docker.io/jetbrains/datalore-agent:2025.2 linux/amd64

docker.io/jetbrains/datalore-agent:2025.2 - 国内下载镜像源 浏览次数:36
```html

JetBrains Datalore Agent 镜像是一个用于运行 Datalore 代理的 Docker 镜像。Datalore 代理允许您将 Datalore 与本地或远程计算资源连接,从而能够在更强大的硬件上运行您的代码和分析任务。

```
源镜像 docker.io/jetbrains/datalore-agent:2025.2
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2
镜像ID sha256:a766a8b7bfceee17dd61e116ceaca519041ae49343d39835f975ef8c06ad47f6
镜像TAG 2025.2
大小 4.29GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD /bin/bash agent_entrypoint.sh
启动入口
工作目录 /opt/datalore
OS/平台 linux/amd64
浏览量 36 次
贡献者 fr***********d@outlook.com
镜像创建 2025-03-12T10:02:22.374541149Z
同步时间 2025-03-28 23:14
更新时间 2025-04-16 14:20
环境变量
PATH=/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LANG=en_US.UTF-8 LANGUAGE=en_US:en LC_ALL=en_US.UTF-8 JMX_SERVER_VERSION=0.20.0 DATALORE_USER=datalore DATALORE_HOME=/opt/datalore DEFAULT_BASE_ENV_NAME=minimal DEFAULT_PACKAGE_MANAGER=pip LETS_PLOT_HTML_ISOLATED_FRAME=true LETS_PLOT_MAPTILES_KIND=vector_lets_plot PLOTLY_RENDERER=plotly_mimetype TMPDIR=/tmp LONG_TERM_PERSISTENCE=yes CONFIG_DIR=/etc/datalore DUMP_DIR=/tmp/host/agent DATALORE_AGENT_MODE=CONTAINER VAR_DIR=/var/datalore AGENT_JARS_DIR=/opt/datalore/agent IMAGE_VERSION=2025.2
镜像标签
ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2  docker.io/jetbrains/datalore-agent:2025.2

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2  docker.io/jetbrains/datalore-agent:2025.2

Shell快速替换命令

sed -i 's#jetbrains/datalore-agent:2025.2#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2  docker.io/jetbrains/datalore-agent:2025.2'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2  docker.io/jetbrains/datalore-agent:2025.2'

镜像构建历史


# 2025-03-12 18:02:22  0.00B 设置默认要执行的命令
CMD ["/bin/bash" "agent_entrypoint.sh"]
                        
# 2025-03-12 18:02:22  0.00B 指定运行容器时使用的用户
USER datalore
                        
# 2025-03-12 18:02:22  0.00B 设置工作目录为/opt/datalore
WORKDIR /opt/datalore
                        
# 2025-03-12 18:02:21  327.24MB 复制文件或目录到容器中
ADD build/agent.tar /opt/datalore/agent/ # buildkit
                        
# 2025-03-10 22:50:55  85.28MB 复制文件或目录到容器中
ADD build/data.tar /opt/datalore/agent/ # buildkit
                        
# 2025-03-10 22:50:53  121.61KB 复制文件或目录到容器中
ADD build/evaluator.tar /opt/datalore/ # buildkit
                        
# 2025-03-10 22:50:53  102.00B 复制新文件或目录到容器中
COPY --chown=datalore --chmod=0644 pip.conf /home/datalore/.config/pip/ # buildkit
                        
# 2025-03-10 22:50:53  96.00B 复制新文件或目录到容器中
COPY --chown=datalore --chmod=0644 .condarc /home/datalore/ # buildkit
                        
# 2025-03-10 22:50:53  2.17KB 复制新文件或目录到容器中
COPY --chown=datalore --chmod=0555 conf/logback.xml /etc/datalore/logback-config/ # buildkit
                        
# 2025-03-10 22:50:53  161.00B 复制新文件或目录到容器中
COPY --chmod=0555 davfs2.conf /etc/davfs2/davfs2.conf # buildkit
                        
# 2025-03-10 22:50:53  2.09KB 复制新文件或目录到容器中
COPY --chown=datalore --chmod=0555 conf/logging.properties run_java.sh setenv.sh /opt/datalore/ # buildkit
                        
# 2025-03-10 22:50:53  4.12KB 复制新文件或目录到容器中
COPY --chown=datalore --chmod=0555 mount.sh oom-reporter.sh /opt/datalore/ # buildkit
                        
# 2025-03-10 22:50:52  3.27KB 复制新文件或目录到容器中
COPY --chown=datalore --chmod=0555 agent_entrypoint.sh build_code_insight_data.sh eval_entrypoint.sh on_agent_start.sh on_kernel_start.sh set_log_level.sh /opt/datalore/ # buildkit
                        
# 2025-03-10 22:50:52  425.00B 复制新文件或目录到容器中
COPY --chown=root --chmod=0440 sudoers /etc/ # buildkit
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 IMAGE_VERSION
ENV IMAGE_VERSION=2025.2
                        
# 2025-03-10 22:50:52  0.00B 定义构建参数
ARG ON_PREMISES_VERSION=2025.2
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 AGENT_JARS_DIR
ENV AGENT_JARS_DIR=/opt/datalore/agent
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 VAR_DIR
ENV VAR_DIR=/var/datalore
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 DATALORE_AGENT_MODE
ENV DATALORE_AGENT_MODE=CONTAINER
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 DUMP_DIR
ENV DUMP_DIR=/tmp/host/agent
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 DATALORE_HOME
ENV DATALORE_HOME=/opt/datalore
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 CONFIG_DIR
ENV CONFIG_DIR=/etc/datalore
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 LONG_TERM_PERSISTENCE
ENV LONG_TERM_PERSISTENCE=yes
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 TMPDIR
ENV TMPDIR=/tmp
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 PLOTLY_RENDERER
ENV PLOTLY_RENDERER=plotly_mimetype
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 LETS_PLOT_MAPTILES_KIND
ENV LETS_PLOT_MAPTILES_KIND=vector_lets_plot
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 LETS_PLOT_HTML_ISOLATED_FRAME
ENV LETS_PLOT_HTML_ISOLATED_FRAME=true
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 DEFAULT_PACKAGE_MANAGER
ENV DEFAULT_PACKAGE_MANAGER=pip
                        
# 2025-03-10 22:50:52  0.00B 设置环境变量 DEFAULT_BASE_ENV_NAME
ENV DEFAULT_BASE_ENV_NAME=minimal
                        
# 2025-03-05 02:36:12  126.86MB 复制新文件或目录到容器中
COPY --chown=datalore:datalore /opt/code_server /opt/code_server # buildkit
                        
# 2025-03-05 02:32:34  0.00B 指定运行容器时使用的用户
USER datalore
                        
# 2025-03-05 02:32:34  297.00B 执行命令并创建新的镜像层
RUN /bin/sh -c echo user_allow_other >> /etc/fuse.conf # buildkit
                        
# 2025-03-05 02:32:33  169.00B 复制文件或目录到容器中
ADD ./infra/docker/base/computation-k8s/davfs2.conf /etc/davfs2/davfs2.conf # buildkit
                        
# 2025-03-05 02:32:33  0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir /opt/code_server && chown ${DATALORE_USER}:${DATALORE_USER} /opt/code_server # buildkit
                        
# 2025-03-05 02:32:33  80.10MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update &&     apt-get install -y autoconf autogen libtool shtool autotools-dev build-essential libcurl4-openssl-dev libxml2-dev pkg-config libssl-dev libfuse-dev fuse &&     wget -qO- https://github.com/s3fs-fuse/s3fs-fuse/archive/refs/tags/v1.93.tar.gz | tar xz -C /tmp &&     cd /tmp/s3fs-fuse-1.93 &&     ./autogen.sh &&     ./configure &&     make install &&     cd - &&     rm -rf /tmp/s3fs-fuse-1.93 &&     rm -rf /var/lib/apt/lists/* && apt-get clean # buildkit
                        
# 2025-03-05 02:31:49  76.50MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update &&     DEBIAN_FRONTEND=noninteractive apt-get install -y rsyslog systemctl automake autoconf gettext autopoint po4a git libneon27-dev build-essential &&     git clone https://github.com/JetBrains/davfs2.git &&     cd davfs2 &&     ./bootstrap &&     ./configure --prefix=/usr --sysconfdir=/etc  &&     make &&     make install &&     apt-get remove -y automake autoconf gettext autopoint po4a build-essential &&     cd .. &&     rm -rf davfs2 &&     useradd -r -m -d /var/cache/davfs2 -s /usr/sbin/nologin davfs2 &&     rm -rf /var/lib/apt/lists/* && apt-get clean # buildkit
                        
# 2025-03-05 02:31:20  785.62MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update &&     DEBIAN_FRONTEND=noninteractive apt-get upgrade -y &&     DEBIAN_FRONTEND=noninteractive apt-get install -y wget curl sudo git build-essential autoconf cmake vim cifs-utils     software-properties-common ca-certificates &&     add-apt-repository ppa:criu/ppa -y &&     apt-get -y install criu &&     add-apt-repository --remove ppa:criu/ppa &&     add-apt-repository ppa:alessandro-strada/ppa &&     apt-get -y install google-drive-ocamlfuse=0.7.32-0ubuntu5~bpo22.04.1 &&     add-apt-repository --remove ppa:alessandro-strada/ppa &&     rm -rf /var/lib/apt/lists/* && apt-get clean # buildkit
                        
# 2025-03-05 02:31:20  0.00B 设置环境变量 PATH
ENV PATH=/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-03-05 02:29:35  1.16GB 复制新文件或目录到容器中
COPY --chown=datalore:datalore /opt/anaconda3 /opt/anaconda3 # buildkit
                        
# 2025-03-05 02:28:51  1.15GB 复制新文件或目录到容器中
COPY --chown=datalore:datalore /opt/python /opt/python # buildkit
                        
# 2024-10-24 15:46:35  0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir -p ${DATALORE_HOME} && chown -R ${DATALORE_USER}:${DATALORE_USER} ${DATALORE_HOME} # buildkit
                        
# 2024-10-24 15:46:34  1.63MB 执行命令并创建新的镜像层
RUN /bin/sh -c useradd ${DATALORE_USER}      -u 5000      --shell /bin/bash       --create-home # buildkit
                        
# 2024-10-24 15:46:34  0.00B 设置环境变量 DATALORE_HOME
ENV DATALORE_HOME=/opt/datalore
                        
# 2024-10-24 15:46:34  0.00B 设置环境变量 DATALORE_USER
ENV DATALORE_USER=datalore
                        
# 2024-10-24 15:46:34  576.92KB 执行命令并创建新的镜像层
RUN /bin/sh -c chmod 644 /opt/jmx_exporter/jmx_prometheus_javaagent-${JMX_SERVER_VERSION}.jar # buildkit
                        
# 2024-10-24 15:46:33  25.00B 复制文件或目录到容器中
ADD jmx_exporter.yml /tmp/jmx_exporter.yml # buildkit
                        
# 2024-10-23 23:25:49  576.92KB 复制文件或目录到容器中
ADD https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.20.0/jmx_prometheus_javaagent-0.20.0.jar /opt/jmx_exporter/jmx_prometheus_javaagent-0.20.0.jar # buildkit
                        
# 2024-10-23 23:25:49  0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir /opt/jmx_exporter # buildkit
                        
# 2024-10-23 23:25:48  281.74KB 执行命令并创建新的镜像层
RUN /bin/sh -c /root/import_rds_certificates.sh # buildkit
                        
# 2024-10-23 23:25:20  767.00B 复制新文件或目录到容器中
COPY import_rds_certificates.sh /root/import_rds_certificates.sh # buildkit
                        
# 2024-10-23 23:25:20  460.00B 执行命令并创建新的镜像层
RUN /bin/sh -c chmod 755 /usr/local/bin/log_nmt.sh # buildkit
                        
# 2024-10-23 23:25:20  460.00B 复制新文件或目录到容器中
COPY log_nmt.sh /usr/local/bin/ # buildkit
                        
# 2024-10-23 23:25:20  399.65MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt-get install -y openjdk-17-jdk-headless libssl3 openssl wget curl unzip jq vim &&     rm -rf /var/lib/apt/lists/* && apt-get clean # buildkit
                        
# 2024-10-23 23:25:20  0.00B 设置环境变量 JMX_SERVER_VERSION
ENV JMX_SERVER_VERSION=0.20.0
                        
# 2024-10-23 23:25:20  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=en_US.UTF-8
                        
# 2024-10-23 23:25:20  0.00B 设置环境变量 LANGUAGE
ENV LANGUAGE=en_US:en
                        
# 2024-10-23 23:25:20  0.00B 设置环境变量 LANG
ENV LANG=en_US.UTF-8
                        
# 2024-10-23 23:21:04  71.00B 执行命令并创建新的镜像层
RUN /bin/sh -c update-locale LANG=en_US.UTF-8 LC_ALL=en_US.UTF-8 # buildkit
                        
# 2024-10-23 23:21:03  3.06MB 执行命令并创建新的镜像层
RUN /bin/sh -c locale-gen en_US.UTF-8 # buildkit
                        
# 2024-10-23 23:21:01  17.40MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update &&     apt-get install locales libssl3 -y &&     rm -rf /var/lib/apt/lists/* && apt-get clean # buildkit
                        
# 2024-09-12 00:25:18  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2024-09-12 00:25:17  77.86MB 
/bin/sh -c #(nop) ADD file:ebe009f86035c175ba244badd298a2582914415cf62783d510eab3a311a5d4e1 in / 
                        
# 2024-09-12 00:25:16  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2024-09-12 00:25:16  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2024-09-12 00:25:16  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2024-09-12 00:25:16  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:a766a8b7bfceee17dd61e116ceaca519041ae49343d39835f975ef8c06ad47f6",
    "RepoTags": [
        "jetbrains/datalore-agent:2025.2",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent:2025.2"
    ],
    "RepoDigests": [
        "jetbrains/datalore-agent@sha256:04b97c245795ed5582e94a4be52a74b826ad21b7fa4a4cd198aecea5db7d19de",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jetbrains/datalore-agent@sha256:04b97c245795ed5582e94a4be52a74b826ad21b7fa4a4cd198aecea5db7d19de"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-03-12T10:02:22.374541149Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "datalore",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "LANG=en_US.UTF-8",
            "LANGUAGE=en_US:en",
            "LC_ALL=en_US.UTF-8",
            "JMX_SERVER_VERSION=0.20.0",
            "DATALORE_USER=datalore",
            "DATALORE_HOME=/opt/datalore",
            "DEFAULT_BASE_ENV_NAME=minimal",
            "DEFAULT_PACKAGE_MANAGER=pip",
            "LETS_PLOT_HTML_ISOLATED_FRAME=true",
            "LETS_PLOT_MAPTILES_KIND=vector_lets_plot",
            "PLOTLY_RENDERER=plotly_mimetype",
            "TMPDIR=/tmp",
            "LONG_TERM_PERSISTENCE=yes",
            "CONFIG_DIR=/etc/datalore",
            "DUMP_DIR=/tmp/host/agent",
            "DATALORE_AGENT_MODE=CONTAINER",
            "VAR_DIR=/var/datalore",
            "AGENT_JARS_DIR=/opt/datalore/agent",
            "IMAGE_VERSION=2025.2"
        ],
        "Cmd": [
            "/bin/bash",
            "agent_entrypoint.sh"
        ],
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/opt/datalore",
        "Entrypoint": null,
        "OnBuild": null,
        "Labels": {
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 4290937949,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/4781f6d5a4139a5acfec874bfe5e6c66238b2e81b355be9929e6a95d272f4748/diff:/var/lib/docker/overlay2/a295c2554db30a8bbda8b2cca8c747a692894ec75eda71a826c30b353d4900f8/diff:/var/lib/docker/overlay2/f48d0ae75863720b919b7c7305d8f86c0b5b7a0096fb109454e0958e94f9d1c2/diff:/var/lib/docker/overlay2/9e62b24d8b6567874bfd5e9a1abbd393429da0edf6b56bed0ccfab9764583860/diff:/var/lib/docker/overlay2/0d057e8dc49e386b4c4d18f60f02501492b0ca5140a710cfa2c140479d4bda87/diff:/var/lib/docker/overlay2/c810b8ce69f93c9f802224ebd8e28a62967f8281361af62f907b9fe7414ecb0a/diff:/var/lib/docker/overlay2/cd6a5b5ad4dab0f86ad58842d32ae49f8ba6f3f3237ace66068a383472cae1cf/diff:/var/lib/docker/overlay2/c7dbf2b695ee5e26302460cdad724a5cca56c9f267089f0588a3d1f054197fef/diff:/var/lib/docker/overlay2/dda36662b59ed1987cf4dd72e094331cece327692a97d06becf397bee974c550/diff:/var/lib/docker/overlay2/fda3599420b5f13ab22282b5e1af7abdf004522cf5431e4cf136703a3de22147/diff:/var/lib/docker/overlay2/fe2f2e8cfcd78a6c94dbda9eabdd3d8f494bff7c0708f8a4dad5e7ef5d723a21/diff:/var/lib/docker/overlay2/7f98b58a6b494f03dfdd0c70ff2518258b1eafbeb06f3d9da8266cfb97f2c25b/diff:/var/lib/docker/overlay2/30302b0835990af6650580706633c0dd683885c08f98988cbc29df7cb7f73f84/diff:/var/lib/docker/overlay2/d66b0f31f68d2bb13f935f49553dcbd26007d9b4ee0486729bd2b4e6c306dcbc/diff:/var/lib/docker/overlay2/f109e505d19c1ec3c0c3bd6102d51482cca4c6cc923ede1390944baa56db0070/diff:/var/lib/docker/overlay2/1a8ad4c6c4420868f68f3e78a2c5deab8086a0b2eddc50e1ac42998980ff12c4/diff:/var/lib/docker/overlay2/df6401c368255d2f6142bdef2bbdb5d3811f071c7a130afdcd4b8c6e4e8cb9e5/diff:/var/lib/docker/overlay2/908e845ced9aa3b881692480b7fdc26ac918706c2d241e4f75df7278bc1867a1/diff:/var/lib/docker/overlay2/5fcd2279d8b94e0bce64e7e46e4cb44071d6758bc867a401c78930a91fdb1fed/diff:/var/lib/docker/overlay2/e7322aac7633e8dccac4847a3c0e10299991075e56c9f8a227e7d5ce9a93cfdc/diff:/var/lib/docker/overlay2/f7f9661027448396cef3cb9ab6a28be4b6b2f6602b068a15c032003fd612aed2/diff:/var/lib/docker/overlay2/b4a56b46ae2a1d3287fd428ae6e8d00782ca152a6f2ad1e4cbd7ced5aa94ec74/diff:/var/lib/docker/overlay2/ef10865567461bbbcd83acbc3c5add11195224f4f0c8bbe881b6e842fbbb16d3/diff:/var/lib/docker/overlay2/f12bca1eb5a9e2c89c494f5b04a6a298252a3115870b2f2581e0cc4f02a1df6e/diff:/var/lib/docker/overlay2/7512e018cd32306277961ef3a5b4b76aa7c8c25e772c9bd00f6051b0b8430edd/diff:/var/lib/docker/overlay2/fb2d6e4eda8959edabe8734e885c22c31c0a0b9dd49206f62701cfa1845de8cd/diff:/var/lib/docker/overlay2/a9fdcfbce86db3b76d97c60ec67163492e606caac98aced10b4080ffb9507d6a/diff:/var/lib/docker/overlay2/0d55b6ba5ae1417af0c791cddb3932c30b4acfa4546803fad79922855bd25adc/diff:/var/lib/docker/overlay2/1e88894a262ee67d42846aee22bca5ffb4b07f808a9dd0b3aae15d3c1b70f2d8/diff:/var/lib/docker/overlay2/2e3f6c7c2f3bb90023932f2d857946d28d3c15438dba87fc4d1a31bfbc542bd8/diff:/var/lib/docker/overlay2/7f328f9eb2e10486da1c505da346efe6bb3e9045353e07b5ade06c2302d76f0c/diff:/var/lib/docker/overlay2/9e69f18e1e5874c4fa9a6d575b1fd36104f2c1ff55734c088cdc90194d8ba253/diff:/var/lib/docker/overlay2/f24d3672529245103e39bc88609db77fafda8f16e50a24c54e20a4a49c4c8a4d/diff:/var/lib/docker/overlay2/7958fce6be63491436289b5597b04489cc3e7ffe8386087cef382711e30e95c8/diff:/var/lib/docker/overlay2/4cfb2ff6eb670d08d805fcc326973c76acabc424b2f6ce5f1903149f34750452/diff",
            "MergedDir": "/var/lib/docker/overlay2/700aef9326eedc9031da361f3f01c5a25bdbec4a55c39c2319b17f1aed6f704e/merged",
            "UpperDir": "/var/lib/docker/overlay2/700aef9326eedc9031da361f3f01c5a25bdbec4a55c39c2319b17f1aed6f704e/diff",
            "WorkDir": "/var/lib/docker/overlay2/700aef9326eedc9031da361f3f01c5a25bdbec4a55c39c2319b17f1aed6f704e/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:2573e0d8158209ed54ab25c87bcdcb00bd3d2539246960a3d592a1c599d70465",
            "sha256:2d248e7dc0570e376f8d3ce54db7a07c6dfa02c54f6325b21144128c18fa2806",
            "sha256:e1bca81c141132c3564f455550c28bb96bc1630185656a429bbc48f8944ed0f3",
            "sha256:e449b941d01a05863931f428a238f19f8f168fbb6894a6e44ca3faf20854567d",
            "sha256:9997ae4e1e9e1979bb02a63a544a8c88da2ca16deb0c2b8a45f412e57e1b2c2e",
            "sha256:9688a28f93a0cd7447532aedc8d87fec3f1169aaf9c781fe25629c88692eeec1",
            "sha256:9688a28f93a0cd7447532aedc8d87fec3f1169aaf9c781fe25629c88692eeec1",
            "sha256:50b349ae16b11cc3386e265af05a4c14f22dbbfba1b1a5210bd978f9b752066c",
            "sha256:9a4cbc260f4c690ba684d802b1e4d8c473aa4a8054fc5fb8aebf5480a5d074a4",
            "sha256:a6505f3ddd206906c18c0d3c75bb43939cb1d7f5100da21d06ed235a60bca19b",
            "sha256:993e785a6cdfa63e3e0a2e1121ee6200d641c712aee539e441d58c262234bc8b",
            "sha256:29d3fc24e74a02a466715a0d15d0e61ec8a6fe4d6e77bac717555c3167771f6c",
            "sha256:7f0627276f482fde79962922569adb1b62d9edc9a78f8b00b762f693204320a5",
            "sha256:0618b6f9ace42a1703954590b6b04d0121f8a0205311ac184fff941675987ef4",
            "sha256:c287306ddfa616bfc24d071b7a67a59c431d99db3d7e655ab917f65cee467a54",
            "sha256:f342b923971ed2450d99c580764a325ef2b224ab30ee5aa3ade2a8247822f358",
            "sha256:fac93a63c81559f27dc7c43242cbdc1470b9c73e6f8dc060613a4e688e36229b",
            "sha256:602b50629883058f5ed95edede3e4bf73f20b35a7557c7b56fa5e61098ba3bc1",
            "sha256:d82f26200d37d64ab1e2a38f4fb0fd120ccb8ca4ccecc3b511617408c37fbdff",
            "sha256:e4adaa9cdfda4e5696c0c6e3e343e6533766c2568b5f62acb0e43eab6e34b797",
            "sha256:96129c84a1059f0f945b9fd0b9781f28966e877307592623cd00cf3ac731f61e",
            "sha256:2ffccc34173635a7c47ed3655395378d3de5bde71e6c699863727f6e16d1b5ce",
            "sha256:1a5b3801af2e470a2522d3b3f377250097b0286c6843bf67ce58973c1f34bb67",
            "sha256:22077146b2b3dffd5c2bb49d5feebdacc7b144916392379cf0e93f6dda583ed7",
            "sha256:edd5795eacf832038a297548b2929bffa580386ef51f4222e10a34de68206515",
            "sha256:9469c9edc2d48b0060bef784e62b08ca7aebe5d35d8677a38df115545437d68f",
            "sha256:ae939ae5286635a893ac4b50e10203f4d8eae1d04ca0e708bc7f9b4153a14b01",
            "sha256:5cb46cd63273a7010e4c1cf954d6fb2c502855847a28da8237527fc1f24a006e",
            "sha256:6b1c773da55fae526f45adeefcdb98a23381fa62932638cfd16ab6399dec00ac",
            "sha256:1d4f020653535f69a86a9a7a2c1ddfa6dddd4c3c8640732a26b9c58a63c377f9",
            "sha256:3490301d97b3114d8f94e55c335ece9aa7a8ab9491940882f4d90b81aeb52a5d",
            "sha256:e9f39a638eacbd7953a4057e07df03bddc71d46379e43bc62c5d87ad51927b13",
            "sha256:1e2ea402fdfcf691f2017481c830d369385adbb2cd2800af318eb407f5b60b89",
            "sha256:c3eb4f006b35336051c387b946b806d938946281b4ad6617de7428be41f802a6",
            "sha256:6e820107ff4fb64c28259e19c13b0b7fdee91d698303e8bdc00da517502c2e24",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-03-28T23:11:44.722939395+08:00"
    }
}

更多版本

docker.io/jetbrains/datalore-agent:2025.2

linux/amd64 docker.io4.29GB2025-03-28 23:14
35