docker.io/jupyter/pyspark-notebook:python-3.9 linux/amd64

docker.io/jupyter/pyspark-notebook:python-3.9 - 国内下载镜像源 浏览次数:45

这是一个包含Jupyter Notebook和PySpark的Docker镜像。它预先配置好了Jupyter Notebook和Apache Spark,方便用户在Docker容器中直接运行PySpark程序,进行大数据分析和处理。用户无需自行安装和配置相关的软件环境,可以直接使用镜像提供的环境进行开发和测试。

源镜像 docker.io/jupyter/pyspark-notebook:python-3.9
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9
镜像ID sha256:38eeaf69a949ab6a495f6b7ecc9d5649e04d0370e7f5197b759dc47fa0c1df18
镜像TAG python-3.9
大小 3.76GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD start-notebook.sh
启动入口 tini -g --
工作目录 /home/jovyan
OS/平台 linux/amd64
浏览量 45 次
贡献者
镜像创建 2022-10-09T22:01:22.680674994Z
同步时间 2025-05-14 10:34
更新时间 2025-05-30 15:56
开放端口
4040/tcp 8888/tcp
环境变量
PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/spark/bin DEBIAN_FRONTEND=noninteractive CONDA_DIR=/opt/conda SHELL=/bin/bash NB_USER=jovyan NB_UID=1000 NB_GID=100 LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8 LANGUAGE=en_US.UTF-8 HOME=/home/jovyan XDG_CACHE_HOME=/home/jovyan/.cache/ APACHE_SPARK_VERSION=3.3.0 HADOOP_VERSION=3 SPARK_HOME=/usr/local/spark SPARK_OPTS=--driver-java-options=-Xms1024M --driver-java-options=-Xmx4096M --driver-java-options=-Dlog4j.logLevel=info
镜像标签
Jupyter Project <jupyter@googlegroups.com>: maintainer

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9  docker.io/jupyter/pyspark-notebook:python-3.9

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9  docker.io/jupyter/pyspark-notebook:python-3.9

Shell快速替换命令

sed -i 's#jupyter/pyspark-notebook:python-3.9#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9  docker.io/jupyter/pyspark-notebook:python-3.9'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9  docker.io/jupyter/pyspark-notebook:python-3.9'

镜像构建历史


# 2022-10-10 06:01:22  0.00B 声明容器运行时监听的端口
EXPOSE map[4040/tcp:{}]
                        
# 2022-10-10 06:01:22  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2022-10-10 06:01:22  278.71MB 执行命令并创建新的镜像层
RUN |5 spark_version=3.3.0 hadoop_version=3 scala_version= spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c openjdk_version=17 /bin/bash -o pipefail -c mamba install --quiet --yes     'pyarrow' &&     mamba clean --all -f -y &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 06:00:38  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 06:00:38  662.00B 执行命令并创建新的镜像层
RUN |5 spark_version=3.3.0 hadoop_version=3 scala_version= spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c openjdk_version=17 /bin/bash -o pipefail -c fix-permissions "/etc/ipython/" # buildkit
                        
# 2022-10-10 06:00:37  662.00B 复制新文件或目录到容器中
COPY ipython_kernel_config.py /etc/ipython/ # buildkit
                        
# 2022-10-10 06:00:37  60.00B 执行命令并创建新的镜像层
RUN |5 spark_version=3.3.0 hadoop_version=3 scala_version= spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c openjdk_version=17 /bin/bash -o pipefail -c if [ -z "${scala_version}" ]; then     ln -s "spark-${APACHE_SPARK_VERSION}-bin-hadoop${HADOOP_VERSION}" "${SPARK_HOME}";   else     ln -s "spark-${APACHE_SPARK_VERSION}-bin-hadoop${HADOOP_VERSION}-scala${scala_version}" "${SPARK_HOME}";   fi &&   mkdir -p /usr/local/bin/before-notebook.d &&   ln -s "${SPARK_HOME}/sbin/spark-config.sh" /usr/local/bin/before-notebook.d/spark-config.sh # buildkit
                        
# 2022-10-10 06:00:37  0.00B 设置环境变量 SPARK_OPTS --driver-java-options --driver-java-options PATH
ENV SPARK_OPTS=--driver-java-options=-Xms1024M --driver-java-options=-Xmx4096M --driver-java-options=-Dlog4j.logLevel=info PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/spark/bin
                        
# 2022-10-10 06:00:37  0.00B 设置环境变量 SPARK_HOME
ENV SPARK_HOME=/usr/local/spark
                        
# 2022-10-10 06:00:37  336.37MB 执行命令并创建新的镜像层
RUN |5 spark_version=3.3.0 hadoop_version=3 scala_version= spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c openjdk_version=17 /bin/bash -o pipefail -c if [ -z "${scala_version}" ]; then     wget -qO "spark.tgz" "https://archive.apache.org/dist/spark/spark-${APACHE_SPARK_VERSION}/spark-${APACHE_SPARK_VERSION}-bin-hadoop${HADOOP_VERSION}.tgz";   else     wget -qO "spark.tgz" "https://archive.apache.org/dist/spark/spark-${APACHE_SPARK_VERSION}/spark-${APACHE_SPARK_VERSION}-bin-hadoop${HADOOP_VERSION}-scala${scala_version}.tgz";   fi &&   echo "${spark_checksum} *spark.tgz" | sha512sum -c - &&   tar xzf "spark.tgz" -C /usr/local --owner root --group root --no-same-owner &&   rm "spark.tgz" # buildkit
                        
# 2022-10-10 06:00:17  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2022-10-10 06:00:17  195.16MB 执行命令并创建新的镜像层
RUN |5 spark_version=3.3.0 hadoop_version=3 scala_version= spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c openjdk_version=17 /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     "openjdk-${openjdk_version}-jre-headless"     ca-certificates-java &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-10 06:00:17  0.00B 设置环境变量 APACHE_SPARK_VERSION HADOOP_VERSION
ENV APACHE_SPARK_VERSION=3.3.0 HADOOP_VERSION=3
                        
# 2022-10-10 06:00:17  0.00B 定义构建参数
ARG openjdk_version=17
                        
# 2022-10-10 06:00:17  0.00B 定义构建参数
ARG spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c
                        
# 2022-10-10 06:00:17  0.00B 定义构建参数
ARG scala_version
                        
# 2022-10-10 06:00:17  0.00B 定义构建参数
ARG hadoop_version=3
                        
# 2022-10-10 06:00:17  0.00B 定义构建参数
ARG spark_version=3.3.0
                        
# 2022-10-10 06:00:17  0.00B 指定运行容器时使用的用户
USER root
                        
# 2022-10-10 06:00:17  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2022-10-10 06:00:17  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2022-10-10 05:49:16  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2022-10-10 05:49:16  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 05:49:16  77.53KB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c MPLBACKEND=Agg python -c "import matplotlib.pyplot" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 05:49:14  0.00B 设置环境变量 XDG_CACHE_HOME
ENV XDG_CACHE_HOME=/home/jovyan/.cache/
                        
# 2022-10-10 05:49:14  2.31MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c git clone https://github.com/PAIR-code/facets.git &&     jupyter nbextension install facets/facets-dist/ --sys-prefix &&     rm -rf /tmp/facets &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 05:49:12  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2022-10-10 05:49:12  931.14MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c mamba install --quiet --yes     'altair'     'beautifulsoup4'     'bokeh'     'bottleneck'     'cloudpickle'     'conda-forge::blas=*=openblas'     'cython'     'dask'     'dill'     'h5py'     'ipympl'    'ipywidgets'     'matplotlib-base'     'numba'     'numexpr'     'pandas'     'patsy'     'protobuf'     'pytables'     'scikit-image'     'scikit-learn'     'scipy'     'seaborn'     'sqlalchemy'     'statsmodels'     'sympy'     'widgetsnbextension'    'xlrd' &&     mamba clean --all -f -y &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 05:47:21  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 05:47:21  635.57MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     build-essential     cm-super     dvipng     ffmpeg &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-10 05:47:21  0.00B 指定运行容器时使用的用户
USER root
                        
# 2022-10-10 05:47:21  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2022-10-10 05:47:21  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2022-10-10 05:41:59  292.00B 复制新文件或目录到容器中
COPY Rprofile.site /opt/conda/lib/R/etc/ # buildkit
                        
# 2022-10-10 05:41:59  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 05:41:59  10.57KB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c update-alternatives --install /usr/bin/nano nano /bin/nano-tiny 10 # buildkit
                        
# 2022-10-10 05:41:58  493.25MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     git     nano-tiny     tzdata     unzip     vim-tiny     openssh-client     less     texlive-xetex     texlive-fonts-recommended     texlive-plain-generic     xclip &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-10 05:41:58  0.00B 指定运行容器时使用的用户
USER root
                        
# 2022-10-10 05:41:58  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2022-10-10 05:41:58  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2022-10-10 05:37:52  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2022-10-10 05:37:52  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 05:37:52  0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "wget -O- --no-verbose --tries=1 --no-check-certificate     http${GEN_CERT:+s}://localhost:8888${JUPYTERHUB_SERVICE_PREFIX:-/}api || exit 1"] "15s" "3s" "5s" '\x03'}
                        
# 2022-10-10 05:37:52  3.67KB 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.9 /bin/bash -o pipefail -c sed -re "s/c.ServerApp/c.NotebookApp/g"     /etc/jupyter/jupyter_server_config.py > /etc/jupyter/jupyter_notebook_config.py &&     fix-permissions /etc/jupyter/ # buildkit
                        
# 2022-10-10 05:37:52  0.00B 指定运行容器时使用的用户
USER root
                        
# 2022-10-10 05:37:52  1.83KB 复制新文件或目录到容器中
COPY jupyter_server_config.py /etc/jupyter/ # buildkit
                        
# 2022-10-10 05:37:52  13.22KB 复制新文件或目录到容器中
COPY start.sh start-notebook.sh start-singleuser.sh /usr/local/bin/ # buildkit
                        
# 2022-10-10 05:37:52  0.00B 设置默认要执行的命令
CMD ["start-notebook.sh"]
                        
# 2022-10-10 05:37:52  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["tini" "-g" "--"]
                        
# 2022-10-10 05:37:52  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2022-10-10 05:37:52  624.45MB 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.9 /bin/bash -o pipefail -c set -x &&     arch=$(uname -m) &&     if [ "${arch}" = "x86_64" ]; then         arch="64";     fi &&     wget -qO /tmp/micromamba.tar.bz2         "https://micromamba.snakepit.net/api/micromamba/linux-${arch}/latest" &&     tar -xvjf /tmp/micromamba.tar.bz2 --strip-components=1 bin/micromamba &&     rm /tmp/micromamba.tar.bz2 &&     PYTHON_SPECIFIER="python=${PYTHON_VERSION}" &&     if [[ "${PYTHON_VERSION}" == "default" ]]; then PYTHON_SPECIFIER="python"; fi &&     ./micromamba install         --root-prefix="${CONDA_DIR}"         --prefix="${CONDA_DIR}"         --yes         "${PYTHON_SPECIFIER}"         'mamba'         'notebook'         'jupyterhub'         'jupyterlab' &&     rm micromamba &&     mamba list python | grep '^python ' | tr -s ' ' | cut -d ' ' -f 1,2 >> "${CONDA_DIR}/conda-meta/pinned" &&     jupyter notebook --generate-config &&     mamba clean --all -f -y &&     npm cache clean --force &&     jupyter lab clean &&     rm -rf "/home/${NB_USER}/.cache/yarn" &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 05:36:17  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2022-10-10 05:36:17  163.00B 复制新文件或目录到容器中
COPY initial-condarc /opt/conda/.condarc # buildkit
                        
# 2022-10-10 05:36:17  0.00B 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.9 /bin/bash -o pipefail -c mkdir "/home/${NB_USER}/work" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 05:36:17  0.00B 定义构建参数
ARG PYTHON_VERSION=3.9
                        
# 2022-10-10 05:36:17  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 05:36:17  13.44KB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c echo "auth requisite pam_deny.so" >> /etc/pam.d/su &&     sed -i.bak -e 's/^%admin/#%admin/' /etc/sudoers &&     sed -i.bak -e 's/^%sudo/#%sudo/' /etc/sudoers &&     useradd -l -m -s /bin/bash -N -u "${NB_UID}" "${NB_USER}" &&     mkdir -p "${CONDA_DIR}" &&     chown "${NB_USER}:${NB_GID}" "${CONDA_DIR}" &&     chmod g+w /etc/passwd &&     fix-permissions "${HOME}" &&     fix-permissions "${CONDA_DIR}" # buildkit
                        
# 2022-10-10 05:36:17  3.82KB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c sed -i 's/^#force_color_prompt=yes/force_color_prompt=yes/' /etc/skel/.bashrc &&    echo 'eval "$(command conda shell.bash hook 2> /dev/null)"' >> /etc/skel/.bashrc # buildkit
                        
# 2022-10-10 05:36:16  0.00B 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c chmod a+rx /usr/local/bin/fix-permissions # buildkit
                        
# 2022-10-10 05:36:16  1.04KB 复制新文件或目录到容器中
COPY fix-permissions /usr/local/bin/fix-permissions # buildkit
                        
# 2022-10-10 05:36:16  0.00B 设置环境变量 PATH HOME
ENV PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin HOME=/home/jovyan
                        
# 2022-10-10 05:36:16  0.00B 设置环境变量 CONDA_DIR SHELL NB_USER NB_UID NB_GID LC_ALL LANG LANGUAGE
ENV CONDA_DIR=/opt/conda SHELL=/bin/bash NB_USER=jovyan NB_UID=1000 NB_GID=100 LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8 LANGUAGE=en_US.UTF-8
                        
# 2022-10-10 05:36:16  183.72MB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c apt-get update --yes &&     apt-get upgrade --yes &&     apt-get install --yes --no-install-recommends     bzip2     ca-certificates     fonts-liberation     locales     pandoc     run-one     sudo     tini     wget &&     apt-get clean && rm -rf /var/lib/apt/lists/* &&     echo "en_US.UTF-8 UTF-8" > /etc/locale.gen &&     locale-gen # buildkit
                        
# 2022-10-10 05:36:16  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2022-10-10 05:36:16  0.00B 指定运行容器时使用的用户
USER root
                        
# 2022-10-10 05:36:16  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2022-10-10 05:36:16  0.00B 定义构建参数
ARG NB_GID=100
                        
# 2022-10-10 05:36:16  0.00B 定义构建参数
ARG NB_UID=1000
                        
# 2022-10-10 05:36:16  0.00B 定义构建参数
ARG NB_USER=jovyan
                        
# 2022-10-10 05:36:16  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2022-10-05 07:35:20  0.00B 
/bin/sh -c #(nop)  CMD ["bash"]
                        
# 2022-10-05 07:35:20  77.84MB 
/bin/sh -c #(nop) ADD file:6cd2e13356aa5339c1f2abd3c210a52f6ed74fae05cd61aa09f37b6a4764f65c in / 
                        
                    

镜像信息

{
    "Id": "sha256:38eeaf69a949ab6a495f6b7ecc9d5649e04d0370e7f5197b759dc47fa0c1df18",
    "RepoTags": [
        "jupyter/pyspark-notebook:python-3.9",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9"
    ],
    "RepoDigests": [
        "jupyter/pyspark-notebook@sha256:9c40571da1b398808b882ddd0707dde630d1ce0c4b47015025b06907590e56e9",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook@sha256:5646453b7058bd011884f98138b253606c739e9745ea4d7afb6127ddbfce58ad"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2022-10-09T22:01:22.680674994Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "1000",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "4040/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/spark/bin",
            "DEBIAN_FRONTEND=noninteractive",
            "CONDA_DIR=/opt/conda",
            "SHELL=/bin/bash",
            "NB_USER=jovyan",
            "NB_UID=1000",
            "NB_GID=100",
            "LC_ALL=en_US.UTF-8",
            "LANG=en_US.UTF-8",
            "LANGUAGE=en_US.UTF-8",
            "HOME=/home/jovyan",
            "XDG_CACHE_HOME=/home/jovyan/.cache/",
            "APACHE_SPARK_VERSION=3.3.0",
            "HADOOP_VERSION=3",
            "SPARK_HOME=/usr/local/spark",
            "SPARK_OPTS=--driver-java-options=-Xms1024M --driver-java-options=-Xmx4096M --driver-java-options=-Dlog4j.logLevel=info"
        ],
        "Cmd": [
            "start-notebook.sh"
        ],
        "Healthcheck": {
            "Test": [
                "CMD-SHELL",
                "wget -O- --no-verbose --tries=1 --no-check-certificate     http${GEN_CERT:+s}://localhost:8888${JUPYTERHUB_SERVICE_PREFIX:-/}api || exit 1"
            ],
            "Interval": 15000000000,
            "Timeout": 3000000000,
            "StartPeriod": 5000000000,
            "Retries": 3
        },
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home/jovyan",
        "Entrypoint": [
            "tini",
            "-g",
            "--"
        ],
        "OnBuild": null,
        "Labels": {
            "maintainer": "Jupyter Project \u003cjupyter@googlegroups.com\u003e"
        },
        "Shell": [
            "/bin/bash",
            "-o",
            "pipefail",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 3758642091,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/81d83394cd3f0a8974956375d75ff13c5e73f11e6461687762c21f32a7c8db7e/diff:/var/lib/docker/overlay2/6c8c8b60e879e8b4aac11dfaa009a4cf89792d2b710a0f5f7be33f44020f4ee5/diff:/var/lib/docker/overlay2/dc6b13a7c0993aefe296439d7625f12b6003ce3c563ffdec4d3baf7c4c212270/diff:/var/lib/docker/overlay2/e566b63399e66c582ef69fe6289d41b204fcd6a2b04cc73b96e06cdc5f8e4aff/diff:/var/lib/docker/overlay2/e687600c3c2f6443fc3d7708c32292f31fdc1a066a195c0c2b5e4330d2422325/diff:/var/lib/docker/overlay2/bdb6ab2f9a935782d34f84445ae706bc024a86c987923ae732bd27c94290f8bb/diff:/var/lib/docker/overlay2/2a54bf5898ff29ac6aeb9116bda30d2423a046a52cacde6306abb624e7ac9cce/diff:/var/lib/docker/overlay2/a51d6ef6ca098a007129fb2e13da740db7fcbbdbf7f1b2932a003359c715ee79/diff:/var/lib/docker/overlay2/e5cffac2697061c285f98db570b697d12baab09d1016965024ce4a1b75d09d8c/diff:/var/lib/docker/overlay2/e32fae7054f42ed584b7cf0a929f674e7fb805846aff0f6f9f7dd3d8b11bda4e/diff:/var/lib/docker/overlay2/f052bdeed8a8fe782ae59ab1a9d3ef74c92b621e9951567372af5805cbbd2aee/diff:/var/lib/docker/overlay2/6fb41b674484d8232299b099460ff9cbf05055aa1be51ffc53d9e77a611dd289/diff:/var/lib/docker/overlay2/9c25c69ea9b668b6fd64c1389507e8f06b78824a77f532a7d678075d1fbfe91f/diff:/var/lib/docker/overlay2/c8dc0eb1711f58ad5a42e873cf2b9b0bd0cb29fbcb14d90beb252c3cb282af43/diff:/var/lib/docker/overlay2/313a5ca212679eaaf77452e56c6015d18756358a1431669dd4db603111362d2f/diff:/var/lib/docker/overlay2/aa2254729e14120ea1d0e261d26fd9f440c12c85f925f19feb19df580a32983a/diff:/var/lib/docker/overlay2/38e3aa657453b2d8fd7fdf80d53fa0d987bc0ebad3a48ecd2356e2cf974dd9f6/diff:/var/lib/docker/overlay2/ea8740f7f1ef59c7ebfb3827d79e998d8537ca7cba9582220084259dd22df69e/diff:/var/lib/docker/overlay2/f6fc21c9062d894231fb2999a8fa8b65e8f661121bd89452d50f62d994c57451/diff:/var/lib/docker/overlay2/64bddc05acf730397a156517e040d8d0e477c3b238336a83301fefff23c6e75d/diff:/var/lib/docker/overlay2/6c5c3bbcc47bb2b67a6f0040f5d8004807b99e2500bc9501e0110ee8630d2f81/diff:/var/lib/docker/overlay2/03fce54cedb5d43dcf6b1ba7a7e39237004753d11c585c6fbc3457cbcc0ced62/diff:/var/lib/docker/overlay2/448ab74f0c62f6c283bda5974ff1d192f717e767dcaf0ab91b09a6f329907e56/diff:/var/lib/docker/overlay2/6d4cac7dbbd6c87b9e2342e040cf6c221915ec3f0dc4c3d4de6ffb37165f40a2/diff:/var/lib/docker/overlay2/d2986819e0d448712f68af8a6e93912c9c8e753998e482a5d275d0ab45cba2f9/diff:/var/lib/docker/overlay2/df7f2fe592c8a3e90bb0e7086c0c3dedcaf8c70f5c15625163dedaa1dae74d57/diff:/var/lib/docker/overlay2/6be40361b69bc0e12dbcaabca7a9a34d56cfe7befdd01b373014b77411027402/diff:/var/lib/docker/overlay2/670fa6d0c5667d4c3e7d96e02fdf6aaaef082cb2772edae56c22a9d10687325e/diff:/var/lib/docker/overlay2/89f10daa7f9d0ffe123c2acdcfeda319b839b438473593f24c31509e868e1d49/diff:/var/lib/docker/overlay2/9b2914e4c88529e49ee9e5e8fa5655927e8e54833f10bd13e70a325e088d22f5/diff",
            "MergedDir": "/var/lib/docker/overlay2/90cae20dc3950da87608f699291a3001ef2948f7deb4c3e8799c00f7228dec3e/merged",
            "UpperDir": "/var/lib/docker/overlay2/90cae20dc3950da87608f699291a3001ef2948f7deb4c3e8799c00f7228dec3e/diff",
            "WorkDir": "/var/lib/docker/overlay2/90cae20dc3950da87608f699291a3001ef2948f7deb4c3e8799c00f7228dec3e/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:17f623af01e277c5ffe6779af8164907de02d9af7a0e161662fc735dd64f117b",
            "sha256:21256cfbf5cd7823c69793bffe2a22fc5ab7e638436b76711c2b0e3db8061115",
            "sha256:5ea68194c3bf2dc3e4c2101b07e1a00c2bb82a28e2d94e6073b51a93ada4717b",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:4afa8c33cd2c6da2a6a239e171dbc1825ef322ac7fdc1e0eafdfbf62c9011342",
            "sha256:0ca38ef66dfdd2684c28b0a8146a760d7a7abba6d3afeddf2984c81abeccdbb4",
            "sha256:c76ee2d054b0deeed83974da93d4d0c38642fcbf0cbb4654af036537141cf9aa",
            "sha256:4b8a4c9d63593f03c1b8f55dd80198c6a775d8e1d6840e374fe3e16ef84cb13b",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:75c68f6b08b2a4e6631a05030d0459b209f6f87ba58fb55a179b3c1c25eaca46",
            "sha256:26a57abb4d87a20e0ac22754a793feb977751c10374414a46ef2ab4d25631f2e",
            "sha256:213314332856d6877b331a5c58dbfae2c003b174fe3a04208a26453cf31f9d84",
            "sha256:72110d89cf6b075a089b97f5150fa282ed890eeab603f4e40d6b0b43ed07c14b",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:18f4199c63bda68c1e176323a8671e93649deb1252bd7152e31272527c4e117f",
            "sha256:d679d97ed3d16d9fac275a5561fd6519203f4e0f7e3be4fc1227153d6e8e923e",
            "sha256:4d579c143b3f510ec3519530b3cab9e2f2a810c3c878f5e139d06573d3b967d3",
            "sha256:118de1db9905368bd27192ca45d88e5c4469477145aa9d6427ba7b04a1d62689",
            "sha256:4b5bce01ebbaedd542ab1c80cab78feed634b88cb60984ea41c2402f3d75ed39",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:c03d7785c47cdf3b6aa5928a4ccba43e4ea799602f100fe84f6144c631fd1cdf",
            "sha256:5f1696c868e2499fc8d597b3f9b695c21b9ba2003c47c3d4b10f7288f63a5820",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:eee6074f8176c9737246b2836a1b75f59b85837a784105189f48e045b5e28554",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:edaed69df0e9986bbb7dd3e3e7bab71fa81b9035548571082787bd2175698f79",
            "sha256:3a0892769b6f87d7a197d661fe0d8f43ac9c035f87ea1dc6ebdcd75939a27bc8",
            "sha256:1f0432b5d496f00cb9da020f3b184bc106064803f88f0fc1493d75d105d2d3c5",
            "sha256:e0c2e44d1da611b7fb882175f9ad16a44794b1356f22cfae9b184122b6e52a37",
            "sha256:d107d8dd7c90c5ed8acedad73fb99a7b6a4e6c0c1b1104a1ebef0d969994ca21",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-05-14T10:31:17.599250565+08:00"
    }
}

更多版本

docker.io/jupyter/pyspark-notebook:python-3.9

linux/amd64 docker.io3.76GB2025-05-14 10:34
44