docker.io/jupyter/scipy-notebook:latest linux/amd64

docker.io/jupyter/scipy-notebook:latest - 国内下载镜像源 浏览次数:11

温馨提示:此镜像为latest tag镜像,本站无法保证此版本为最新镜像

源镜像 docker.io/jupyter/scipy-notebook:latest
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest
镜像ID sha256:ad65fcfebde3d9d6590bca3f709f1e386a4e56bd63654c0babd5ebf41e9edd9e
镜像TAG latest
大小 4.14GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD start-notebook.py
启动入口 tini -g --
工作目录 /home/jovyan
OS/平台 linux/amd64
浏览量 11 次
贡献者
镜像创建 2023-10-20T02:14:50.936004534Z
同步时间 2025-11-04 15:43
更新时间 2025-11-04 16:45
开放端口
8888/tcp
环境变量
PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin DEBIAN_FRONTEND=noninteractive CONDA_DIR=/opt/conda SHELL=/bin/bash NB_USER=jovyan NB_UID=1000 NB_GID=100 LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8 LANGUAGE=en_US.UTF-8 HOME=/home/jovyan JUPYTER_PORT=8888 XDG_CACHE_HOME=/home/jovyan/.cache/
镜像标签
Jupyter Project <jupyter@googlegroups.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest  docker.io/jupyter/scipy-notebook:latest

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest  docker.io/jupyter/scipy-notebook:latest

Shell快速替换命令

sed -i 's#jupyter/scipy-notebook:latest#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest  docker.io/jupyter/scipy-notebook:latest'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest  docker.io/jupyter/scipy-notebook:latest'

镜像构建历史


# 2023-10-20 10:14:50  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2023-10-20 10:14:50  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-20 10:14:50  79.23KB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c MPLBACKEND=Agg python -c "import matplotlib.pyplot" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2023-10-20 10:14:49  0.00B 设置环境变量 XDG_CACHE_HOME
ENV XDG_CACHE_HOME=/home/jovyan/.cache/
                        
# 2023-10-20 10:14:49  2.31MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c git clone https://github.com/PAIR-code/facets &&     jupyter nbclassic-extension install facets/facets-dist/ --sys-prefix &&     rm -rf /tmp/facets &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2023-10-20 10:14:45  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2023-10-20 10:14:45  1.92GB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c mamba install --yes     'altair'     'beautifulsoup4'     'bokeh'     'bottleneck'     'cloudpickle'     'conda-forge::blas=*=openblas'     'cython'     'dask'     'dill'     'h5py'     'ipympl'    'ipywidgets'     'jupyterlab-git'     'matplotlib-base'     'numba'     'numexpr'     'openpyxl'     'pandas'     'patsy'     'protobuf'     'pytables'     'scikit-image'     'scikit-learn'     'scipy'     'seaborn'     'sqlalchemy'     'statsmodels'     'sympy'     'widgetsnbextension'    'xlrd' &&     mamba clean --all -f -y &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2023-10-20 10:04:22  50.00B 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c echo 'jupyterlab >=4.0.4' >> "${CONDA_DIR}/conda-meta/pinned" &&     echo 'notebook >=7.0.2' >> "${CONDA_DIR}/conda-meta/pinned" # buildkit
                        
# 2023-10-20 10:04:21  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-20 10:04:21  657.80MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     build-essential     cm-super     dvipng     ffmpeg &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-10-20 10:04:21  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-20 10:04:21  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2023-10-20 10:04:21  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2023-10-20 09:56:46  2.34KB 复制新文件或目录到容器中
COPY setup-scripts/ /opt/setup-scripts/ # buildkit
                        
# 2023-10-20 09:56:46  292.00B 复制新文件或目录到容器中
COPY Rprofile.site /opt/conda/lib/R/etc/ # buildkit
                        
# 2023-10-20 09:56:46  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-20 09:56:46  10.75KB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c update-alternatives --install /usr/bin/nano nano /bin/nano-tiny 10 # buildkit
                        
# 2023-10-20 09:56:46  494.53MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     curl     git     nano-tiny     tzdata     unzip     vim-tiny     openssh-client     less     texlive-xetex     texlive-fonts-recommended     texlive-plain-generic     xclip &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-10-20 09:56:46  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-20 09:56:46  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2023-10-20 09:56:46  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2023-10-20 09:50:16  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2023-10-20 09:50:16  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-20 09:50:16  0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "/etc/jupyter/docker_healthcheck.py || exit 1"] "5s" "3s" "5s" '\x03'}
                        
# 2023-10-20 09:50:16  2.50KB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c fix-permissions /etc/jupyter/ # buildkit
                        
# 2023-10-20 09:50:15  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-20 09:50:15  2.50KB 复制新文件或目录到容器中
COPY jupyter_server_config.py docker_healthcheck.py /etc/jupyter/ # buildkit
                        
# 2023-10-20 09:50:15  2.51KB 复制新文件或目录到容器中
COPY start-notebook.py start-notebook.sh start-singleuser.py start-singleuser.sh /usr/local/bin/ # buildkit
                        
# 2023-10-20 09:50:15  0.00B 设置默认要执行的命令
CMD ["start-notebook.py"]
                        
# 2023-10-20 09:50:15  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2023-10-20 09:50:15  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2023-10-20 09:50:15  517.62MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c mamba install --yes     'jupyterlab'     'notebook'     'jupyterhub'     'nbclassic' &&     jupyter server --generate-config &&     mamba clean --all -f -y &&     npm cache clean --force &&     jupyter lab clean &&     rm -rf "/home/${NB_USER}/.cache/yarn" &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2023-10-20 09:49:01  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2023-10-20 09:49:01  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-20 09:49:01  158.43MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     fonts-liberation     pandoc     run-one &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-10-20 09:49:01  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-20 09:49:01  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2023-10-20 09:49:01  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2023-10-20 09:46:58  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2023-10-20 09:46:58  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-20 09:46:58  0.00B 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.11 /bin/bash -o pipefail -c mkdir /usr/local/bin/start-notebook.d &&     mkdir /usr/local/bin/before-notebook.d # buildkit
                        
# 2023-10-20 09:46:57  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-20 09:46:57  12.96KB 复制新文件或目录到容器中
COPY run-hooks.sh start.sh /usr/local/bin/ # buildkit
                        
# 2023-10-20 09:46:57  0.00B 设置默认要执行的命令
CMD ["start.sh"]
                        
# 2023-10-20 09:46:57  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["tini" "-g" "--"]
                        
# 2023-10-20 09:46:57  287.63MB 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.11 /bin/bash -o pipefail -c set -x &&     arch=$(uname -m) &&     if [ "${arch}" = "x86_64" ]; then         arch="64";     fi &&     wget --progress=dot:giga -O /tmp/micromamba.tar.bz2         "https://micromamba.snakepit.net/api/micromamba/linux-${arch}/latest" &&     tar -xvjf /tmp/micromamba.tar.bz2 --strip-components=1 bin/micromamba &&     rm /tmp/micromamba.tar.bz2 &&     PYTHON_SPECIFIER="python=${PYTHON_VERSION}" &&     if [[ "${PYTHON_VERSION}" == "default" ]]; then PYTHON_SPECIFIER="python"; fi &&     ./micromamba install         --root-prefix="${CONDA_DIR}"         --prefix="${CONDA_DIR}"         --yes         "${PYTHON_SPECIFIER}"         'mamba'         'jupyter_core' &&     rm micromamba &&     mamba list python | grep '^python ' | tr -s ' ' | cut -d ' ' -f 1,2 >> "${CONDA_DIR}/conda-meta/pinned" &&     mamba clean --all -f -y &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2023-10-20 09:46:07  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2023-10-20 09:46:07  163.00B 复制新文件或目录到容器中
COPY initial-condarc /opt/conda/.condarc # buildkit
                        
# 2023-10-20 09:46:07  0.00B 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.11 /bin/bash -o pipefail -c mkdir "/home/${NB_USER}/work" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2023-10-20 09:46:06  0.00B 定义构建参数
ARG PYTHON_VERSION=3.11
                        
# 2023-10-20 09:46:06  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2023-10-20 09:46:06  13.44KB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c echo "auth requisite pam_deny.so" >> /etc/pam.d/su &&     sed -i.bak -e 's/^%admin/#%admin/' /etc/sudoers &&     sed -i.bak -e 's/^%sudo/#%sudo/' /etc/sudoers &&     useradd --no-log-init --create-home --shell /bin/bash --uid "${NB_UID}" --no-user-group "${NB_USER}" &&     mkdir -p "${CONDA_DIR}" &&     chown "${NB_USER}:${NB_GID}" "${CONDA_DIR}" &&     chmod g+w /etc/passwd &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2023-10-20 09:46:06  3.82KB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c sed -i 's/^#force_color_prompt=yes/force_color_prompt=yes/' /etc/skel/.bashrc &&    echo 'eval "$(command conda shell.bash hook 2> /dev/null)"' >> /etc/skel/.bashrc # buildkit
                        
# 2023-10-20 09:46:05  0.00B 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c chmod a+rx /usr/local/bin/fix-permissions # buildkit
                        
# 2023-10-20 09:46:05  1.04KB 复制新文件或目录到容器中
COPY fix-permissions /usr/local/bin/fix-permissions # buildkit
                        
# 2023-10-20 09:46:05  0.00B 设置环境变量 PATH HOME
ENV PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin HOME=/home/jovyan
                        
# 2023-10-20 09:46:05  0.00B 设置环境变量 CONDA_DIR SHELL NB_USER NB_UID NB_GID LC_ALL LANG LANGUAGE
ENV CONDA_DIR=/opt/conda SHELL=/bin/bash NB_USER=jovyan NB_UID=1000 NB_GID=100 LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8 LANGUAGE=en_US.UTF-8
                        
# 2023-10-20 09:46:05  25.76MB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c apt-get update --yes &&     apt-get upgrade --yes &&     apt-get install --yes --no-install-recommends     bzip2     ca-certificates     locales     sudo     tini     wget &&     apt-get clean && rm -rf /var/lib/apt/lists/* &&     echo "en_US.UTF-8 UTF-8" > /etc/locale.gen &&     locale-gen # buildkit
                        
# 2023-10-20 09:46:05  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2023-10-20 09:46:05  0.00B 指定运行容器时使用的用户
USER root
                        
# 2023-10-20 09:46:05  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2023-10-20 09:46:05  0.00B 定义构建参数
ARG NB_GID=100
                        
# 2023-10-20 09:46:05  0.00B 定义构建参数
ARG NB_UID=1000
                        
# 2023-10-20 09:46:05  0.00B 定义构建参数
ARG NB_USER=jovyan
                        
# 2023-10-20 09:46:05  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:ad65fcfebde3d9d6590bca3f709f1e386a4e56bd63654c0babd5ebf41e9edd9e",
    "RepoTags": [
        "jupyter/scipy-notebook:latest",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook:latest"
    ],
    "RepoDigests": [
        "jupyter/scipy-notebook@sha256:fca4bcc9cbd49d9a15e0e4df6c666adf17776c950da9fa94a4f0a045d5c4ad33",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/jupyter/scipy-notebook@sha256:f339a9fa98d3d0c1fa8d7cc850e7f5a46845781f49bee86aacba059669d02d54"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2023-10-20T02:14:50.936004534Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "1000",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "DEBIAN_FRONTEND=noninteractive",
            "CONDA_DIR=/opt/conda",
            "SHELL=/bin/bash",
            "NB_USER=jovyan",
            "NB_UID=1000",
            "NB_GID=100",
            "LC_ALL=en_US.UTF-8",
            "LANG=en_US.UTF-8",
            "LANGUAGE=en_US.UTF-8",
            "HOME=/home/jovyan",
            "JUPYTER_PORT=8888",
            "XDG_CACHE_HOME=/home/jovyan/.cache/"
        ],
        "Cmd": [
            "start-notebook.py"
        ],
        "Healthcheck": {
            "Test": [
                "CMD-SHELL",
                "/etc/jupyter/docker_healthcheck.py || exit 1"
            ],
            "Interval": 5000000000,
            "Timeout": 3000000000,
            "StartPeriod": 5000000000,
            "Retries": 3
        },
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home/jovyan",
        "Entrypoint": [
            "tini",
            "-g",
            "--"
        ],
        "OnBuild": null,
        "Labels": {
            "maintainer": "Jupyter Project \u003cjupyter@googlegroups.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        },
        "Shell": [
            "/bin/bash",
            "-o",
            "pipefail",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 4141672838,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/86a1bb5df3c5f9537ace2cddbf998b0417ff98f7e09a79a895301d0b856ddaf5/diff:/var/lib/docker/overlay2/c24f8f4f1646430beb49ce69b063a01ea78a76c380e2638045e5b31da2dd9ef9/diff:/var/lib/docker/overlay2/4374623f5aee0d4c473e2da995640b0141a30eeac06707d6fcbedd4f0f7c33b8/diff:/var/lib/docker/overlay2/3084f53bab970401f2c0ceceea88fb3fb49a87b3752dbe8b68cafba3fd8e27e8/diff:/var/lib/docker/overlay2/50e334aa48fc2a591f8214c597116d352a049c9484895f8fef38cd27faf363da/diff:/var/lib/docker/overlay2/c0a4e8c7f3382494dd96b392db7039b47f7b9a72a18765bbf4c4e0cd94316827/diff:/var/lib/docker/overlay2/00efb042335d727ce537d7c3a99b10016a85959c95c1044544f71ec30c620ec9/diff:/var/lib/docker/overlay2/9bd8b78e6eeb0f6e991e8a02adb294eaf6b2c192cd254d1bb04a179c76d98a86/diff:/var/lib/docker/overlay2/ff0a7f8b5a4a453e071610253b7072b59a536c372af07f26063af4f0658aace7/diff:/var/lib/docker/overlay2/e20cda5187f70973788aa3f64bf85e58a79d733c3d0d596417ab8a92bf5bcdb5/diff:/var/lib/docker/overlay2/1e7ba32a039431122ba5ac99fddb6aa7d42669c3e00dbd45a63ca496af17b419/diff:/var/lib/docker/overlay2/dd721cc5cee97d8e4708682d4d11df1c6d9f14699e0154ffb605683019535962/diff:/var/lib/docker/overlay2/e4f372616aaedfe35d4312b25996d1297a80138cd286b8cd42528cf7401b0fc9/diff:/var/lib/docker/overlay2/993bdb55c76df8e8878395274fdc15da12b7a6af991cf23e2d9446044e4835e9/diff:/var/lib/docker/overlay2/4b2fae96f87c9bc8c119ee78b4ece810472ebccc34e5afdc81793c8b6733ef8c/diff:/var/lib/docker/overlay2/7cd8f841267dda87ee5dc348418af159e4891a80c31a8d94246083b13a2e589e/diff:/var/lib/docker/overlay2/80cea64a416094595002c318e873ca7458def57e62f0bc663a687fde9792a356/diff:/var/lib/docker/overlay2/c49ca8f900a4f46ae5d86a27b6e2d00152b8a6bfe3f6e35845d84b8d51d53f31/diff:/var/lib/docker/overlay2/a8285e374babdcf37c4fb6bd577bed51822ce6e03377d3477966a0389dc6a935/diff:/var/lib/docker/overlay2/01d731222a05a128663e2d1fb5e9c635ef6260e8484368537e68f511c3e1e7fb/diff:/var/lib/docker/overlay2/ad44ec58c3756bffbcfcdfdc072fba2889c7dec19b538fa050cea5f15179453a/diff:/var/lib/docker/overlay2/62682b7be7a9c5201b884cfe2b5160b642735c2a8cc8e0cac6916192b5d2245d/diff:/var/lib/docker/overlay2/9a07909ce5e45d514a14dd3761dae39e70e2c2c91330f2ffe57d6d66c7b50b42/diff:/var/lib/docker/overlay2/079ab14fa1f0fad9b85e5db31d2a3c7113c78e3be874149631a8003a42d880a7/diff:/var/lib/docker/overlay2/5d502f3eba620b6f259ce70f60dc7e5f23d1102f58f6ea799f78d4bc68d9aa26/diff:/var/lib/docker/overlay2/4e69979b82e8edca1f133300525c9616986cc4feb47ec3e587c9b4091cc73084/diff:/var/lib/docker/overlay2/77731c70776c7903bba6aa0a58fac6248ba89e8daaf1f9b1f7e604b8e86e1297/diff:/var/lib/docker/overlay2/a86bcbd752f97cca216218d88023d7e6532dcc7b514321cc88c7896fbe0646a8/diff:/var/lib/docker/overlay2/2ea6c887658336fe55bb1094cf17759f23e9c43038662d6c4bd3b6df26ef1cfd/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/d82e2b0f63dbb4f1a348848b2e602be65b14d53972bd169a979521325df7eeb9/merged",
            "UpperDir": "/var/lib/docker/overlay2/d82e2b0f63dbb4f1a348848b2e602be65b14d53972bd169a979521325df7eeb9/diff",
            "WorkDir": "/var/lib/docker/overlay2/d82e2b0f63dbb4f1a348848b2e602be65b14d53972bd169a979521325df7eeb9/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:9e19e4556c44124f879c781d8b6d4f64718ca876707b58a02970ddcb4d36633c",
            "sha256:866df332dea4389e0c3fb9e821c977f4adf32a4582c69dc93b23ee23cd9a6255",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:952c96ee354b3ee674f37998ea8be0af7838ac2f225c384502684e1fecc4bf21",
            "sha256:88304fea615ada14aa805a7e831950e83ddb5bdaef7bb9096b0fc0d4ece2c4ae",
            "sha256:7438e5bca28b553905b3d1715292c0f69247dfe33d1e2fc3e76a17dedaac6ae2",
            "sha256:186dd1d5045ac44da42214dda1c24a8c943d08f7a032e86ed37bb33896b73041",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:079f33e41632552e215e886818fe99aa7f7f83cbe89781282ccca99e3b0a9308",
            "sha256:13070936990883b21c6dc2d6cd2cb94e7980a0d6faa19baec551e3d236290603",
            "sha256:f825b1201811984a78081070c2bfe1e77ccc25786edc9aef58bc24a12fb1471a",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:4113305ae79c0dedec32f452d7bb1e17c2d6329a97dff850d533ab64b8a46e9b",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:889f93f0e367bc5c6f300998a03a089dda1aa5b76a53d554f76a73ab98cd2be5",
            "sha256:8870c9dab11488669638e9a60ee30fefe4518326b025b7d2479c33b6fcb3ff2e",
            "sha256:b38138cf8b0e0709dc10fb29371eb94695190a64d16482fb42caf3057a752cb5",
            "sha256:c2befbc55f391a8ebf443199412d69168c3c24bd20622ab70437471f291b986e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:a8897a74695cc25ada9f55984a9100b9cbc5131c02fac264c58785bf194703fa",
            "sha256:1809542f2b04338750374ec27012c181cb636bc2a4e499514215d509d4391182",
            "sha256:e323e8f9ff7e9a63598cfdd84ae916eb861a7ec4c72486017727c5c95c4edcc9",
            "sha256:3215bff6f2598e0972a2d3325a0f78ed3101dbb5045943ee245247853c7a73df",
            "sha256:0141db91cb25b17007f75164e8442b9e9f9044edbfb9f1c62651f375557f3de2",
            "sha256:ab7e1b673db8c39ef66d87c62244982f3fd4a1d4b602bd99061c1ca0d53bb812",
            "sha256:64d86018690cf4b38d89e109d7286dd98acd83a9472efd5997be4293d81e2e4e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:ac9c6770c2561d4fa24ffd60fe978908dc31fb4ebdda81b5a7a89b46ef00c656",
            "sha256:894b11101162a1b75db66c75f91201bd4bdabcaf9082dcc3dfb73fbdd9866c57",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-11-04T15:41:22.884868368+08:00"
    }
}

更多版本

docker.io/jupyter/scipy-notebook:x86_64-ubuntu-22.04

linux/amd64 docker.io4.14GB2025-09-11 22:34
79

docker.io/jupyter/scipy-notebook:latest

linux/amd64 docker.io4.14GB2025-11-04 15:43
10