docker.io/juhayna/song-generation-levo:v0.2 linux/amd64

docker.io/juhayna/song-generation-levo:v0.2 - 国内下载镜像源 浏览次数:7

该Docker镜像 docker.io/juhayna/song-generation-levo 的具体描述信息无法直接从镜像名称中获取。 需要访问镜像仓库 (例如Docker Hub) 查看该镜像的详细信息页面,才能了解其功能、用途、使用的技术栈以及其他相关信息。

源镜像 docker.io/juhayna/song-generation-levo:v0.2
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2
镜像ID sha256:072e9aaea3dbb608bf5397892ffb6b761ee3cce05396f6245329180b934052a4
镜像TAG v0.2
大小 24.52GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /root
OS/平台 linux/amd64
浏览量 7 次
贡献者
镜像创建 2025-06-13T17:26:22.280708032+08:00
同步时间 2025-06-21 02:23
更新时间 2025-06-21 12:27
环境变量
PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 NV_CUDA_CUDART_VERSION=11.8.89-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8 CUDA_VERSION=11.8.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.8.0-1 NV_NVTX_VERSION=11.8.86-1 NV_LIBNPP_VERSION=11.8.0.86-1 NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1 NV_LIBCUSPARSE_VERSION=11.7.5.86-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8 NV_LIBCUBLAS_VERSION=11.11.3.6-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1 NCCL_VERSION=2.15.5-1 NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=11.8.89-1 NV_NVML_DEV_VERSION=11.8.86-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1 NV_LIBNPP_DEV_VERSION=11.8.0.86-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1 NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1 NV_NVPROF_VERSION=11.8.87-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.9.6.50 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8 PYTORCH_VERSION=2.2.0 NVIDIA_DISABLE_REQUIRE=true
镜像标签
8.9.6.50: com.nvidia.cudnn.version nvidia_driver: com.nvidia.volumes.needed NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2  docker.io/juhayna/song-generation-levo:v0.2

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2  docker.io/juhayna/song-generation-levo:v0.2

Shell快速替换命令

sed -i 's#juhayna/song-generation-levo:v0.2#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2  docker.io/juhayna/song-generation-levo:v0.2'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2  docker.io/juhayna/song-generation-levo:v0.2'

镜像构建历史


# 2025-06-13 17:26:22  0.00B 设置工作目录为/root
WORKDIR /root
                        
# 2025-06-13 17:26:22  4.12MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt install libsndfile1 -y # buildkit
                        
# 2025-06-13 16:28:58  0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir -p /var/run/sshd # buildkit
                        
# 2025-06-13 16:28:58  63.49MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update -y &&     apt-get install -y --no-install-recommends vim wget net-tools lsof telnet openssh-server iputils-ping cron iproute2 tcl tk expect zip unzip rsync # buildkit
                        
# 2025-06-13 16:28:44  5.14MB 执行命令并创建新的镜像层
RUN /bin/sh -c DEBIAN_FRONTEND=noninteractive apt-get install -y tzdata # buildkit
                        
# 2025-06-13 15:48:30  47.68MB 执行命令并创建新的镜像层
RUN /bin/sh -c wget http://jizhi.oa.com/taiji_client_golang/taiji_client -O /usr/bin/taiji_client && chmod +x /usr/bin/taiji_client && taiji_client update && wget http://jizhi.oa.com/jizhi_client_golang/jizhi_client -O /usr/bin/jizhi_client && chmod +x /usr/bin/jizhi_client # buildkit
                        
# 2025-06-13 15:48:28  630.79MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir     https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl # buildkit
                        
# 2025-06-13 15:47:52  5.87GB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir --no-deps -r /tmp/requirements.txt # buildkit
                        
# 2025-06-13 15:22:45  5.69KB 复制新文件或目录到容器中
COPY requirements.txt /tmp/requirements.txt # buildkit
                        
# 2025-06-13 15:19:16  198.57MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt-get install -y wget unzip openssh-server ceph-fuse # buildkit
                        
# 2025-06-13 15:19:16  0.00B 设置环境变量 NVIDIA_DISABLE_REQUIRE
ENV NVIDIA_DISABLE_REQUIRE=true
                        
# 2024-01-31 03:30:17  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-01-31 03:30:17  0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=2.2.0
                        
# 2024-01-31 03:30:17  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-01-31 03:30:17  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2024-01-31 03:30:17  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2024-01-31 03:30:17  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-01-31 03:30:17  0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.2.0 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.8.0 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then         DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends gcc;         rm -rf /var/lib/apt/lists/*;     fi # buildkit
                        
# 2024-01-31 03:30:11  7.96GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2024-01-31 03:20:37  3.31MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.2.0 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.8.0 /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends         ca-certificates         libjpeg-dev         libpng-dev         && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-01-31 03:20:37  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
                        
# 2024-01-31 03:20:37  0.00B 定义构建参数
ARG CUDA_VERSION
                        
# 2024-01-31 03:20:37  0.00B 定义构建参数
ARG TARGETPLATFORM
                        
# 2024-01-31 03:20:37  0.00B 定义构建参数
ARG TRITON_VERSION
                        
# 2024-01-31 03:20:37  0.00B 定义构建参数
ARG PYTORCH_VERSION
                        
# 2023-11-10 15:16:45  2.37GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 15:16:45  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.6.50
                        
# 2023-11-10 15:16:45  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 15:16:45  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 15:16:45  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8
                        
# 2023-11-10 15:16:45  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8
                        
# 2023-11-10 15:16:45  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 15:16:45  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.6.50
                        
# 2023-11-10 14:55:21  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 14:55:21  383.52KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:55:17  4.72GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-11-8=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-8=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-8=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-8=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-8=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-8=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:55:17  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:55:17  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.8.87-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.8.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.8.89-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:42:37  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 14:42:37  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 14:42:37  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 14:42:37  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 14:42:37  260.16KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:42:36  2.41GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-8=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-8=${NV_NVTX_VERSION}     libcusparse-11-8=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:42:36  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:42:36  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.8.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 14:37:16  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 14:37:16  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 14:37:16  150.67MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-8=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.8.0
                        
# 2023-11-10 14:37:01  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:01  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:37:01  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.8.89-1
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:072e9aaea3dbb608bf5397892ffb6b761ee3cce05396f6245329180b934052a4",
    "RepoTags": [
        "juhayna/song-generation-levo:v0.2",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo:v0.2"
    ],
    "RepoDigests": [
        "juhayna/song-generation-levo@sha256:94271b1ef7fc8c55127130a6320346db281cc93b268d0c8bc628977245eb826f",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/juhayna/song-generation-levo@sha256:94271b1ef7fc8c55127130a6320346db281cc93b268d0c8bc628977245eb826f"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-06-13T17:26:22.280708032+08:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.8 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471",
            "NV_CUDA_CUDART_VERSION=11.8.89-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8",
            "CUDA_VERSION=11.8.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.8.0-1",
            "NV_NVTX_VERSION=11.8.86-1",
            "NV_LIBNPP_VERSION=11.8.0.86-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1",
            "NV_LIBCUSPARSE_VERSION=11.7.5.86-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8",
            "NV_LIBCUBLAS_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1",
            "NCCL_VERSION=2.15.5-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=11.8.89-1",
            "NV_NVML_DEV_VERSION=11.8.86-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1",
            "NV_LIBNPP_DEV_VERSION=11.8.0.86-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1",
            "NV_NVPROF_VERSION=11.8.87-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.9.6.50",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8",
            "PYTORCH_VERSION=2.2.0",
            "NVIDIA_DISABLE_REQUIRE=true"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/root",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.6.50",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 24523647933,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/077ef66676f5bb34871a52503d54c599039af1b425d49d1e3d04ea5d55950e3b/diff:/var/lib/docker/overlay2/3d99fb46f8d77a7eedd57ddf390a8b6ad5e7042528e1bcfd6ae07417aba54a2f/diff:/var/lib/docker/overlay2/c91c32f028ba3e8d2ef4c71fa4b2f522b3824b7ca7f834fd2bc0728becf3d7ed/diff:/var/lib/docker/overlay2/8ebd94ac6f28f8abedb4da3f776be0c8ccef980824dd9521f90615973ccd67c1/diff:/var/lib/docker/overlay2/ed2d2bebb7bfe43fcc19d5bb8aed51147154c67179fb8fa2c93a587d5cbd56c5/diff:/var/lib/docker/overlay2/de799d83d18bea5784d360cc0be24e0c429035425393b24bfc32431f076f6563/diff:/var/lib/docker/overlay2/2dffcd517c113b98eee7fabf6a5f610e0a7f4b28beea25a7347f5ba187003df0/diff:/var/lib/docker/overlay2/cdcb1cebec2418b4fb1c2cc07862768c3284568913b37da913b6222d34aaab05/diff:/var/lib/docker/overlay2/bd777c41810accadf9c9d2d4b0438665e3eb748e338096bb45b5a44504f4cff7/diff:/var/lib/docker/overlay2/eb62150073e001be8e43e73972a80a9a09fa1fa8dde1d3e57be59cf8c7abe6f3/diff:/var/lib/docker/overlay2/b1b21e239d2d8343bb1a3236c7cbc61e5be748584388842d4e0b28445083cfee/diff:/var/lib/docker/overlay2/96d01610d9f3f15c5b9e350d1ed5870113cbd5227c04a6fc553c9d4c1bbffbcb/diff:/var/lib/docker/overlay2/26db15841f352824aada264c6609d44587bd77ad2fc2f6098091316de042e8a3/diff:/var/lib/docker/overlay2/bfb14ef06d6d52ff42e9dfa51403996f9a78831a5d9bb3332f2114c62272ae1c/diff:/var/lib/docker/overlay2/53a2cea8091257c7fe84c4c7891d2ddd76fba7d3edd3d5fd3055f4bd6d77c2bc/diff:/var/lib/docker/overlay2/7a6633cbb5e73f6dfccea999e5500b93a04e30f15031aa3a9976c7f09b1946fe/diff:/var/lib/docker/overlay2/b321dce4a326b4e2255474844d5e30597e3204cc3ae0aa5f47e43c42edc930f2/diff:/var/lib/docker/overlay2/ad9fbf4c75343ce89fd539c5f42f0fe42f40cd3c614844e5a135a3be8ff53189/diff:/var/lib/docker/overlay2/859d64bf2622f75962bcf004caaacd6a9c37f9848114279b6875ff342e462dc4/diff:/var/lib/docker/overlay2/20f5b63ab766390d58d974be3e63fe1c6f2f5922a6d6c4c9c7384c910c5a54a9/diff:/var/lib/docker/overlay2/a2ac4289e9a0b02845d2d4b509a071031caa63aea38a3bff4ec15b2c398424bd/diff:/var/lib/docker/overlay2/930380105e59d6fb87e585b3c9cb10fbbbd3b649bf2b126e985799247f7c03c8/diff:/var/lib/docker/overlay2/e71a74b04006612b6e993287063116ec72d79ba8785619daa28462852d6951f9/diff:/var/lib/docker/overlay2/33a0db9e76631ce2cad16aa8be2aef82e792745c5fcf999635b12134bbee1992/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/9b010df7a7c51e4618f8cb1ebaacff5fa80767b403488fa78b0b8ac53afcdeba/merged",
            "UpperDir": "/var/lib/docker/overlay2/9b010df7a7c51e4618f8cb1ebaacff5fa80767b403488fa78b0b8ac53afcdeba/diff",
            "WorkDir": "/var/lib/docker/overlay2/9b010df7a7c51e4618f8cb1ebaacff5fa80767b403488fa78b0b8ac53afcdeba/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:e6c05e83c163d632918d1c4906ee088b1e0d93a5bb3acfc6a268da52e76cc945",
            "sha256:d6b19a46b795f8b562888c6e2826a6b11f744ab98543268b4d45ee1af05ed1cf",
            "sha256:c0e21dcee62311c36e1f025307b3186a4b4a034f0b52011704402b39623b6587",
            "sha256:498bbcc60d01b2080fd6fc35117cb82c80ddd4eb8a654ee330dd91587b7ec90b",
            "sha256:bc352a27a0e47d42df7bc06e702351a4f3102d20016484c9613644dba63239e0",
            "sha256:399d155a03b034314cd9ea52e4e1feca44be4cf92ae172ba9c6ce14f5897f0a2",
            "sha256:dcb0f55f81ad931bb976c65730e4bafe7a03936d1fd1bd0fec6a9bcfde23561d",
            "sha256:345cfa465206a6d1cc0812481df7edbc4553b64a26c63ccda0e5b11b0f2bf81b",
            "sha256:23d753990c8d9e30e33dc706e188972e17fd21ae60b51bbce058d6d74aa08d29",
            "sha256:64758552f6fa927694d06ecab82c2a3d1f55e6bfb09c715b6d37f2963eaaa62c",
            "sha256:383e6312d4f952e0c59b0d42d00c8f4b6da63721e10ad4de2d8e7d26581c1391",
            "sha256:773093985842f1723c3f53aec1e8bd4e61c73459d90b329de04627401b0ef9b1",
            "sha256:4aea70ffb28b62b500cd7b353a42e01d6f766f392d93418e6819fabd8d34881d",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:f8d3ca66c2c7d9e0c298dd3ff51ecb28d1d0dfd0ebd7210c6306ec8dc1e626d9",
            "sha256:38ec34ef956da50e944974630b4a903c5396e0841aaf64afd84eea4c8ab5fef2",
            "sha256:cf33e8d3bf9a42be210f33b004e01be8e3a0814f60bb4a31869bf7c177f22120",
            "sha256:d8620aed4436e881456aa2849224337ffde203a02935433b4826ae3ac0d584d9",
            "sha256:093eba0dbe1b7ad5bffc08ac2fd26b110ce884361f844955bc6138510d1ca44b",
            "sha256:0dea3abd347cf322b54709165cdbccc27544f8754268f8e4395e2282529e243a",
            "sha256:ed87a4140b5d5df21738f373d1e9666338fca20885db716252ac4e439af9b6e7",
            "sha256:e2685ae895e2ce68cdf5ebc24a2dc7674f98364ee5f7fddf701c7bb52b7b36a1",
            "sha256:73ee7ac49700e05372c64c6f879ee1d4328b2987dad3af08ae103c2186e98e42",
            "sha256:adf9e96afdaaa41ffd107df435642cc1128b6f2555c71fd9b070020565cdd60e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-06-21T02:07:39.580954805+08:00"
    }
}

更多版本

docker.io/juhayna/song-generation-levo:v0.2

linux/amd64 docker.io24.52GB2025-06-21 02:23
6