVTX_VERSION=12.1.105-1 NV_LIBNPP_VERSION=12.1.0.40-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 NV_LIBCUSPARSE_VERSION=12.1.0.106-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.3.1-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NV_CUDNN_VERSION=8.9.0.131 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1 DEBIAN_FRONTEND=noninteractive TZ=UTC HF_HUB_ENABLE_HF_TRANSFER=1 HF_HOME=/app/.cache HOME=/app PYTHONPATH=/app/app PYTHONUNBUFFERED=1 GRADIO_ALLOW_FLAGGING=never GRADIO_NUM_PORTS=1 GRADIO_SERVER_NAME=0.0.0.0 SYSTEM=spaces
镜像标签
8.9.0.131: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb  docker.io/huggingface/autotrain-advanced:b5c98fb

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb  docker.io/huggingface/autotrain-advanced:b5c98fb

Shell快速替换命令

sed -i 's#huggingface/autotrain-advanced:b5c98fb#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb  docker.io/huggingface/autotrain-advanced:b5c98fb'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb  docker.io/huggingface/autotrain-advanced:b5c98fb'

镜像构建历史


# 2025-01-21 16:00:32  2.40GB 执行命令并创建新的镜像层
RUN |2 PATH=/app/miniconda/bin:/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PATH=/app/miniconda/bin:/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin conda run --no-capture-output -p /app/env /bin/bash -c pip install -e . &&     python -m nltk.downloader punkt &&     pip install -U ninja &&     pip install -U flash-attn --no-build-isolation &&     pip install -U deepspeed &&     pip install --upgrade --force-reinstall --no-cache-dir "unsloth[cu121-ampere-torch230] @ git+https://github.com/unslothai/unsloth.git" --no-deps &&     pip cache purge # buildkit
                        
# 2025-01-21 15:59:22  8.61MB 复制新文件或目录到容器中
COPY --chown=1000:1000 . /app/ # buildkit
                        
# 2025-01-21 15:59:22  7.50GB 执行命令并创建新的镜像层
RUN |2 PATH=/app/miniconda/bin:/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PATH=/app/miniconda/bin:/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin conda run --no-capture-output -p /app/env /bin/bash -c conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.1 -c pytorch -c nvidia &&     conda clean -ya &&     conda install -c "nvidia/label/cuda-12.1.1" cuda-nvcc && conda clean -ya &&     conda install xformers -c xformers && conda clean -ya # buildkit
                        
# 2025-01-21 15:55:57  0.00B 
SHELL [conda run --no-capture-output -p /app/env /bin/bash -c]
                        
# 2025-01-21 15:55:57  368.26MB 执行命令并创建新的镜像层
RUN |2 PATH=/app/miniconda/bin:/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PATH=/app/miniconda/bin:/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin /bin/sh -c conda create -p /app/env -y python=3.10 # buildkit
                        
# 2025-01-21 15:55:50  0.00B 设置环境变量 PATH
ENV PATH=/app/miniconda/bin:/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-01-21 15:55:50  640.14MB 执行命令并创建新的镜像层
RUN |2 PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin /bin/sh -c wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh     && sh Miniconda3-latest-Linux-x86_64.sh -b -p /app/miniconda     && rm -f Miniconda3-latest-Linux-x86_64.sh # buildkit
                        
# 2025-01-21 15:55:42  0.00B 设置环境变量 PYTHONPATH PYTHONUNBUFFERED GRADIO_ALLOW_FLAGGING GRADIO_NUM_PORTS GRADIO_SERVER_NAME SYSTEM
ENV PYTHONPATH=/app/app PYTHONUNBUFFERED=1 GRADIO_ALLOW_FLAGGING=never GRADIO_NUM_PORTS=1 GRADIO_SERVER_NAME=0.0.0.0 SYSTEM=spaces
                        
# 2025-01-21 15:55:42  0.00B 设置环境变量 HOME
ENV HOME=/app
                        
# 2025-01-21 15:55:42  0.00B 指定运行容器时使用的用户
USER user
                        
# 2025-01-21 15:55:42  0.00B 执行命令并创建新的镜像层
RUN |2 PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin /bin/sh -c chown -R user:user /app # buildkit
                        
# 2025-01-21 15:55:42  333.77KB 执行命令并创建新的镜像层
RUN |2 PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin /bin/sh -c useradd -m -u 1000 user # buildkit
                        
# 2025-01-21 15:55:42  0.00B 设置环境变量 HF_HOME
ENV HF_HOME=/app/.cache
                        
# 2025-01-21 15:55:42  0.00B 执行命令并创建新的镜像层
RUN |2 PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin /bin/sh -c mkdir -p /app/.cache # buildkit
                        
# 2025-01-21 15:55:42  0.00B 设置工作目录为/app
WORKDIR /app
                        
# 2025-01-21 15:55:42  62.31MB 执行命令并创建新的镜像层
RUN |2 PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin /bin/sh -c curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash &&     git lfs install # buildkit
                        
# 2025-01-21 15:55:34  643.39MB 执行命令并创建新的镜像层
RUN |2 PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin /bin/sh -c apt-get update &&      apt-get upgrade -y &&      apt-get install -y     build-essential     cmake     curl     ca-certificates     gcc     git     locales     net-tools     wget     libpq-dev     libsndfile1-dev     git     git-lfs     libgl1     unzip     libjpeg-dev     libpng-dev     libgomp1     && rm -rf /var/lib/apt/lists/* &&     apt-get clean # buildkit
                        
# 2025-01-21 15:55:09  0.00B 执行命令并创建新的镜像层
RUN |2 PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin /bin/sh -c mkdir -p /tmp/model &&     chown -R 1000:1000 /tmp/model &&     mkdir -p /tmp/data &&     chown -R 1000:1000 /tmp/data # buildkit
                        
# 2025-01-21 15:55:09  0.00B 定义构建参数
ARG PATH=/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-01-21 15:55:09  0.00B 设置环境变量 PATH
ENV PATH=/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-01-21 15:55:09  0.00B 定义构建参数
ARG PATH=/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-01-21 15:55:09  0.00B 设置环境变量 PATH
ENV PATH=/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-01-21 15:55:09  0.00B 设置环境变量 DEBIAN_FRONTEND TZ HF_HUB_ENABLE_HF_TRANSFER
ENV DEBIAN_FRONTEND=noninteractive TZ=UTC HF_HUB_ENABLE_HF_TRANSFER=1
                        
# 2023-11-10 13:42:50  1.14GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:42:50  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.0.131
                        
# 2023-11-10 13:42:50  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:42:50  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:42:50  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 13:42:50  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 13:42:50  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.0.131
                        
# 2023-11-10 13:13:35  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 13:13:35  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 13:13:35  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 13:13:35  261.40KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:13:35  2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:13:35  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:13:35  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:08:12  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:08:12  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:08:11  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
                        
# 2023-11-10 13:07:58  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:07:58  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:f5a7820543535f6b760af6e11569eefb5f942192c2790ab485144f8b55ceb922",
    "RepoTags": [
        "huggingface/autotrain-advanced:b5c98fb",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced:b5c98fb"
    ],
    "RepoDigests": [
        "huggingface/autotrain-advanced@sha256:123d1c66880e890daae8642aedb2b70b2addfa7995d20c8d0aa8976ceed8ca36",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/huggingface/autotrain-advanced@sha256:631984c27b27cdb32837a0810cb1a749a2a9638f09c3f280a66eff04a62e2a72"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-01-21T08:00:32.326776723Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "user",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/app/miniconda/bin:/app/ngc-cli:/app/ngc-cli:/miniconda3/bin:/miniconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.105-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.1",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.1-1",
            "NV_NVTX_VERSION=12.1.105-1",
            "NV_LIBNPP_VERSION=12.1.0.40-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
            "NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDNN_VERSION=8.9.0.131",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1",
            "DEBIAN_FRONTEND=noninteractive",
            "TZ=UTC",
            "HF_HUB_ENABLE_HF_TRANSFER=1",
            "HF_HOME=/app/.cache",
            "HOME=/app",
            "PYTHONPATH=/app/app",
            "PYTHONUNBUFFERED=1",
            "GRADIO_ALLOW_FLAGGING=never",
            "GRADIO_NUM_PORTS=1",
            "GRADIO_SERVER_NAME=0.0.0.0",
            "SYSTEM=spaces"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/app",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.0.131",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        },
        "Shell": [
            "conda",
            "run",
            "--no-capture-output",
            "-p",
            "/app/env",
            "/bin/bash",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 14999903910,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/c1541625ef74d2cd6ebbbd8877e02b9d60512aa6b5dd45614975d116f10b3d0d/diff:/var/lib/docker/overlay2/68f967ee6c54ac9bb6827c6e801a431e458cd7906c017d22a9235e2c66acd63a/diff:/var/lib/docker/overlay2/8ca744c8afb83f04dc445e29592d94f8512991cdcaa8cf16466f3f3eb3bc4e1c/diff:/var/lib/docker/overlay2/3284ed10b4f559e1241f05345cdb70a77fd85ea13815a462e248a5069bd2c2bd/diff:/var/lib/docker/overlay2/e96aacca13aff06a80376f3e17d98fcb8d500647e0f143a4ff47f3d78eaa4eb6/diff:/var/lib/docker/overlay2/7e2d015665fa13d3dc08ba6341ade6031af0e4559577f675f5662606fd0d6037/diff:/var/lib/docker/overlay2/b8410c696cff489f2f34c239628c69a57c4873442cdc37d020c7e9bf5068ad19/diff:/var/lib/docker/overlay2/111d580958fca513aba4475295f025d10c6dc281e7ee442061a3091d0c80db60/diff:/var/lib/docker/overlay2/dcd3de0ec0b9078a8c936797eb0e1a8018d9dc39508a39f035cad8b046992be8/diff:/var/lib/docker/overlay2/191acc19617127a1f2f02fa2438b8e6e1808ee07b19794cc2304e8860f44c76d/diff:/var/lib/docker/overlay2/038290b75ff11f26e67623849861a4eca6cb0b5725810d6b2bc91ec75140ec43/diff:/var/lib/docker/overlay2/0f7a14c736afaa0dc82582734444a689a49fbac32e258f03929f9f298cad89b2/diff:/var/lib/docker/overlay2/37772bc1ec8703789a9fc7cf728dba35775779d9c9ac3882c68b485d63c58822/diff:/var/lib/docker/overlay2/30b66e70dca1d649fb667e8361249daf3b30ab1c917d6a0f98dec8e3b565f14b/diff:/var/lib/docker/overlay2/2dfff2b7ca23a98900baced8a491adf5d67600ac4ef258b732ec566772333b12/diff:/var/lib/docker/overlay2/41a12b1331e8f86c476e03a5733e7f65a5da493c00d6bb145a05c514214b07fb/diff:/var/lib/docker/overlay2/29565d2417fb8290b212d3ef277f969da9221704d13625b6757dec927781622b/diff:/var/lib/docker/overlay2/97f1b8723fee5596fd2e395df2ae7643a4220b11af63835774e72237c82f0d81/diff:/var/lib/docker/overlay2/99bbfad7449fb2e793fd84a5f47950dcabfc8af53619c50c59170a797de4ab08/diff:/var/lib/docker/overlay2/2f13b425a530d0330973953ee9815136667fb1838eb468c785b802e263ec9feb/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/e7198312d266461fe178c14b6a6b49e52f835ccedc5e75a66a92a94b1a0d334b/merged",
            "UpperDir": "/var/lib/docker/overlay2/e7198312d266461fe178c14b6a6b49e52f835ccedc5e75a66a92a94b1a0d334b/diff",
            "WorkDir": "/var/lib/docker/overlay2/e7198312d266461fe178c14b6a6b49e52f835ccedc5e75a66a92a94b1a0d334b/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:566cd9dd29d693cf0360da8a73391b843bb6ac8f11b4148acf69c4dc79fa87c5",
            "sha256:6ec2b659c9ab00e2b0fc0acd056577e609cc28649650ec7068b81686f6d1a996",
            "sha256:8afeff4e91d72f3de9232ffc0803f70236e316c27b23ee003e6d47fbfcb6e1c4",
            "sha256:bea30ebbe84377ed36503599c2087cd6bda6f4c96cb59525d238d4a00cf902d3",
            "sha256:b15b1df4adac82b2b46124c743a32d5e982cb6b5ee8a3c04949f809abf8962c9",
            "sha256:83ecbf43a888c43f43b0cd9ec7cf551770790c7aeab17f9536b8820db2c5d45d",
            "sha256:83687aeafbbf74a164a51590ffa36c46e9c41ce4ba3eae9daba1d381c64e5f4b",
            "sha256:3416903c2cc4c9f83472b397741f30365f53543862b03ff5727b42b1a2f938cb",
            "sha256:dbed25d6c95d032bc3492f4d7f33feba0572f6ba4e2ac00ac94f26c6ec83f4fb",
            "sha256:0a0cf227f42f4195e031a2b21950f4c945e7e46fbecded391f11daa8d8c3f18a",
            "sha256:b23a4afa50c315cd9c8740fbd01026cc64a2a7b58794de0ee0d0c59421b29a70",
            "sha256:c1a48ab9f2150fa1c4e9a71d2f5195d6e409140c8ee7a930f2c7f9f1099062a1",
            "sha256:3c36f12c20a5b1ae0e2f5bbf5da4ae6f290108f6f8181b4ffb1ad753daf6b460",
            "sha256:4c5954dfbbb7cfcc3b492da3961199d1d96c14166a3e7aadc1aebf1be3a5c56a",
            "sha256:4f323e0c8aad686f177c9eeed0fd8c4a569dc0824d2ff6fcce6f601ac447617f",
            "sha256:50e82672ccf034579e5c3edc2d0c9123378a85810066fef700aee7569f5e7e79",
            "sha256:2e1d8c425b78b567399d8f571914f317a65c5563f026cc076646622df70d1080",
            "sha256:4207622b2c5b406bac7a3d412d0501fcb8ffc67241ce4c13c2d634a718b50878",
            "sha256:33bf4125f25ddd9866c12397bc905b942806b7c55146e2fac61b2ae22f192f55",
            "sha256:f9b96201e58be1806898af7f30d29160668b4768c8352d2a1e5496adf6bd93b9",
            "sha256:39a822b573105bc0b5ba695e687980c109195e335d7f784b8b568f70e7b33464"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-09-18T00:14:50.205103179+08:00"
    }
}

更多版本

docker.io/huggingface/autotrain-advanced:b5c98fb

linux/amd64 docker.io15.00GB2025-09-18 00:26
13