docker.io/infiniflow/text-embeddings-inference:cpu-1.8 linux/amd64

docker.io/infiniflow/text-embeddings-inference:cpu-1.8 - 国内下载镜像源 浏览次数:9
源镜像 docker.io/infiniflow/text-embeddings-inference:cpu-1.8
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8
镜像ID sha256:1eb4bd985b3a4e0828bd5ef80c28dc4f9e69ed977fc9c6086afaaf7eb62fad1b
镜像TAG cpu-1.8
大小 6.88GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD --json-output
启动入口 text-embeddings-router
工作目录
OS/平台 linux/amd64
浏览量 9 次
贡献者
镜像创建 2025-10-20T19:53:45.673747298+08:00
同步时间 2025-11-23 01:51
更新时间 2025-11-23 03:17
环境变量
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin HUGGINGFACE_HUB_CACHE=/data PORT=80 MKL_ENABLE_INSTRUCTIONS=AVX512_E4 RAYON_NUM_THREADS=8 LD_PRELOAD=/usr/local/libfakeintel.so LD_LIBRARY_PATH=/usr/local/lib
镜像标签
2025-09-09T14:46:06.898Z: org.opencontainers.image.created A blazing fast inference solution for text embeddings models: org.opencontainers.image.description Apache-2.0: org.opencontainers.image.licenses d7af1fcc509902d8cc66cebf5a61c5e8e000e442: org.opencontainers.image.revision https://github.com/huggingface/text-embeddings-inference: org.opencontainers.image.source text-embeddings-inference: org.opencontainers.image.title https://github.com/huggingface/text-embeddings-inference: org.opencontainers.image.url cpu-1.8.2: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8  docker.io/infiniflow/text-embeddings-inference:cpu-1.8

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8  docker.io/infiniflow/text-embeddings-inference:cpu-1.8

Shell快速替换命令

sed -i 's#infiniflow/text-embeddings-inference:cpu-1.8#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8  docker.io/infiniflow/text-embeddings-inference:cpu-1.8'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8  docker.io/infiniflow/text-embeddings-inference:cpu-1.8'

镜像构建历史


# 2025-10-20 19:53:45  6.20GB 复制新文件或目录到容器中
COPY tei_data /data # buildkit
                        
# 2025-09-09 22:40:32  0.00B 设置默认要执行的命令
CMD ["--json-output"]
                        
# 2025-09-09 22:40:32  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["text-embeddings-router"]
                        
# 2025-09-09 22:40:32  71.54MB 复制新文件或目录到容器中
COPY /usr/src/target/release/text-embeddings-router /usr/local/bin/text-embeddings-router # buildkit
                        
# 2025-09-09 15:10:50  15.03KB 复制新文件或目录到容器中
COPY /usr/src/libfakeintel.so /usr/local/libfakeintel.so # buildkit
                        
# 2025-09-09 15:10:50  65.71MB 复制新文件或目录到容器中
COPY /opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_avx512.so.2 /usr/local/lib/libmkl_avx512.so.2 # buildkit
                        
# 2025-09-09 15:10:50  48.84MB 复制新文件或目录到容器中
COPY /opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_avx2.so.2 /usr/local/lib/libmkl_avx2.so.2 # buildkit
                        
# 2025-09-09 15:10:50  14.25MB 复制新文件或目录到容器中
COPY /opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_vml_avx512.so.2 /usr/local/lib/libmkl_vml_avx512.so.2 # buildkit
                        
# 2025-09-09 15:10:50  14.79MB 复制新文件或目录到容器中
COPY /opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_vml_avx2.so.2 /usr/local/lib/libmkl_vml_avx2.so.2 # buildkit
                        
# 2025-09-09 15:10:50  41.16MB 复制新文件或目录到容器中
COPY /opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_def.so.2 /usr/local/lib/libmkl_def.so.2 # buildkit
                        
# 2025-09-09 15:10:50  8.75MB 复制新文件或目录到容器中
COPY /opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_vml_def.so.2 /usr/local/lib/libmkl_vml_def.so.2 # buildkit
                        
# 2025-09-09 15:10:50  71.24MB 复制新文件或目录到容器中
COPY /opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_core.so.2 /usr/local/lib/libmkl_core.so.2 # buildkit
                        
# 2025-09-09 15:10:50  41.93MB 复制新文件或目录到容器中
COPY /opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_intel_thread.so.2 /usr/local/lib/libmkl_intel_thread.so.2 # buildkit
                        
# 2025-09-09 15:10:50  24.38MB 复制新文件或目录到容器中
COPY /opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_intel_lp64.so.2 /usr/local/lib/libmkl_intel_lp64.so.2 # buildkit
                        
# 2025-09-09 15:08:33  208.37MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends     libomp-dev     ca-certificates     libssl-dev     curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-09-09 15:08:33  0.00B 设置环境变量 HUGGINGFACE_HUB_CACHE PORT MKL_ENABLE_INSTRUCTIONS RAYON_NUM_THREADS LD_PRELOAD LD_LIBRARY_PATH
ENV HUGGINGFACE_HUB_CACHE=/data PORT=80 MKL_ENABLE_INSTRUCTIONS=AVX512_E4 RAYON_NUM_THREADS=8 LD_PRELOAD=/usr/local/libfakeintel.so LD_LIBRARY_PATH=/usr/local/lib
                        
# 2025-09-08 08:00:00  74.81MB 
# debian.sh --arch 'amd64' out/ 'bookworm' '@1757289600'
                        
                    

镜像信息

{
    "Id": "sha256:1eb4bd985b3a4e0828bd5ef80c28dc4f9e69ed977fc9c6086afaaf7eb62fad1b",
    "RepoTags": [
        "infiniflow/text-embeddings-inference:cpu-1.8",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference:cpu-1.8"
    ],
    "RepoDigests": [
        "infiniflow/text-embeddings-inference@sha256:ad4a00f5af757f7f323bdeb9e873313ed71225cf57d94658cbc9c6c17dc67d85",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/text-embeddings-inference@sha256:ad4a00f5af757f7f323bdeb9e873313ed71225cf57d94658cbc9c6c17dc67d85"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-10-20T19:53:45.673747298+08:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "HUGGINGFACE_HUB_CACHE=/data",
            "PORT=80",
            "MKL_ENABLE_INSTRUCTIONS=AVX512_E4",
            "RAYON_NUM_THREADS=8",
            "LD_PRELOAD=/usr/local/libfakeintel.so",
            "LD_LIBRARY_PATH=/usr/local/lib"
        ],
        "Cmd": [
            "--json-output"
        ],
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "",
        "Entrypoint": [
            "text-embeddings-router"
        ],
        "OnBuild": null,
        "Labels": {
            "org.opencontainers.image.created": "2025-09-09T14:46:06.898Z",
            "org.opencontainers.image.description": "A blazing fast inference solution for text embeddings models",
            "org.opencontainers.image.licenses": "Apache-2.0",
            "org.opencontainers.image.revision": "d7af1fcc509902d8cc66cebf5a61c5e8e000e442",
            "org.opencontainers.image.source": "https://github.com/huggingface/text-embeddings-inference",
            "org.opencontainers.image.title": "text-embeddings-inference",
            "org.opencontainers.image.url": "https://github.com/huggingface/text-embeddings-inference",
            "org.opencontainers.image.version": "cpu-1.8.2"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 6881691872,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/17f51fa2725515243db70b02d25beab87ac3af00b6e99b124bf94df3ed3e2aec/diff:/var/lib/docker/overlay2/25f560baeb8a8724cfb41e4f9a78475ac5b14967ff8cadb5d443b8d565a42506/diff:/var/lib/docker/overlay2/f8fa887d784e61da4e5d40fb578471a539998e3195248d3157e20ff2e6310ac8/diff:/var/lib/docker/overlay2/19a67d2f94ce95c0f044a9dadf099c8ff60d4521b1b98643bd9bdd7b8b9defea/diff:/var/lib/docker/overlay2/32dcb8f3c16c2954ebf1e502c4b54ebad8b560c1b323e36fab16ae5a1999ce4f/diff:/var/lib/docker/overlay2/43cf21e56dab8d3894cfefdea112c67bf8fa965a8e03d9330183924fbccbf169/diff:/var/lib/docker/overlay2/f8068677cecca07352756913baeab6feb0b9a6aef8edb8fb30edaea7fa0cb105/diff:/var/lib/docker/overlay2/2f4e8d175b2dd93d4b450471c500ee7e9cddb74064a6aeb4f4707daccf0a328b/diff:/var/lib/docker/overlay2/5278b6e063fca02b0f2a264474c575904772e8f09ca7df3bc3b7d70dd0f45ca5/diff:/var/lib/docker/overlay2/6486b0b85f16f04fc6224ed6192950871ba42dd29fabbc2475cc7aa426bea91b/diff:/var/lib/docker/overlay2/071a0a6459a044e800381b3952e18fe9e41205e7bb299ee033bfbe7d3576df6e/diff:/var/lib/docker/overlay2/4c79739ccb97059422f3fa10a90cfb09e241cd82e92107cde7ae8adadf3ce059/diff:/var/lib/docker/overlay2/2d82f07f35f0f0b2f5f198026fe5729c9a3ed4fb95edf7d929e0c1c5edae377c/diff",
            "MergedDir": "/var/lib/docker/overlay2/8d88e6846e0c09f0e96ee61540e34b38c6df21b48851608f0e3d9532aed5c17a/merged",
            "UpperDir": "/var/lib/docker/overlay2/8d88e6846e0c09f0e96ee61540e34b38c6df21b48851608f0e3d9532aed5c17a/diff",
            "WorkDir": "/var/lib/docker/overlay2/8d88e6846e0c09f0e96ee61540e34b38c6df21b48851608f0e3d9532aed5c17a/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:36f5f951f60a9fa1d51878e76fc16ba7b752f4d464a21b758a8ac88f0992c488",
            "sha256:eef8ac43376ebfbdc6af2452528d300f670e28adbed701a7e36f489d97556ae4",
            "sha256:f81e2269a5e9fdacae3ebde4cc24bffe1b1d4d726fdd796ce0caeabfd8e9b2dc",
            "sha256:fcf643345d5cf7612094d713352f27f494cc686fe072d3a4b709fffb4e713bb5",
            "sha256:7c287a25db2d24e62ac541f204725387763646f5543d94437ebd6d645b840c9d",
            "sha256:8f01ad90fdf7508370be4b23e7b00abd632256555eebbe7919c81607dcddc2e9",
            "sha256:88043379d8d2c834481968176cc9b5acdc07f1760953f338745c13165828c83b",
            "sha256:723551a04e47c41ece175ec7336f6c30c4b3a0377be1818c18be10fe571fe3f5",
            "sha256:45d54ec5663f81629b7b65940bdf18efb12332d0a159a29e22819f28a0850eec",
            "sha256:49c03f64ed462eab49a9fb3302b1d0ec1748b9f19b75d32dfaf42be5e6a27e0e",
            "sha256:15719c87250df61e7d422c8d6c3df9dbadd7547d4164b3ab6b90e85ee3aa3cdb",
            "sha256:8c748141fc94d8759a1cc96fb6e654356eeab8ab8fbebe03d4be3dd7f485f130",
            "sha256:8c6bcb168b1ba579fd93cff688f7f09b27152e661a79f10ddf25200e70b98710",
            "sha256:91f8e80ab8608052b5a5c0b7b5020ff94e552cd31222f9cb5ef114cd687db6de"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-11-23T01:42:17.491021546+08:00"
    }
}

更多版本

docker.io/infiniflow/text-embeddings-inference:cpu-1.8

linux/amd64 docker.io6.88GB2025-11-23 01:51
8

docker.io/infiniflow/text-embeddings-inference:1.8

linux/amd64 docker.io7.31GB2025-11-23 02:02
7