docker.io/jupyter/pyspark-notebook:python-3.9 linux/arm64

docker.io/jupyter/pyspark-notebook:python-3.9 - 国内下载镜像源 浏览次数:38 温馨提示: 这是一个 linux/arm64 系统架构镜像

这是一个包含Jupyter Notebook和PySpark的Docker镜像。它预先配置好了Jupyter Notebook和Apache Spark,方便用户在Docker容器中直接运行PySpark程序,进行大数据分析和处理。用户无需自行安装和配置相关的软件环境,可以直接使用镜像提供的环境进行开发和测试。

源镜像 docker.io/jupyter/pyspark-notebook:python-3.9
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64
镜像ID sha256:8b9af2d978174c9690be5c20128c109641e54c32890fb0e681b70b1d08e0a4e0
镜像TAG python-3.9-linuxarm64
大小 3.58GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD start-notebook.sh
启动入口 tini -g --
工作目录 /home/jovyan
OS/平台 linux/arm64
浏览量 38 次
贡献者
镜像创建 2022-10-09T22:04:47.582507473Z
同步时间 2025-07-16 10:05
更新时间 2025-08-07 17:56
开放端口
4040/tcp 8888/tcp
环境变量
PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/spark/bin DEBIAN_FRONTEND=noninteractive CONDA_DIR=/opt/conda SHELL=/bin/bash NB_USER=jovyan NB_UID=1000 NB_GID=100 LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8 LANGUAGE=en_US.UTF-8 HOME=/home/jovyan XDG_CACHE_HOME=/home/jovyan/.cache/ APACHE_SPARK_VERSION=3.3.0 HADOOP_VERSION=3 SPARK_HOME=/usr/local/spark SPARK_OPTS=--driver-java-options=-Xms1024M --driver-java-options=-Xmx4096M --driver-java-options=-Dlog4j.logLevel=info
镜像标签
Jupyter Project <jupyter@googlegroups.com>: maintainer

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64  docker.io/jupyter/pyspark-notebook:python-3.9

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64  docker.io/jupyter/pyspark-notebook:python-3.9

Shell快速替换命令

sed -i 's#jupyter/pyspark-notebook:python-3.9#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64  docker.io/jupyter/pyspark-notebook:python-3.9'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64  docker.io/jupyter/pyspark-notebook:python-3.9'

镜像构建历史


# 2022-10-10 06:04:47  0.00B 声明容器运行时监听的端口
EXPOSE map[4040/tcp:{}]
                        
# 2022-10-10 06:04:47  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2022-10-10 06:04:47  275.23MB 执行命令并创建新的镜像层
RUN |5 spark_version=3.3.0 hadoop_version=3 scala_version= spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c openjdk_version=17 /bin/bash -o pipefail -c mamba install --quiet --yes     'pyarrow' &&     mamba clean --all -f -y &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 06:04:18  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 06:04:18  662.00B 执行命令并创建新的镜像层
RUN |5 spark_version=3.3.0 hadoop_version=3 scala_version= spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c openjdk_version=17 /bin/bash -o pipefail -c fix-permissions "/etc/ipython/" # buildkit
                        
# 2022-10-10 06:04:18  662.00B 复制新文件或目录到容器中
COPY ipython_kernel_config.py /etc/ipython/ # buildkit
                        
# 2022-10-10 06:04:18  60.00B 执行命令并创建新的镜像层
RUN |5 spark_version=3.3.0 hadoop_version=3 scala_version= spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c openjdk_version=17 /bin/bash -o pipefail -c if [ -z "${scala_version}" ]; then     ln -s "spark-${APACHE_SPARK_VERSION}-bin-hadoop${HADOOP_VERSION}" "${SPARK_HOME}";   else     ln -s "spark-${APACHE_SPARK_VERSION}-bin-hadoop${HADOOP_VERSION}-scala${scala_version}" "${SPARK_HOME}";   fi &&   mkdir -p /usr/local/bin/before-notebook.d &&   ln -s "${SPARK_HOME}/sbin/spark-config.sh" /usr/local/bin/before-notebook.d/spark-config.sh # buildkit
                        
# 2022-10-10 06:04:18  0.00B 设置环境变量 SPARK_OPTS --driver-java-options --driver-java-options PATH
ENV SPARK_OPTS=--driver-java-options=-Xms1024M --driver-java-options=-Xmx4096M --driver-java-options=-Dlog4j.logLevel=info PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/spark/bin
                        
# 2022-10-10 06:04:18  0.00B 设置环境变量 SPARK_HOME
ENV SPARK_HOME=/usr/local/spark
                        
# 2022-10-10 06:04:18  336.37MB 执行命令并创建新的镜像层
RUN |5 spark_version=3.3.0 hadoop_version=3 scala_version= spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c openjdk_version=17 /bin/bash -o pipefail -c if [ -z "${scala_version}" ]; then     wget -qO "spark.tgz" "https://archive.apache.org/dist/spark/spark-${APACHE_SPARK_VERSION}/spark-${APACHE_SPARK_VERSION}-bin-hadoop${HADOOP_VERSION}.tgz";   else     wget -qO "spark.tgz" "https://archive.apache.org/dist/spark/spark-${APACHE_SPARK_VERSION}/spark-${APACHE_SPARK_VERSION}-bin-hadoop${HADOOP_VERSION}-scala${scala_version}.tgz";   fi &&   echo "${spark_checksum} *spark.tgz" | sha512sum -c - &&   tar xzf "spark.tgz" -C /usr/local --owner root --group root --no-same-owner &&   rm "spark.tgz" # buildkit
                        
# 2022-10-10 06:03:57  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2022-10-10 06:03:57  192.27MB 执行命令并创建新的镜像层
RUN |5 spark_version=3.3.0 hadoop_version=3 scala_version= spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c openjdk_version=17 /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     "openjdk-${openjdk_version}-jre-headless"     ca-certificates-java &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-10 06:03:57  0.00B 设置环境变量 APACHE_SPARK_VERSION HADOOP_VERSION
ENV APACHE_SPARK_VERSION=3.3.0 HADOOP_VERSION=3
                        
# 2022-10-10 06:03:57  0.00B 定义构建参数
ARG openjdk_version=17
                        
# 2022-10-10 06:03:57  0.00B 定义构建参数
ARG spark_checksum=1e8234d0c1d2ab4462d6b0dfe5b54f2851dcd883378e0ed756140e10adfb5be4123961b521140f580e364c239872ea5a9f813a20b73c69cb6d4e95da2575c29c
                        
# 2022-10-10 06:03:57  0.00B 定义构建参数
ARG scala_version
                        
# 2022-10-10 06:03:57  0.00B 定义构建参数
ARG hadoop_version=3
                        
# 2022-10-10 06:03:57  0.00B 定义构建参数
ARG spark_version=3.3.0
                        
# 2022-10-10 06:03:57  0.00B 指定运行容器时使用的用户
USER root
                        
# 2022-10-10 06:03:57  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2022-10-10 06:03:57  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2022-10-10 05:50:39  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2022-10-10 05:50:39  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 05:50:39  77.53KB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c MPLBACKEND=Agg python -c "import matplotlib.pyplot" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 05:50:37  0.00B 设置环境变量 XDG_CACHE_HOME
ENV XDG_CACHE_HOME=/home/jovyan/.cache/
                        
# 2022-10-10 05:50:37  2.31MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c git clone https://github.com/PAIR-code/facets.git &&     jupyter nbextension install facets/facets-dist/ --sys-prefix &&     rm -rf /tmp/facets &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 05:50:35  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2022-10-10 05:50:35  892.33MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c mamba install --quiet --yes     'altair'     'beautifulsoup4'     'bokeh'     'bottleneck'     'cloudpickle'     'conda-forge::blas=*=openblas'     'cython'     'dask'     'dill'     'h5py'     'ipympl'    'ipywidgets'     'matplotlib-base'     'numba'     'numexpr'     'pandas'     'patsy'     'protobuf'     'pytables'     'scikit-image'     'scikit-learn'     'scipy'     'seaborn'     'sqlalchemy'     'statsmodels'     'sympy'     'widgetsnbextension'    'xlrd' &&     mamba clean --all -f -y &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 05:49:13  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 05:49:13  563.47MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     build-essential     cm-super     dvipng     ffmpeg &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-10 05:49:13  0.00B 指定运行容器时使用的用户
USER root
                        
# 2022-10-10 05:49:13  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2022-10-10 05:49:13  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2022-10-10 05:42:22  292.00B 复制新文件或目录到容器中
COPY Rprofile.site /opt/conda/lib/R/etc/ # buildkit
                        
# 2022-10-10 05:42:22  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 05:42:22  10.57KB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c update-alternatives --install /usr/bin/nano nano /bin/nano-tiny 10 # buildkit
                        
# 2022-10-10 05:42:21  471.43MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     git     nano-tiny     tzdata     unzip     vim-tiny     openssh-client     less     texlive-xetex     texlive-fonts-recommended     texlive-plain-generic     xclip &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-10 05:42:21  0.00B 指定运行容器时使用的用户
USER root
                        
# 2022-10-10 05:42:21  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2022-10-10 05:42:21  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2022-10-10 05:37:25  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2022-10-10 05:37:25  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 05:37:25  0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "wget -O- --no-verbose --tries=1 --no-check-certificate     http${GEN_CERT:+s}://localhost:8888${JUPYTERHUB_SERVICE_PREFIX:-/}api || exit 1"] "15s" "3s" "5s" '\x03'}
                        
# 2022-10-10 05:37:25  3.67KB 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.9 /bin/bash -o pipefail -c sed -re "s/c.ServerApp/c.NotebookApp/g"     /etc/jupyter/jupyter_server_config.py > /etc/jupyter/jupyter_notebook_config.py &&     fix-permissions /etc/jupyter/ # buildkit
                        
# 2022-10-10 05:37:25  0.00B 指定运行容器时使用的用户
USER root
                        
# 2022-10-10 05:37:25  1.83KB 复制新文件或目录到容器中
COPY jupyter_server_config.py /etc/jupyter/ # buildkit
                        
# 2022-10-10 05:37:25  13.22KB 复制新文件或目录到容器中
COPY start.sh start-notebook.sh start-singleuser.sh /usr/local/bin/ # buildkit
                        
# 2022-10-10 05:37:25  0.00B 设置默认要执行的命令
CMD ["start-notebook.sh"]
                        
# 2022-10-10 05:37:25  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["tini" "-g" "--"]
                        
# 2022-10-10 05:37:25  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2022-10-10 05:37:25  597.63MB 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.9 /bin/bash -o pipefail -c set -x &&     arch=$(uname -m) &&     if [ "${arch}" = "x86_64" ]; then         arch="64";     fi &&     wget -qO /tmp/micromamba.tar.bz2         "https://micromamba.snakepit.net/api/micromamba/linux-${arch}/latest" &&     tar -xvjf /tmp/micromamba.tar.bz2 --strip-components=1 bin/micromamba &&     rm /tmp/micromamba.tar.bz2 &&     PYTHON_SPECIFIER="python=${PYTHON_VERSION}" &&     if [[ "${PYTHON_VERSION}" == "default" ]]; then PYTHON_SPECIFIER="python"; fi &&     ./micromamba install         --root-prefix="${CONDA_DIR}"         --prefix="${CONDA_DIR}"         --yes         "${PYTHON_SPECIFIER}"         'mamba'         'notebook'         'jupyterhub'         'jupyterlab' &&     rm micromamba &&     mamba list python | grep '^python ' | tr -s ' ' | cut -d ' ' -f 1,2 >> "${CONDA_DIR}/conda-meta/pinned" &&     jupyter notebook --generate-config &&     mamba clean --all -f -y &&     npm cache clean --force &&     jupyter lab clean &&     rm -rf "/home/${NB_USER}/.cache/yarn" &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 05:36:22  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2022-10-10 05:36:22  163.00B 复制新文件或目录到容器中
COPY initial-condarc /opt/conda/.condarc # buildkit
                        
# 2022-10-10 05:36:22  0.00B 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.9 /bin/bash -o pipefail -c mkdir "/home/${NB_USER}/work" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2022-10-10 05:36:22  0.00B 定义构建参数
ARG PYTHON_VERSION=3.9
                        
# 2022-10-10 05:36:22  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2022-10-10 05:36:22  14.26KB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c echo "auth requisite pam_deny.so" >> /etc/pam.d/su &&     sed -i.bak -e 's/^%admin/#%admin/' /etc/sudoers &&     sed -i.bak -e 's/^%sudo/#%sudo/' /etc/sudoers &&     useradd -l -m -s /bin/bash -N -u "${NB_UID}" "${NB_USER}" &&     mkdir -p "${CONDA_DIR}" &&     chown "${NB_USER}:${NB_GID}" "${CONDA_DIR}" &&     chmod g+w /etc/passwd &&     fix-permissions "${HOME}" &&     fix-permissions "${CONDA_DIR}" # buildkit
                        
# 2022-10-10 05:36:21  3.82KB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c sed -i 's/^#force_color_prompt=yes/force_color_prompt=yes/' /etc/skel/.bashrc &&    echo 'eval "$(command conda shell.bash hook 2> /dev/null)"' >> /etc/skel/.bashrc # buildkit
                        
# 2022-10-10 05:36:21  1.04KB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c chmod a+rx /usr/local/bin/fix-permissions # buildkit
                        
# 2022-10-10 05:36:21  1.04KB 复制新文件或目录到容器中
COPY fix-permissions /usr/local/bin/fix-permissions # buildkit
                        
# 2022-10-10 05:36:20  0.00B 设置环境变量 PATH HOME
ENV PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin HOME=/home/jovyan
                        
# 2022-10-10 05:36:20  0.00B 设置环境变量 CONDA_DIR SHELL NB_USER NB_UID NB_GID LC_ALL LANG LANGUAGE
ENV CONDA_DIR=/opt/conda SHELL=/bin/bash NB_USER=jovyan NB_UID=1000 NB_GID=100 LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8 LANGUAGE=en_US.UTF-8
                        
# 2022-10-10 05:36:20  181.93MB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c apt-get update --yes &&     apt-get upgrade --yes &&     apt-get install --yes --no-install-recommends     bzip2     ca-certificates     fonts-liberation     locales     pandoc     run-one     sudo     tini     wget &&     apt-get clean && rm -rf /var/lib/apt/lists/* &&     echo "en_US.UTF-8 UTF-8" > /etc/locale.gen &&     locale-gen # buildkit
                        
# 2022-10-10 05:36:20  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2022-10-10 05:36:20  0.00B 指定运行容器时使用的用户
USER root
                        
# 2022-10-10 05:36:20  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2022-10-10 05:36:20  0.00B 定义构建参数
ARG NB_GID=100
                        
# 2022-10-10 05:36:20  0.00B 定义构建参数
ARG NB_UID=1000
                        
# 2022-10-10 05:36:20  0.00B 定义构建参数
ARG NB_USER=jovyan
                        
# 2022-10-10 05:36:20  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2022-10-05 08:02:20  0.00B 
/bin/sh -c #(nop)  CMD ["bash"]
                        
# 2022-10-05 08:02:19  69.21MB 
/bin/sh -c #(nop) ADD file:fd8103ca1472a4f51eeff3e22fbd1dfd61a3d22c34f16a61ef1ba016352e3629 in / 
                        
                    

镜像信息

{
    "Id": "sha256:8b9af2d978174c9690be5c20128c109641e54c32890fb0e681b70b1d08e0a4e0",
    "RepoTags": [
        "jupyter/pyspark-notebook:python-3.9",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook:python-3.9-linuxarm64"
    ],
    "RepoDigests": [
        "jupyter/pyspark-notebook@sha256:9c40571da1b398808b882ddd0707dde630d1ce0c4b47015025b06907590e56e9",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/pyspark-notebook@sha256:dfc1f6fe44051cde411852662762790afd79a5fcc0f7f5361875ab9323a04069"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2022-10-09T22:04:47.582507473Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "1000",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "4040/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/spark/bin",
            "DEBIAN_FRONTEND=noninteractive",
            "CONDA_DIR=/opt/conda",
            "SHELL=/bin/bash",
            "NB_USER=jovyan",
            "NB_UID=1000",
            "NB_GID=100",
            "LC_ALL=en_US.UTF-8",
            "LANG=en_US.UTF-8",
            "LANGUAGE=en_US.UTF-8",
            "HOME=/home/jovyan",
            "XDG_CACHE_HOME=/home/jovyan/.cache/",
            "APACHE_SPARK_VERSION=3.3.0",
            "HADOOP_VERSION=3",
            "SPARK_HOME=/usr/local/spark",
            "SPARK_OPTS=--driver-java-options=-Xms1024M --driver-java-options=-Xmx4096M --driver-java-options=-Dlog4j.logLevel=info"
        ],
        "Cmd": [
            "start-notebook.sh"
        ],
        "Healthcheck": {
            "Test": [
                "CMD-SHELL",
                "wget -O- --no-verbose --tries=1 --no-check-certificate     http${GEN_CERT:+s}://localhost:8888${JUPYTERHUB_SERVICE_PREFIX:-/}api || exit 1"
            ],
            "Interval": 15000000000,
            "Timeout": 3000000000,
            "StartPeriod": 5000000000,
            "Retries": 3
        },
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home/jovyan",
        "Entrypoint": [
            "tini",
            "-g",
            "--"
        ],
        "OnBuild": null,
        "Labels": {
            "maintainer": "Jupyter Project \u003cjupyter@googlegroups.com\u003e"
        },
        "Shell": [
            "/bin/bash",
            "-o",
            "pipefail",
            "-c"
        ]
    },
    "Architecture": "arm64",
    "Variant": "v8",
    "Os": "linux",
    "Size": 3582298941,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/63ca32f10275077fc548237dc9c8c29ce5747187a4fd993ac83fe4db54176305/diff:/var/lib/docker/overlay2/a43a4cfc6d51fc7c2a6c70e41f27fc6c80120d98447321db31764447469db7af/diff:/var/lib/docker/overlay2/36040f720badb60b60367d08dea20702836eeddaf41f4ef6994ffc9d3a59f43d/diff:/var/lib/docker/overlay2/53f5418d93371fe56a330df9505d480427f385a2b2f60fdfb124e5a66ce2157e/diff:/var/lib/docker/overlay2/5509566f2a88d13aeab3056e4ad49254f6939daca167e6487f166d9fc485e688/diff:/var/lib/docker/overlay2/f440d75881df2e3a0c29ab0a84488fd3ed2c60404eea6b70aa162ddee83e7781/diff:/var/lib/docker/overlay2/03498140d9f27dc90ba95c24fd6690b17629140ce34108acaf0c367ed36fd493/diff:/var/lib/docker/overlay2/d46a421c6ab0a710b5b8bda7f89a25035d1463d990d7fa6769d1025bb5758bb7/diff:/var/lib/docker/overlay2/ff765c961b954115161f09ed41b013022900822057ac38609a3a2582b0b8e25f/diff:/var/lib/docker/overlay2/84393e9f0e703b429fba799f2a953ff11a91cfe568cb85eaf7f739d1a7b4fef2/diff:/var/lib/docker/overlay2/a0ff21b84839d9de5ff80a30a898c1683a1a25cf8ed36b98979875bb670ca947/diff:/var/lib/docker/overlay2/977d09780e4757b40c6b47e93ff786d1b462a1a5795b8d1c1bdfa046e37adf05/diff:/var/lib/docker/overlay2/1f7b4cd7897e5542f9672fa0864dc8a87e2b5ff1400501796e840b9b0ef2eb8e/diff:/var/lib/docker/overlay2/3d1192573d90389391df4a7803ee7a69ea50ca963e584dca65962b99eb9df506/diff:/var/lib/docker/overlay2/fd045436e45f84133e4e3b553b12568c970a330d66d72cd274e1efcfe9b4fc50/diff:/var/lib/docker/overlay2/54cb90404a5656066123daef4430e941f41ad74ee16e3c359d2a0629aa30792d/diff:/var/lib/docker/overlay2/55cc13fea4d2174218231d4174d4871cbff8c96a4f69f00040ca206bfb9b788f/diff:/var/lib/docker/overlay2/99e0dda8f8024773c268c59c6e244fa0e039cef53a3b9e514609ccc329029697/diff:/var/lib/docker/overlay2/f7bc4d5dee39184720c5c0d49be73bd8a86eea37701a12af18d0f77c503160d1/diff:/var/lib/docker/overlay2/26b7e0d9968f33120859cd2674dec16bfcde8f4b3366ab20ec48fb3635cd96f1/diff:/var/lib/docker/overlay2/a239e16ff2152e7e475062c26bd2d0dab488581898479bdbf3813873f5f6c55d/diff:/var/lib/docker/overlay2/f38f010fab018989e80b3016fd644623e1eb950c099ee1ac78e007bc025d6a42/diff:/var/lib/docker/overlay2/892eca3e691381d07e82650bdfcee31323ef30a00dbfd32ecf0d8e03f5798c32/diff:/var/lib/docker/overlay2/8a1af8ca45eaca70cccc9d21a4213da2020dc9bbbef7e781749d631d29acd6b0/diff:/var/lib/docker/overlay2/0a4c93ac0d600470b6cd7c5cad586856b8138d1b732a4a991fa475a863d5c486/diff:/var/lib/docker/overlay2/2ef651a35dabf98217af244128cc197a677f2c7ac122b67420f6802f337a20a9/diff:/var/lib/docker/overlay2/2718f322573994c14e69dbd58e01ed50c73320f4fa2829339b858b2d9c355d21/diff:/var/lib/docker/overlay2/de7bf9e9ee97fa7796f2b48b55780961a7ccc9f7b20252e8102bdcfd9005836b/diff:/var/lib/docker/overlay2/17b14517baa26f3eb4bb7731c71dd844c4324b0420b5e1c41912a266e176dfcc/diff:/var/lib/docker/overlay2/18da32c05f99270c559f38cd008d36b2c068fa675955d8e10420bb6e1b87495b/diff",
            "MergedDir": "/var/lib/docker/overlay2/0eb9e08571085491b75e84fec4d6dc00024c652b97e375d380d7a82d582deac7/merged",
            "UpperDir": "/var/lib/docker/overlay2/0eb9e08571085491b75e84fec4d6dc00024c652b97e375d380d7a82d582deac7/diff",
            "WorkDir": "/var/lib/docker/overlay2/0eb9e08571085491b75e84fec4d6dc00024c652b97e375d380d7a82d582deac7/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:ede2ae06e2f45441ad8bfadd13b072d47e9f2d3adaadabf60e3b0f4a6b6b7723",
            "sha256:a60c31a0a575ffef1fdae74c578f2ce012498b69f75b671ca1d87e3c306bbb1b",
            "sha256:8fc8892a479a5249ec66c6c3b3e4f643ebaf0862fb0c46c272f665853e72029f",
            "sha256:8fc8892a479a5249ec66c6c3b3e4f643ebaf0862fb0c46c272f665853e72029f",
            "sha256:e5668b4ab39aec7a128524f41bed3b1a90e68c4380ae2f2c544d7e4d0abf158e",
            "sha256:fefb6d65df018b460592f2f4de5486c0cf05788bd729cb2419503e11e59c7ebe",
            "sha256:8f48b1189549289c2dcd453c6978969e36b4428456f10e4b0d8dca254ca0cfd4",
            "sha256:4fc4a03e26eba849aced988e7c3d6bc5ae04044497668c82c287d3906fab9191",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:30c2e5a3ad4de59461a7fbf39ecb9afb20bfbc7f7d2ab62e21cf79a0458cd589",
            "sha256:715a630de52adde4b2394d72d815b525a448128c816f1eb3bfec9d311fce49f4",
            "sha256:af577559496388fadcf730330cb894ffbb28359f076b1af46dc875fd02d54bb5",
            "sha256:96da392e785009522869675fa05f232357c38b204324f54cf3e5d0bbc10d9160",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:b461a0ff6bb4efbf7da5008057b31c624f05e39c98e4d64db17df8f33d013b83",
            "sha256:67a04fecb6e11195e1db1dc1e1b15a1b188e98ac1d014cba79903e74e077a630",
            "sha256:7431c4c47ccac8efb837f69a5f086a9d66a1a5d3b386a16a9ccf61722c0f5a81",
            "sha256:016454183d23a503e1eb6503b8a0c22608d6d949e6ec8f68bdb87ee1af983102",
            "sha256:7bca30a4bbf948ba3cd9eb75fa5dbbe98427a593a30bac5cc25b524a7f54fc54",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:58e25c26a3379e4631a0b88636e014f712d5cac42ed9265a33cd6c6c5b578f70",
            "sha256:ab0c29ac132769bb4c1b5bc600a5cfc7c7cea5f8811330be1fa68c219bcd2be5",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:572a9f4df120cffde16e2b6d73cf856acedbe5ef7d1f03790ea52cfeafbec2f2",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:008a39a2080d9f239d7307f170c7f56b2d6d22da79ebe6b78c2d9b25c7f8edc0",
            "sha256:674ccdf97a5de97b6fbd68a0d001df68158f28708627f4d760bfc43820b96bad",
            "sha256:d25926637e92eb6c65cc186795f36173ff894290a3728dee6df610eeb61738cf",
            "sha256:0a04dbb6fe21f345c569c4793be1b15e69f894aeb75121aaad9b22df63737a49",
            "sha256:7acf0ed4771c194b58b8a13da643bdef1b0aa79a2c9c4cd485faa687e0113960",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-07-16T10:03:00.729557017+08:00"
    }
}

更多版本

docker.io/jupyter/pyspark-notebook:python-3.9

linux/amd64 docker.io3.76GB2025-05-14 10:34
114

docker.io/jupyter/pyspark-notebook:python-3.9

linux/arm64 docker.io3.58GB2025-07-16 10:05
37