docker.io/kenneth850511/llamafactory:v0.9.1 linux/amd64

docker.io/kenneth850511/llamafactory:v0.9.1 - 国内下载镜像源 浏览次数:8
源镜像 docker.io/kenneth850511/llamafactory:v0.9.1
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1
镜像ID sha256:8b44f008e3e48e1c42cf327f7ca8bef32bba63580b62a201f860fdc49b1559b0
镜像TAG v0.9.1
大小 22.79GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /app
OS/平台 linux/amd64
浏览量 8 次
贡献者
镜像创建 2024-12-07T14:13:23.413011628Z
同步时间 2025-01-18 01:19
更新时间 2025-01-18 08:06
开放端口
6006/tcp 7860/tcp 8000/tcp 8888/tcp
环境变量
PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin CUDA_VERSION=12.3.2.001 CUDA_DRIVER_VERSION=545.23.08 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS= _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0 NCCL_VERSION=2.19.stable.20231214+cuda12.3 CUBLAS_VERSION=12.3.4.1 CUFFT_VERSION=11.0.12.1 CURAND_VERSION=10.3.4.107 CUSPARSE_VERSION=12.2.0.103 CUSOLVER_VERSION=11.5.4.101 CUTENSOR_VERSION=2.0.0.7 NPP_VERSION=12.2.3.2 NVJPEG_VERSION=12.3.0.81 CUDNN_VERSION=9.0.0.306 TRT_VERSION=8.6.3.1+cuda12.2.2.009 TRTOSS_VERSION=23.11 NSIGHT_SYSTEMS_VERSION=2023.4.1.97 NSIGHT_COMPUTE_VERSION=2023.3.1.1 DALI_VERSION=1.34.0 DALI_BUILD=12152788 POLYGRAPHY_VERSION=0.49.4 TRANSFORMER_ENGINE_VERSION=1.3 LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video NVIDIA_PRODUCT_NAME=PyTorch GDRCOPY_VERSION=2.3 HPCX_VERSION=2.16rc4 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.15.0 OPENMPI_VERSION=4.1.5rc2 RDMACORE_VERSION=39.0 OPAL_PREFIX=/opt/hpcx/ompi OMPI_MCA_coll_hcoll_enable=0 LIBRARY_PATH=/usr/local/cuda/lib64/stubs: PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 PYTORCH_VERSION=2.3.0a0+ebedce2 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.02 NVFUSER_BUILD_VERSION=d0bb811 NVFUSER_VERSION=d0bb811 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python PYTHONIOENCODING=utf-8 LC_ALL=C.UTF-8 PIP_DEFAULT_TIMEOUT=100 NVM_DIR=/usr/local/nvm JUPYTER_PORT=8888 TENSORBOARD_PORT=6006 UCC_CL_BASIC_TLS=^sharp TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX PYTORCH_HOME=/opt/pytorch/pytorch CUDA_HOME=/usr/local/cuda TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1 USE_EXPERIMENTAL_CUDNN_V8_API=1 COCOAPI_VERSION=2.0+nv0.8.0 TORCH_CUDNN_V8_API_ENABLED=1 CUDA_MODULE_LOADING=LAZY NVIDIA_BUILD_ID=82611821 MAX_JOBS=4 FLASH_ATTENTION_FORCE_BUILD=TRUE VLLM_WORKER_MULTIPROC_METHOD=spawn GRADIO_SERVER_PORT=7860 API_PORT=8000
镜像标签
82611821: com.nvidia.build.id 10200c7981051a74cf2d5e0347eb4b876821d15d: com.nvidia.build.ref 12.3.4.1: com.nvidia.cublas.version 9.0: com.nvidia.cuda.version 9.0.0.306: com.nvidia.cudnn.version 11.0.12.1: com.nvidia.cufft.version 10.3.4.107: com.nvidia.curand.version 11.5.4.101: com.nvidia.cusolver.version 12.2.0.103: com.nvidia.cusparse.version 2.0.0.7: com.nvidia.cutensor.version 2.19.stable.20231214+cuda12.3: com.nvidia.nccl.version 12.2.3.2: com.nvidia.npp.version 2023.3.1.1: com.nvidia.nsightcompute.version 2023.4.1.97: com.nvidia.nsightsystems.version 12.3.0.81: com.nvidia.nvjpeg.version 2.3.0a0+ebedce2: com.nvidia.pytorch.version 8.6.3.1+cuda12.2.2.009: com.nvidia.tensorrt.version 23.11: com.nvidia.tensorrtoss.version nvidia_driver: com.nvidia.volumes.needed ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1  docker.io/kenneth850511/llamafactory:v0.9.1

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1  docker.io/kenneth850511/llamafactory:v0.9.1

Shell快速替换命令

sed -i 's#kenneth850511/llamafactory:v0.9.1#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1  docker.io/kenneth850511/llamafactory:v0.9.1'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1  docker.io/kenneth850511/llamafactory:v0.9.1'

镜像构建历史


# 2024-12-07 22:13:23  0.00B 声明容器运行时监听的端口
EXPOSE map[8000/tcp:{}]
                        
# 2024-12-07 22:13:23  0.00B 设置环境变量 API_PORT
ENV API_PORT=8000
                        
# 2024-12-07 22:13:23  0.00B 声明容器运行时监听的端口
EXPOSE map[7860/tcp:{}]
                        
# 2024-12-07 22:13:23  0.00B 设置环境变量 GRADIO_SERVER_PORT
ENV GRADIO_SERVER_PORT=7860
                        
# 2024-12-07 22:13:23  0.00B 创建挂载点用于持久化数据或共享数据
VOLUME [/root/.cache/huggingface /root/.cache/modelscope /app/data /app/output]
                        
# 2024-12-07 22:13:23  0.00B 执行命令并创建新的镜像层
RUN |8 INSTALL_BNB=false INSTALL_VLLM=false INSTALL_DEEPSPEED=false INSTALL_FLASHATTN=false INSTALL_LIGER_KERNEL=false INSTALL_HQQ=false INSTALL_EETQ=false PIP_INDEX=https://pypi.org/simple /bin/sh -c pip uninstall -y transformer-engine flash-attn &&     if [ "$INSTALL_FLASHATTN" == "true" ]; then         pip uninstall -y ninja && pip install ninja &&         pip install --no-cache-dir flash-attn --no-build-isolation;     fi # buildkit
                        
# 2024-12-07 22:12:42  67.31MB 执行命令并创建新的镜像层
RUN |8 INSTALL_BNB=false INSTALL_VLLM=false INSTALL_DEEPSPEED=false INSTALL_FLASHATTN=false INSTALL_LIGER_KERNEL=false INSTALL_HQQ=false INSTALL_EETQ=false PIP_INDEX=https://pypi.org/simple /bin/sh -c EXTRA_PACKAGES="metrics";     if [ "$INSTALL_BNB" == "true" ]; then         EXTRA_PACKAGES="${EXTRA_PACKAGES},bitsandbytes";     fi;     if [ "$INSTALL_VLLM" == "true" ]; then         EXTRA_PACKAGES="${EXTRA_PACKAGES},vllm";     fi;     if [ "$INSTALL_DEEPSPEED" == "true" ]; then         EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed";     fi;     if [ "$INSTALL_LIGER_KERNEL" == "true" ]; then         EXTRA_PACKAGES="${EXTRA_PACKAGES},liger-kernel";     fi;     if [ "$INSTALL_HQQ" == "true" ]; then         EXTRA_PACKAGES="${EXTRA_PACKAGES},hqq";     fi;     if [ "$INSTALL_EETQ" == "true" ]; then         EXTRA_PACKAGES="${EXTRA_PACKAGES},eetq";     fi;     pip install -e ".[$EXTRA_PACKAGES]" # buildkit
                        
# 2024-12-07 22:12:24  6.53MB 复制新文件或目录到容器中
COPY . /app # buildkit
                        
# 2024-12-07 22:12:20  508.80MB 执行命令并创建新的镜像层
RUN |8 INSTALL_BNB=false INSTALL_VLLM=false INSTALL_DEEPSPEED=false INSTALL_FLASHATTN=false INSTALL_LIGER_KERNEL=false INSTALL_HQQ=false INSTALL_EETQ=false PIP_INDEX=https://pypi.org/simple /bin/sh -c pip config set global.index-url "$PIP_INDEX" &&     pip config set global.extra-index-url "$PIP_INDEX" &&     python -m pip install --upgrade pip &&     python -m pip install -r requirements.txt # buildkit
                        
# 2024-12-07 22:09:26  331.00B 复制新文件或目录到容器中
COPY requirements.txt /app # buildkit
                        
# 2024-12-07 22:09:24  0.00B 设置工作目录为/app
WORKDIR /app
                        
# 2024-12-07 22:09:24  0.00B 定义构建参数
ARG PIP_INDEX=https://pypi.org/simple
                        
# 2024-12-07 22:09:24  0.00B 定义构建参数
ARG INSTALL_EETQ=false
                        
# 2024-12-07 22:09:24  0.00B 定义构建参数
ARG INSTALL_HQQ=false
                        
# 2024-12-07 22:09:24  0.00B 定义构建参数
ARG INSTALL_LIGER_KERNEL=false
                        
# 2024-12-07 22:09:24  0.00B 定义构建参数
ARG INSTALL_FLASHATTN=false
                        
# 2024-12-07 22:09:24  0.00B 定义构建参数
ARG INSTALL_DEEPSPEED=false
                        
# 2024-12-07 22:09:24  0.00B 定义构建参数
ARG INSTALL_VLLM=false
                        
# 2024-12-07 22:09:24  0.00B 定义构建参数
ARG INSTALL_BNB=false
                        
# 2024-12-07 22:09:24  0.00B 设置环境变量 VLLM_WORKER_MULTIPROC_METHOD
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
                        
# 2024-12-07 22:09:24  0.00B 设置环境变量 FLASH_ATTENTION_FORCE_BUILD
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
                        
# 2024-12-07 22:09:24  0.00B 设置环境变量 MAX_JOBS
ENV MAX_JOBS=4
                        
# 2024-02-10 10:48:50  0.00B 添加元数据标签
LABEL com.nvidia.build.ref=10200c7981051a74cf2d5e0347eb4b876821d15d
                        
# 2024-02-10 10:48:50  0.00B 定义构建参数
ARG NVIDIA_BUILD_REF
                        
# 2024-02-10 10:48:50  0.00B 添加元数据标签
LABEL com.nvidia.build.id=82611821
                        
# 2024-02-10 10:48:50  0.00B 设置环境变量 NVIDIA_BUILD_ID
ENV NVIDIA_BUILD_ID=82611821
                        
# 2024-02-10 10:48:50  0.00B 定义构建参数
ARG NVIDIA_BUILD_ID
                        
# 2024-02-10 10:48:50  719.00B 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2024-02-10 10:48:50  61.05KB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c ln -sf ${_CUDA_COMPAT_PATH}/lib.real ${_CUDA_COMPAT_PATH}/lib  && echo ${_CUDA_COMPAT_PATH}/lib > /etc/ld.so.conf.d/00-cuda-compat.conf  && ldconfig  && rm -f ${_CUDA_COMPAT_PATH}/lib # buildkit
                        
# 2024-02-10 10:48:50  0.00B 设置环境变量 CUDA_MODULE_LOADING
ENV CUDA_MODULE_LOADING=LAZY
                        
# 2024-02-10 10:48:50  0.00B 设置环境变量 TORCH_CUDNN_V8_API_ENABLED
ENV TORCH_CUDNN_V8_API_ENABLED=1
                        
# 2024-02-10 10:48:50  260.74MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Transformer Engine in iGPU container until Version variable is set"; else     pip install --no-cache-dir --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@release_v${TRANSFORMER_ENGINE_VERSION}; fi # buildkit
                        
# 2024-02-10 10:43:55  397.19MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c env MAX_JOBS=4 pip install flash-attn==2.4.2 # buildkit
                        
# 2024-02-10 10:01:41  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2024-02-10 10:01:41  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-02-10 10:01:41  43.70MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c pip install --no-cache-dir /opt/pytorch/torch_tensorrt/dist/*.whl # buildkit
                        
# 2024-02-10 09:58:11  0.00B 定义构建参数
ARG PYVER
                        
# 2024-02-10 09:58:11  148.80MB 复制新文件或目录到容器中
COPY torch_tensorrt/ /opt/pytorch/torch_tensorrt/ # buildkit
                        
# 2024-02-10 09:58:10  13.86MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip --version && python -c 'import sys; print(sys.platform)'     && pip install --no-cache-dir nvidia-pyindex     && if [ "${L4T}" = "1" ]; then pip install polygraphy; else       pip install --extra-index-url https://urm.nvidia.com/artifactory/api/pypi/sw-tensorrt-pypi/simple --no-cache-dir polygraphy==${POLYGRAPHY_VERSION}; fi     && pip install --extra-index-url http://sqrl/dldata/pip-simple --trusted-host sqrl --no-cache-dir pytorch-quantization==2.1.2 # buildkit
                        
# 2024-02-10 09:57:54  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2024-02-10 09:57:54  6.10MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -x  && URL=$(VERIFY=1 /nvidia/build-scripts/installTRT.sh | sed -n "s/^.*\(http.*\)tar.*$/\1/p")tar  && FILE=$(wget -O - $URL | sed -n 's/^.*href="\(TensorRT[^"]*\)".*$/\1/p' | egrep -v "internal|safety")  && wget $URL/$FILE -O - | tar -xz  && PY=$(python -c 'import sys; print(str(sys.version_info[0])+str(sys.version_info[1]))')  && pip install TensorRT-*/python/tensorrt-*-cp$PY*.whl  && pip install TensorRT-*/graphsurgeon/graphsurgeon-*.whl  && pip install TensorRT-*/uff/uff-*.whl  && mv /usr/src/tensorrt /opt  && ln -s /opt/tensorrt /usr/src/tensorrt  && rm -r TensorRT-*  && UFF_PATH=$(pip show uff | sed -n 's/Location: \(.*\)$/\1/p')/uff  && sed -i 's/from tensorflow import GraphDef/from tensorflow.python import GraphDef/'     $UFF_PATH/converters/tensorflow/conversion_helpers.py  && chmod +x ${UFF_PATH}/bin/convert_to_uff.py  && ln -sf ${UFF_PATH}/bin/convert_to_uff.py /usr/local/bin/convert-to-uff # buildkit
                        
# 2024-02-10 09:57:15  51.00MB 执行命令并创建新的镜像层
RUN /bin/sh -c chmod -R a+w . # buildkit
                        
# 2024-02-10 09:57:15  34.89MB 复制新文件或目录到容器中
COPY tutorials tutorials # buildkit
                        
# 2024-02-10 09:57:14  15.96MB 复制新文件或目录到容器中
COPY examples examples # buildkit
                        
# 2024-02-10 09:57:14  2.07KB 复制新文件或目录到容器中
COPY docker-examples docker-examples # buildkit
                        
# 2024-02-10 09:57:14  2.05KB 复制新文件或目录到容器中
COPY NVREADME.md README.md # buildkit
                        
# 2024-02-10 09:57:14  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-02-10 09:57:14  3.31GB 执行命令并创建新的镜像层
RUN /bin/sh -c if [ "${L4T}" = "1" ]; then     echo "Not installing rapids for L4T build." ; else     find /rapids  -name "*-Linux.tar.gz" -exec     tar -C /usr --exclude="*.a" --exclude="bin/xgboost" --strip-components=1 -xvf {} \;  && find /rapids -name "*.whl"     ! -name "Pillow-*"     ! -name "certifi-*"     ! -name "protobuf-*" -exec     pip install --no-cache-dir {} +  && pip install --no-cache-dir networkx==2.6.3  && rm $(pip show xgboost | grep Location | awk '{print $2}')/xgboost/lib/libxgboost.so; fi # buildkit
                        
# 2024-02-10 09:56:19  201.84KB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir --disable-pip-version-check tabulate # buildkit
                        
# 2024-02-10 09:56:17  3.66MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip uninstall -y pillow  && cd /tmp  && git clone https://github.com/uploadcare/pillow-simd  && cd pillow-simd  && git fetch --all --tags --prune  && git checkout tags/9.5.0  && sed -i 's/DEBUG = False/DEBUG = True/' setup.py  && patch -p1 < /opt/pytorch/pil_10.0.0_CVE-2023-44271_for_pillow_simd_9.5.0.patch  && patch -p1 < /opt/pytorch/pil_CVE-2023-50447_for_pillow_sim_9.5.0.patch  && rm /opt/pytorch/pil_10.0.0_CVE-2023-44271_for_pillow_simd_9.5.0.patch  && rm /opt/pytorch/pil_CVE-2023-50447_for_pillow_sim_9.5.0.patch  && if [[ $TARGETARCH = "amd64" ]] ; then CC="cc -mavx" pip install --no-cache-dir --disable-pip-version-check  . ; fi  && if [[ $TARGETARCH = "arm64" ]] ; then pip install --no-cache-dir --disable-pip-version-check  . ; fi  && rm -rf ../pillow-simd # buildkit
                        
# 2024-02-10 09:55:55  1.88GB 执行命令并创建新的镜像层
RUN /bin/sh -c ( cd vision && CFLAGS="-g0" FORCE_CUDA=1 NVCC_APPEND_FLAGS="--threads 8" pip install --no-cache-dir --no-build-isolation --disable-pip-version-check . )  && ( cd vision && cmake -Bbuild -H. -GNinja -DWITH_CUDA=1 -DCMAKE_PREFIX_PATH=`python -c 'import torch;print(torch.utils.cmake_prefix_path)'` && cmake --build build --target install && rm -rf build )  && ( cd fuser && pip install -r requirements.txt &&  python setup.py -version-tag=a0+${NVFUSER_VERSION} install && python setup.py clean)  && ( cd apex && CFLAGS="-g0" NVCC_APPEND_FLAGS="--threads 8" pip install -v --no-build-isolation --no-cache-dir --disable-pip-version-check --config-settings "--build-option=--cpp_ext --cuda_ext --bnp --xentropy --deprecated_fused_adam --deprecated_fused_lamb --fast_multihead_attn --distributed_lamb --fast_layer_norm --transducer --distributed_adam --fmha --fast_bottleneck --nccl_p2p --peer_memory --permutation_search --focal_loss --fused_conv_bias_relu --index_mul_2d --cudnn_gbn --group_norm" . )  && ( cd data && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check --no-deps -v . && rm -rf build )  && ( cd text && export TORCHDATA_VERSION="$(python -c 'import torchdata; print(torchdata.__version__)')" && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check --no-deps -v . && unset TORCHDATA_VERSION )  && ( cd pytorch/third_party/onnx && pip uninstall typing -y && CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . ) # buildkit
                        
# 2024-02-10 09:23:33  2.21KB 复制新文件或目录到容器中
COPY singularity/ /.singularity.d/ # buildkit
                        
# 2024-02-10 09:23:33  90.85MB 执行命令并创建新的镜像层
RUN /bin/sh -c export COCOAPI_TAG=$(echo ${COCOAPI_VERSION} | sed 's/^.*+n//')  && pip install --disable-pip-version-check --no-cache-dir git+https://github.com/nvidia/cocoapi.git@${COCOAPI_TAG}#subdirectory=PythonAPI # buildkit
                        
# 2024-02-10 09:23:09  0.00B 设置环境变量 COCOAPI_VERSION
ENV COCOAPI_VERSION=2.0+nv0.8.0
                        
# 2024-02-10 09:23:09  610.78MB 执行命令并创建新的镜像层
RUN /bin/sh -c if [ -z "${DALI_VERSION}" ] ; then   echo "Not Installing DALI for L4T Build." ; else   export DALI_PKG_SUFFIX="cuda${CUDA_VERSION%%.*}0"   && pip install --disable-pip-version-check --no-cache-dir                 --extra-index-url https://developer.download.nvidia.com/compute/redist                 --extra-index-url http://sqrl/dldata/pip-dali${DALI_URL_SUFFIX:-} --trusted-host sqrl         nvidia-dali-${DALI_PKG_SUFFIX}==${DALI_VERSION}; fi # buildkit
                        
# 2024-02-10 09:23:00  388.91MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir /tmp/dist/*.whl # buildkit
                        
# 2024-02-10 09:20:36  946.13KB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir -v -r /opt/pytorch/pytorch/requirements.txt # buildkit
                        
# 2024-02-10 09:20:34  3.30GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c mkdir -p /tmp/pip/     && cp /opt/transfer/torch*.whl /tmp/pip/.     && pip install /tmp/pip/torch*.whl     && patchelf --set-rpath '/usr/local/lib' /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_global_deps.so # buildkit
                        
# 2024-02-10 09:20:06  0.00B 设置环境变量 USE_EXPERIMENTAL_CUDNN_V8_API
ENV USE_EXPERIMENTAL_CUDNN_V8_API=1
                        
# 2024-02-10 09:20:06  0.00B 设置环境变量 TORCH_ALLOW_TF32_CUBLAS_OVERRIDE
ENV TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
                        
# 2024-02-10 09:20:06  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2024-02-10 09:20:06  0.00B 设置环境变量 PYTORCH_HOME
ENV PYTORCH_HOME=/opt/pytorch/pytorch
                        
# 2024-02-10 09:20:06  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX
                        
# 2024-02-10 09:20:06  0.00B 设置环境变量 UCC_CL_BASIC_TLS
ENV UCC_CL_BASIC_TLS=^sharp
                        
# 2024-02-10 09:20:06  53.68MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c OPENCV_VERSION=4.7.0 &&     cd / &&     wget -q -O - https://github.com/opencv/opencv/archive/${OPENCV_VERSION}.tar.gz | tar -xzf - &&     cd /opencv-${OPENCV_VERSION} &&     cmake -GNinja -Bbuild -H.           -DWITH_CUDA=OFF -DWITH_1394=OFF           -DPYTHON3_PACKAGES_PATH="/usr/local/lib/python${PYVER}/dist-packages"           -DBUILD_opencv_cudalegacy=OFF -DBUILD_opencv_stitching=OFF -DWITH_IPP=OFF -DWITH_PROTOBUF=OFF &&     cmake --build build --target install &&     cd modules/python/package &&     pip install --no-cache-dir --disable-pip-version-check -v . &&     rm -rf /opencv-${OPENCV_VERSION} # buildkit
                        
# 2024-02-10 09:17:28  0.00B 声明容器运行时监听的端口
EXPOSE map[6006/tcp:{}]
                        
# 2024-02-10 09:17:28  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2024-02-10 09:17:28  0.00B 设置环境变量 TENSORBOARD_PORT
ENV TENSORBOARD_PORT=6006
                        
# 2024-02-10 09:17:28  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2024-02-10 09:17:28  427.00B 复制新文件或目录到容器中
COPY jupyter_notebook_config.py /usr/local/etc/jupyter/ # buildkit
                        
# 2024-02-10 09:17:28  161.44MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --disable-pip-version-check --no-cache-dir git+https://github.com/cliffwoolley/jupyter_tensorboard.git@0.2.0+nv21.03  && mkdir -p $NVM_DIR  && curl -Lo- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.2/install.sh | bash  && source "$NVM_DIR/nvm.sh"  && nvm install 16.20.2 node  && jupyter labextension install jupyterlab_tensorboard  && jupyter serverextension enable jupyterlab  && pip install --no-cache-dir jupytext  && jupyter labextension install jupyterlab-jupytext@1.2.2  && ( cd /usr/local/share/jupyter/lab/staging       && npm prune --production )  && npm cache clean --force  && rm -rf /usr/local/share/.cache  && echo "source $NVM_DIR/nvm.sh" >> /etc/bash.bashrc  && mv /root/.jupyter/jupyter_notebook_config.json /usr/local/etc/jupyter/  && jupyter lab clean # buildkit
                        
# 2024-02-10 09:15:35  0.00B 设置环境变量 NVM_DIR
ENV NVM_DIR=/usr/local/nvm
                        
# 2024-02-10 09:15:35  27.51KB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c PATCHED_FILE=$(python -c "from tensorboard.plugins.core import core_plugin as _; print(_.__file__)") &&     sed -i 's/^\( *"--bind_all",\)$/\1 default=True,/' "$PATCHED_FILE" &&     test $(grep '^ *"--bind_all", default=True,$' "$PATCHED_FILE" | wc -l) -eq 1 # buildkit
                        
# 2024-02-10 09:15:34  176.03MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c git config --global url."https://github".insteadOf git://github &&     pip install --no-cache-dir notebook==6.4.10 jupyterlab==2.3.2 python-hostlist traitlets==5.9.0 &&     pip install --no-cache-dir tensorboard==2.9.0 # buildkit
                        
# 2024-02-10 09:15:20  2.13GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir         numpy==1.24.4         scipy==1.11.3         "PyYAML>=5.4.1"         astunparse         typing_extensions         cffi         spacy         mock         tqdm         librosa==0.10.1         expecttest==0.1.3         hypothesis==5.35.1         xdoctest==1.0.2         pytest         pytest-xdist         pytest-rerunfailures         pytest-shard         pytest-flakefinder         pybind11         Cython         "regex>=2020.1.8"         protobuf==4.24.4 &&     if [[ $TARGETARCH = "amd64" ]] ; then pip install --no-cache-dir mkl==2021.1.1 mkl-include==2021.1.1 mkl-devel==2021.1.1 ;     find /usr/local/lib -maxdepth 1 -type f -regex '.*\/lib\(tbb\|mkl\).*\.so\($\|\.[0-9]*\.[0-9]*\)' -exec rm -v {} + ; fi # buildkit
                        
# 2024-02-10 09:14:36  0.00B 设置环境变量 PIP_DEFAULT_TIMEOUT
ENV PIP_DEFAULT_TIMEOUT=100
                        
# 2024-02-10 09:14:36  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-02-10 09:14:36  0.00B 设置环境变量 PYTHONIOENCODING
ENV PYTHONIOENCODING=utf-8
                        
# 2024-02-10 09:14:36  2.22GB 复制新文件或目录到容器中
COPY . . # buildkit
                        
# 2024-02-10 09:14:17  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2024-02-10 09:14:17  46.71MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/OpenBLAS/0.3.24-$(uname -m)/OpenBLAS-0.3.24-$(uname -m).tar.gz" --output OpenBLAS.tar.gz &&     tar -xf OpenBLAS.tar.gz -C /usr/local/ &&     rm OpenBLAS.tar.gz # buildkit
                        
# 2024-02-10 09:14:17  69.55MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir pip setuptools==68.2.2 &&     pip install --no-cache-dir cmake # buildkit
                        
# 2024-02-10 09:14:12  20.71MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c curl -O https://bootstrap.pypa.io/get-pip.py &&     python get-pip.py &&     rm get-pip.py # buildkit
                        
# 2024-02-10 09:14:04  0.00B 设置环境变量 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION
ENV PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
                        
# 2024-02-10 09:14:04  204.96MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.02 PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 NVFUSER_BUILD_VERSION=d0bb811 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c export PYSFX=`echo "$PYVER" | cut -c1-1` &&     export DEBIAN_FRONTEND=noninteractive &&     apt-get update &&     apt-get install -y --no-install-recommends         python$PYVER-dev         python$PYSFX         python$PYSFX-dev         python$PYSFX-distutils         python-is-python$PYSFX         autoconf         automake         libatlas-base-dev         libgoogle-glog-dev         libbz2-dev         libleveldb-dev         liblmdb-dev         libprotobuf-dev         libsnappy-dev         libtool         nasm         protobuf-compiler         pkg-config         unzip         sox         libsndfile1         libpng-dev         libhdf5-103         libhdf5-dev         gfortran         rapidjson-dev         ninja-build         libedit-dev         build-essential         patchelf      && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-02-10 09:14:04  0.00B 定义构建参数
ARG L4T=0
                        
# 2024-02-10 09:14:04  0.00B 定义构建参数
ARG PYVER=3.10
                        
# 2024-02-10 09:14:04  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2024-02-10 09:14:04  0.00B 添加元数据标签
LABEL com.nvidia.pytorch.version=2.3.0a0+ebedce2
                        
# 2024-02-10 09:14:04  0.00B 设置环境变量 NVFUSER_BUILD_VERSION NVFUSER_VERSION
ENV NVFUSER_BUILD_VERSION=d0bb811 NVFUSER_VERSION=d0bb811
                        
# 2024-02-10 09:14:04  0.00B 设置环境变量 PYTORCH_BUILD_VERSION PYTORCH_VERSION PYTORCH_BUILD_NUMBER NVIDIA_PYTORCH_VERSION
ENV PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2 PYTORCH_VERSION=2.3.0a0+ebedce2 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.02
                        
# 2024-02-10 09:14:04  0.00B 定义构建参数
ARG NVFUSER_BUILD_VERSION
                        
# 2024-02-10 09:14:04  0.00B 定义构建参数
ARG PYTORCH_BUILD_VERSION
                        
# 2024-02-10 09:14:04  0.00B 定义构建参数
ARG NVIDIA_PYTORCH_VERSION
                        
# 2024-02-10 09:14:04  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=PyTorch
                        
# 2024-02-10 06:47:10  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:
                        
# 2024-02-10 06:47:10  933.16MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3 HPCX_VERSION=2.16rc4 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.15.0 OPENMPI_VERSION=4.1.5rc2 TARGETARCH=amd64 /bin/sh -c export DEVEL=1 BASE=0  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUDA.sh  && /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installNCCL.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && if [ -f "/tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch" ]; then patch -p0 < /tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch; fi  && rm -f /tmp/cuda-*.patch # buildkit
                        
# 2024-02-10 06:42:54  1.49KB 复制新文件或目录到容器中
COPY cuda-*.patch /tmp # buildkit
                        
# 2024-02-10 06:42:54  0.00B 设置环境变量 OMPI_MCA_coll_hcoll_enable
ENV OMPI_MCA_coll_hcoll_enable=0
                        
# 2024-02-10 06:42:54  0.00B 设置环境变量 OPAL_PREFIX PATH
ENV OPAL_PREFIX=/opt/hpcx/ompi PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin
                        
# 2024-02-10 06:42:54  224.34MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3 HPCX_VERSION=2.16rc4 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.15.0 OPENMPI_VERSION=4.1.5rc2 TARGETARCH=amd64 /bin/sh -c cd /nvidia  && ( export DEBIAN_FRONTEND=noninteractive        && apt-get update                            && apt-get install -y --no-install-recommends              libibverbs1                                  libibverbs-dev                               librdmacm1                                   librdmacm-dev                                libibumad3                                   libibumad-dev                                ibverbs-utils                                ibverbs-providers                     && rm -rf /var/lib/apt/lists/*               && rm $(dpkg-query -L                                    libibverbs-dev                               librdmacm-dev                                libibumad-dev                            | grep "\(\.so\|\.a\)$")          )                                            && ( cd opt/gdrcopy/                              && dpkg -i libgdrapi_*.deb                   )                                         && ( cp -r opt/hpcx /opt/                                         && cp etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/          && ln -sf /opt/hpcx/ompi /usr/local/mpi                      && ln -sf /opt/hpcx/ucx  /usr/local/ucx                      && sed -i 's/^\(hwloc_base_binding_policy\) = core$/\1 = none/' /opt/hpcx/ompi/etc/openmpi-mca-params.conf         && sed -i 's/^\(btl = self\)$/#\1/'                             /opt/hpcx/ompi/etc/openmpi-mca-params.conf       )                                                         && ldconfig # buildkit
                        
# 2024-02-10 06:42:54  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2024-02-10 06:42:54  0.00B 设置环境变量 GDRCOPY_VERSION HPCX_VERSION MOFED_VERSION OPENUCX_VERSION OPENMPI_VERSION RDMACORE_VERSION
ENV GDRCOPY_VERSION=2.3 HPCX_VERSION=2.16rc4 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.15.0 OPENMPI_VERSION=4.1.5rc2 RDMACORE_VERSION=39.0
                        
# 2024-02-10 06:42:54  0.00B 定义构建参数
ARG OPENMPI_VERSION
                        
# 2024-02-10 06:42:54  0.00B 定义构建参数
ARG OPENUCX_VERSION
                        
# 2024-02-10 06:42:54  0.00B 定义构建参数
ARG MOFED_VERSION=5.4-rdmacore39.0
                        
# 2024-02-10 06:42:54  0.00B 定义构建参数
ARG RDMACORE_VERSION
                        
# 2024-02-10 06:42:54  0.00B 定义构建参数
ARG HPCX_VERSION
                        
# 2024-02-10 06:42:54  0.00B 定义构建参数
ARG GDRCOPY_VERSION
                        
# 2024-02-10 06:42:46  84.87MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         build-essential         git         libglib2.0-0         less         libnl-route-3-200         libnl-3-dev         libnl-route-3-dev         libnuma-dev         libnuma1         libpmi2-0-dev         nano         numactl         openssh-client         vim         wget  && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-02-10 06:27:30  148.72KB 复制新文件或目录到容器中
COPY NVIDIA_Deep_Learning_Container_License.pdf /workspace/ # buildkit
                        
# 2024-02-10 06:27:30  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2024-02-10 06:27:30  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2024-02-10 06:27:30  14.52KB 复制新文件或目录到容器中
COPY entrypoint/ /opt/nvidia/ # buildkit
                        
# 2024-02-10 06:27:30  0.00B 设置环境变量 PATH LD_LIBRARY_PATH NVIDIA_VISIBLE_DEVICES NVIDIA_DRIVER_CAPABILITIES
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
                        
# 2024-02-10 06:27:30  0.00B 定义构建参数
ARG _LIBPATH_SUFFIX
                        
# 2024-02-10 06:27:30  46.00B 执行命令并创建新的镜像层
RUN |21 CUDA_VERSION=12.3.2.001 CUDA_DRIVER_VERSION=545.23.08 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.19.stable.20231214+cuda12.3 CUBLAS_VERSION=12.3.4.1 CUFFT_VERSION=11.0.12.1 CURAND_VERSION=10.3.4.107 CUSPARSE_VERSION=12.2.0.103 CUSOLVER_VERSION=11.5.4.101 CUTENSOR_VERSION=2.0.0.7 NPP_VERSION=12.2.3.2 NVJPEG_VERSION=12.3.0.81 CUDNN_VERSION=9.0.0.306 TRT_VERSION=8.6.3.1+cuda12.2.2.009 TRTOSS_VERSION=23.11 NSIGHT_SYSTEMS_VERSION=2023.4.1.97 NSIGHT_COMPUTE_VERSION=2023.3.1.1 DALI_VERSION=1.34.0 DALI_BUILD=12152788 POLYGRAPHY_VERSION=0.49.4 TRANSFORMER_ENGINE_VERSION=1.3 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf  && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2024-02-10 06:27:30  13.39KB 复制文件或目录到容器中
ADD docs.tgz / # buildkit
                        
# 2024-02-10 06:27:30  0.00B 设置环境变量 DALI_VERSION DALI_BUILD POLYGRAPHY_VERSION TRANSFORMER_ENGINE_VERSION
ENV DALI_VERSION=1.34.0 DALI_BUILD=12152788 POLYGRAPHY_VERSION=0.49.4 TRANSFORMER_ENGINE_VERSION=1.3
                        
# 2024-02-10 06:27:30  0.00B 定义构建参数
ARG TRANSFORMER_ENGINE_VERSION
                        
# 2024-02-10 06:27:30  0.00B 定义构建参数
ARG POLYGRAPHY_VERSION
                        
# 2024-02-10 06:27:30  0.00B 定义构建参数
ARG DALI_BUILD
                        
# 2024-02-10 06:27:30  0.00B 定义构建参数
ARG DALI_VERSION
                        
# 2024-02-10 06:27:30  0.00B 添加元数据标签
LABEL com.nvidia.nccl.version=2.19.stable.20231214+cuda12.3 com.nvidia.cublas.version=12.3.4.1 com.nvidia.cufft.version=11.0.12.1 com.nvidia.curand.version=10.3.4.107 com.nvidia.cusparse.version=12.2.0.103 com.nvidia.cusolver.version=11.5.4.101 com.nvidia.cutensor.version=2.0.0.7 com.nvidia.npp.version=12.2.3.2 com.nvidia.nvjpeg.version=12.3.0.81 com.nvidia.cudnn.version=9.0.0.306 com.nvidia.tensorrt.version=8.6.3.1+cuda12.2.2.009 com.nvidia.tensorrtoss.version=23.11 com.nvidia.nsightsystems.version=2023.4.1.97 com.nvidia.nsightcompute.version=2023.3.1.1
                        
# 2024-02-10 06:27:30  4.48GB 执行命令并创建新的镜像层
RUN |17 CUDA_VERSION=12.3.2.001 CUDA_DRIVER_VERSION=545.23.08 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.19.stable.20231214+cuda12.3 CUBLAS_VERSION=12.3.4.1 CUFFT_VERSION=11.0.12.1 CURAND_VERSION=10.3.4.107 CUSPARSE_VERSION=12.2.0.103 CUSOLVER_VERSION=11.5.4.101 CUTENSOR_VERSION=2.0.0.7 NPP_VERSION=12.2.3.2 NVJPEG_VERSION=12.3.0.81 CUDNN_VERSION=9.0.0.306 TRT_VERSION=8.6.3.1+cuda12.2.2.009 TRTOSS_VERSION=23.11 NSIGHT_SYSTEMS_VERSION=2023.4.1.97 NSIGHT_COMPUTE_VERSION=2023.3.1.1 /bin/sh -c /nvidia/build-scripts/installNCCL.sh  && /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUTENSOR.sh # buildkit
                        
# 2024-02-10 06:24:52  0.00B 设置环境变量 NCCL_VERSION CUBLAS_VERSION CUFFT_VERSION CURAND_VERSION CUSPARSE_VERSION CUSOLVER_VERSION CUTENSOR_VERSION NPP_VERSION NVJPEG_VERSION CUDNN_VERSION TRT_VERSION TRTOSS_VERSION NSIGHT_SYSTEMS_VERSION NSIGHT_COMPUTE_VERSION
ENV NCCL_VERSION=2.19.stable.20231214+cuda12.3 CUBLAS_VERSION=12.3.4.1 CUFFT_VERSION=11.0.12.1 CURAND_VERSION=10.3.4.107 CUSPARSE_VERSION=12.2.0.103 CUSOLVER_VERSION=11.5.4.101 CUTENSOR_VERSION=2.0.0.7 NPP_VERSION=12.2.3.2 NVJPEG_VERSION=12.3.0.81 CUDNN_VERSION=9.0.0.306 TRT_VERSION=8.6.3.1+cuda12.2.2.009 TRTOSS_VERSION=23.11 NSIGHT_SYSTEMS_VERSION=2023.4.1.97 NSIGHT_COMPUTE_VERSION=2023.3.1.1
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG NSIGHT_COMPUTE_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG NSIGHT_SYSTEMS_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG TRTOSS_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG TRT_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG CUDNN_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG NVJPEG_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG NPP_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG CUTENSOR_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG CUSOLVER_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG CUSPARSE_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG CURAND_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG CUFFT_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG CUBLAS_VERSION
                        
# 2024-02-10 06:24:52  0.00B 定义构建参数
ARG NCCL_VERSION
                        
# 2024-02-10 06:24:52  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver com.nvidia.cuda.version=9.0
                        
# 2024-02-10 06:24:52  0.00B 设置环境变量 _CUDA_COMPAT_PATH ENV BASH_ENV SHELL NVIDIA_REQUIRE_CUDA
ENV _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0
                        
# 2024-02-10 06:24:52  58.45KB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.3.2.001 CUDA_DRIVER_VERSION=545.23.08 JETPACK_HOST_MOUNTS= /bin/sh -c cp -vprd /nvidia/. /  &&  patch -p0 < /etc/startup_scripts.patch  &&  rm -f /etc/startup_scripts.patch # buildkit
                        
# 2024-02-10 06:24:52  449.28MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.3.2.001 CUDA_DRIVER_VERSION=545.23.08 JETPACK_HOST_MOUNTS= /bin/sh -c /nvidia/build-scripts/installCUDA.sh # buildkit
                        
# 2024-02-10 06:24:38  0.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.3.2.001 CUDA_DRIVER_VERSION=545.23.08 JETPACK_HOST_MOUNTS= /bin/sh -c if [ -n "${JETPACK_HOST_MOUNTS}" ]; then        echo "/usr/lib/aarch64-linux-gnu/tegra" > /etc/ld.so.conf.d/nvidia-tegra.conf     && echo "/usr/lib/aarch64-linux-gnu/tegra-egl" >> /etc/ld.so.conf.d/nvidia-tegra.conf;     fi # buildkit
                        
# 2024-02-10 06:24:38  0.00B 设置环境变量 CUDA_VERSION CUDA_DRIVER_VERSION CUDA_CACHE_DISABLE NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS
ENV CUDA_VERSION=12.3.2.001 CUDA_DRIVER_VERSION=545.23.08 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
                        
# 2024-02-10 06:24:38  0.00B 定义构建参数
ARG JETPACK_HOST_MOUNTS
                        
# 2024-02-10 06:24:38  0.00B 定义构建参数
ARG CUDA_DRIVER_VERSION
                        
# 2024-02-10 06:24:38  0.00B 定义构建参数
ARG CUDA_VERSION
                        
# 2024-02-10 06:24:38  317.72MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         apt-utils         build-essential         ca-certificates         curl         libncurses5         libncursesw5         patch         wget         rsync         unzip         jq         gnupg         libtcmalloc-minimal4 # buildkit
                        
# 2024-01-26 01:54:41  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2024-01-26 01:54:40  77.86MB 
/bin/sh -c #(nop) ADD file:99224b1f237763b3053ca27ea5641f9a801c21154c7ccbff2c099654cc6db942 in / 
                        
# 2024-01-26 01:54:38  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2024-01-26 01:54:38  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2024-01-26 01:54:38  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2024-01-26 01:54:38  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:8b44f008e3e48e1c42cf327f7ca8bef32bba63580b62a201f860fdc49b1559b0",
    "RepoTags": [
        "kenneth850511/llamafactory:v0.9.1",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory:v0.9.1"
    ],
    "RepoDigests": [
        "kenneth850511/llamafactory@sha256:7c97d413b4ee4f4e6a125924171a335e92829aedabc14666599cc20481f308b0",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kenneth850511/llamafactory@sha256:7c97d413b4ee4f4e6a125924171a335e92829aedabc14666599cc20481f308b0"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-12-07T14:13:23.413011628Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "6006/tcp": {},
            "7860/tcp": {},
            "8000/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin",
            "CUDA_VERSION=12.3.2.001",
            "CUDA_DRIVER_VERSION=545.23.08",
            "CUDA_CACHE_DISABLE=1",
            "NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=",
            "_CUDA_COMPAT_PATH=/usr/local/cuda/compat",
            "ENV=/etc/shinit_v2",
            "BASH_ENV=/etc/bash.bashrc",
            "SHELL=/bin/bash",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=9.0",
            "NCCL_VERSION=2.19.stable.20231214+cuda12.3",
            "CUBLAS_VERSION=12.3.4.1",
            "CUFFT_VERSION=11.0.12.1",
            "CURAND_VERSION=10.3.4.107",
            "CUSPARSE_VERSION=12.2.0.103",
            "CUSOLVER_VERSION=11.5.4.101",
            "CUTENSOR_VERSION=2.0.0.7",
            "NPP_VERSION=12.2.3.2",
            "NVJPEG_VERSION=12.3.0.81",
            "CUDNN_VERSION=9.0.0.306",
            "TRT_VERSION=8.6.3.1+cuda12.2.2.009",
            "TRTOSS_VERSION=23.11",
            "NSIGHT_SYSTEMS_VERSION=2023.4.1.97",
            "NSIGHT_COMPUTE_VERSION=2023.3.1.1",
            "DALI_VERSION=1.34.0",
            "DALI_BUILD=12152788",
            "POLYGRAPHY_VERSION=0.49.4",
            "TRANSFORMER_ENGINE_VERSION=1.3",
            "LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility,video",
            "NVIDIA_PRODUCT_NAME=PyTorch",
            "GDRCOPY_VERSION=2.3",
            "HPCX_VERSION=2.16rc4",
            "MOFED_VERSION=5.4-rdmacore39.0",
            "OPENUCX_VERSION=1.15.0",
            "OPENMPI_VERSION=4.1.5rc2",
            "RDMACORE_VERSION=39.0",
            "OPAL_PREFIX=/opt/hpcx/ompi",
            "OMPI_MCA_coll_hcoll_enable=0",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs:",
            "PYTORCH_BUILD_VERSION=2.3.0a0+ebedce2",
            "PYTORCH_VERSION=2.3.0a0+ebedce2",
            "PYTORCH_BUILD_NUMBER=0",
            "NVIDIA_PYTORCH_VERSION=24.02",
            "NVFUSER_BUILD_VERSION=d0bb811",
            "NVFUSER_VERSION=d0bb811",
            "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python",
            "PYTHONIOENCODING=utf-8",
            "LC_ALL=C.UTF-8",
            "PIP_DEFAULT_TIMEOUT=100",
            "NVM_DIR=/usr/local/nvm",
            "JUPYTER_PORT=8888",
            "TENSORBOARD_PORT=6006",
            "UCC_CL_BASIC_TLS=^sharp",
            "TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX",
            "PYTORCH_HOME=/opt/pytorch/pytorch",
            "CUDA_HOME=/usr/local/cuda",
            "TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1",
            "USE_EXPERIMENTAL_CUDNN_V8_API=1",
            "COCOAPI_VERSION=2.0+nv0.8.0",
            "TORCH_CUDNN_V8_API_ENABLED=1",
            "CUDA_MODULE_LOADING=LAZY",
            "NVIDIA_BUILD_ID=82611821",
            "MAX_JOBS=4",
            "FLASH_ATTENTION_FORCE_BUILD=TRUE",
            "VLLM_WORKER_MULTIPROC_METHOD=spawn",
            "GRADIO_SERVER_PORT=7860",
            "API_PORT=8000"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": {
            "/app/data": {},
            "/app/output": {},
            "/root/.cache/huggingface": {},
            "/root/.cache/modelscope": {}
        },
        "WorkingDir": "/app",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.build.id": "82611821",
            "com.nvidia.build.ref": "10200c7981051a74cf2d5e0347eb4b876821d15d",
            "com.nvidia.cublas.version": "12.3.4.1",
            "com.nvidia.cuda.version": "9.0",
            "com.nvidia.cudnn.version": "9.0.0.306",
            "com.nvidia.cufft.version": "11.0.12.1",
            "com.nvidia.curand.version": "10.3.4.107",
            "com.nvidia.cusolver.version": "11.5.4.101",
            "com.nvidia.cusparse.version": "12.2.0.103",
            "com.nvidia.cutensor.version": "2.0.0.7",
            "com.nvidia.nccl.version": "2.19.stable.20231214+cuda12.3",
            "com.nvidia.npp.version": "12.2.3.2",
            "com.nvidia.nsightcompute.version": "2023.3.1.1",
            "com.nvidia.nsightsystems.version": "2023.4.1.97",
            "com.nvidia.nvjpeg.version": "12.3.0.81",
            "com.nvidia.pytorch.version": "2.3.0a0+ebedce2",
            "com.nvidia.tensorrt.version": "8.6.3.1+cuda12.2.2.009",
            "com.nvidia.tensorrtoss.version": "23.11",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 22788282752,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/71f76e79ccd6516ad0d206fc15c3249ed16121f080c2b6176e508b9af4bb7c6a/diff:/var/lib/docker/overlay2/b9c37dd46b2397e4faff7ccdf73d68e8bd3a8a590d0db3cd48eafaf15e94d772/diff:/var/lib/docker/overlay2/4c27d9a57fbd76a2bcd09974aaced4fb371f561c9f8a3e2e3d07d2efc26c8b71/diff:/var/lib/docker/overlay2/a2af314b1c029dac6e610f6b69867b12a2f96709ba88bff4c50f72c10abb1399/diff:/var/lib/docker/overlay2/265cdef8fc78aeb6105bfe55dde0a9678f758629dee9b784de3388d0269fdcba/diff:/var/lib/docker/overlay2/e7f29a68d07ce539fe4fa9151bd5ffe699b8199bd140c038cc51fa2a9fe2f04a/diff:/var/lib/docker/overlay2/0a5e3be0c17e8aa2e6098581fe50934da6d4827df18d09b0c9bb70548a046861/diff:/var/lib/docker/overlay2/da93e137ce18d70172e939ad5213cc70da278a4f270a49d37e1fe26056e52534/diff:/var/lib/docker/overlay2/c9be87e5c699c2a4ce8574f55dad2d03bcae93d4cf933fb720f2552f35018069/diff:/var/lib/docker/overlay2/86fc7b3237d15fdcf7cce3db7671f1cef52e2d50d7f8ac976402e42075b9cfba/diff:/var/lib/docker/overlay2/a082b70c686e5db6f0819466a5a1dc048b47e74a7d050568cd5c4c64f7fe5eee/diff:/var/lib/docker/overlay2/49d60bff028c7cd80ad8cf51529b578f44db8f434ac5e99abb0e2dad6d460a55/diff:/var/lib/docker/overlay2/de456dbf8e8958204348a4ab837fa11a72a5df3707dc61f0ffc45048057b10d0/diff:/var/lib/docker/overlay2/7967d4d07f036bd1901428c4efb88a5135aa8c14c166abb24a7b1f7025223bad/diff:/var/lib/docker/overlay2/1d8e2b12d98ede0f4ce9b27017cb12f446cd4dae1dbfe08ed9a6eeccffc72390/diff:/var/lib/docker/overlay2/9b0f4287114a27d52acb5a009f2b995527129e28846680353b95e6fe69fbe089/diff:/var/lib/docker/overlay2/74e7f1cc8d8ecf3cc64766211344dda361464bdf2069da6e932db23dc179fe7e/diff:/var/lib/docker/overlay2/93994694f7c21cbd37027402abd0c64eb53bb59490a787bcce50a5d4af43230f/diff:/var/lib/docker/overlay2/e431a5049dfa576960242eadb8f69240d2a73a976046d86a71d1585b9d11774b/diff:/var/lib/docker/overlay2/bb547a866549926edc688e032d7433dfa4a8ab5ba989b4c229abebbce871c391/diff:/var/lib/docker/overlay2/674e6b34feca52a859c2a1a0c791f49ba08c518f13f932d42a33791ab151b3d4/diff:/var/lib/docker/overlay2/9f6bcb9ad611e9745bd9177cc8c0ed39828f73a4206db589235cdada1ae99720/diff:/var/lib/docker/overlay2/75574c0264107f346b04ce379a9fbf4b4478fcf4fea452f8c8b23ff85eef2c3b/diff:/var/lib/docker/overlay2/4ac4580ab7e1a7440ca1ce9ac9def3ae227fb47c8cb17786dfeb945acb073ef8/diff:/var/lib/docker/overlay2/763a3dd84d6d71658d7cad64b752d7693010b09a667d55860d0bd9fa47cd8404/diff:/var/lib/docker/overlay2/8d78771d3bb021773603a78b9586b48a0140c7d20b3a83c3c99f2c281649291c/diff:/var/lib/docker/overlay2/85f2091e9f38d5513722ea7198b2c2e859934236d3817805d96b62c06ed8a708/diff:/var/lib/docker/overlay2/c1c10ae080fabdf86c83dba3249b64430be7b34b7f280e03034a1302d6d51ff2/diff:/var/lib/docker/overlay2/2090f14e8777472cd59debcae9c806ab2fc27462337b4d9ff3908a7e9854ab8c/diff:/var/lib/docker/overlay2/3607bfc6850437ec64c46d9b48a5a46654da388e6856af7cc06150b1a420ff35/diff:/var/lib/docker/overlay2/7891145fe394bfa0b9b46d815877e274f44a9b9a7d8ca712adf96510e38ea38a/diff:/var/lib/docker/overlay2/78aa52a3a5cc0b3f693f9b6a519a29e6e8bbf70e49a11af30c09feb2875571c2/diff:/var/lib/docker/overlay2/09407543f7fe1f7893ef2c76d9e87796be4ce9c317f7501954cd5ce71c23cd7b/diff:/var/lib/docker/overlay2/e19a1fc6429d80b98518c6bde7255742085f35ae4d2f78d91d1af5925f6352a3/diff:/var/lib/docker/overlay2/6b07cd2ccc58d3dbf02a2ed3e33e3f727013e1d5a479df5ba60a558fe014adfe/diff:/var/lib/docker/overlay2/a28055ae7ae8de089d9ade387d86db2a85dbc88299cd056ce3599f806dd41da1/diff:/var/lib/docker/overlay2/639e26aa36fd330a8b499826bbd051a6f736ec7f13cf81b6831e0bbb5d9a8324/diff:/var/lib/docker/overlay2/d6c77fd9385e00a4f59d2c9b2a4de74f2bce26b24c665bb54adf4e27b4a415f5/diff:/var/lib/docker/overlay2/cce880411ad15ba4df9addd20db8f85a84dd55a1d0ddbe30e9293930001ef26e/diff:/var/lib/docker/overlay2/e30485b0d32a5453707e976fd5a2461aaab02cfc8d54b6d31f106325f3e15377/diff:/var/lib/docker/overlay2/0b05114affb907a03f4cae5df73b456810d4a6a955e9a1de7a2b1ae978728469/diff:/var/lib/docker/overlay2/e014dc3a3cafe3c7b32eb972774097233b5303702c25dd9abbad547630bd0008/diff:/var/lib/docker/overlay2/7ebf87137af163f025ad03bc627df56d9486940b7848992c95d2d55fcc82805a/diff:/var/lib/docker/overlay2/e20981005d6d0314d2d17a4cb05004412933fc381ff76d05a3827e2adb6504f2/diff:/var/lib/docker/overlay2/58b4ba08f94b4ec2e99c1cc3abd9a0dd6315add7b65d9c082c9999ec0ca7168d/diff:/var/lib/docker/overlay2/8100eb827358654d6b7271f0b7790f3c62a7a6f045893415fa4b666025c6addb/diff:/var/lib/docker/overlay2/3cc92d213349b865cd8ed3bfb7366269d7c0970bfa9c4483f92a2b129f656ac7/diff:/var/lib/docker/overlay2/616e13082d866192bd5ea612c697018050e9983baf8d31c7d4b2132f122c2e43/diff:/var/lib/docker/overlay2/121092c07ada78b7835d133fe90ccb41439c8837f55c6143577f4378f1a3dd13/diff:/var/lib/docker/overlay2/4cb3ba53a4954eb8d1d474b849631524085da968f9d7738d3724a330a2de7002/diff:/var/lib/docker/overlay2/71988560ac420bdfc936c3bedc6f6396cb507bd7e89e301886ebe4dfafa30666/diff:/var/lib/docker/overlay2/e180937623ac42cddd4cae7a34ecfbc9ab354f17e3fb3797c94a49c29469aaa1/diff:/var/lib/docker/overlay2/84b7be0436445044b5ccbb07a78951aad8783360f2b1a96f94f8ac0aeffd836a/diff:/var/lib/docker/overlay2/dadf7e0ed24a5d307b567a023a07a8f96811a9316839eb9dca0fef1a2a0ddd55/diff:/var/lib/docker/overlay2/e5127d9034e7fea59617c67529583ad49c05132fc65a3d650957b46edc8e1277/diff",
            "MergedDir": "/var/lib/docker/overlay2/a0f1dc26e60a2b4485e786f6d361a4730d3d3f5fbef1638c0fab530f58a157b3/merged",
            "UpperDir": "/var/lib/docker/overlay2/a0f1dc26e60a2b4485e786f6d361a4730d3d3f5fbef1638c0fab530f58a157b3/diff",
            "WorkDir": "/var/lib/docker/overlay2/a0f1dc26e60a2b4485e786f6d361a4730d3d3f5fbef1638c0fab530f58a157b3/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:1a102d1cac2bdae8a0160ac4365d4f8653e9d6da56c793a665d556ae07fb7f82",
            "sha256:8b6a65cdf23ce2d8aabd4149d107434c35ccc8fae84b0ed81ccbb604f52bf6d2",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:7b68b25110bd7619adeb72b4b7c19e784f5fc2ce271f044a8440e82d030ccbbf",
            "sha256:be9c4681d16d45d59eb47adb0e8564ac9f9332cc35851b4386fa5e7dffde169d",
            "sha256:7a206532e7bb72aa7fb5a37b24ec90166eddfc4c37f1ec75a9299f211fb16ff4",
            "sha256:cfbd2d5242f13d546b3b8fe19a25f274115703171820832656186561ea5eb7e8",
            "sha256:7472f9ec0a1999ecdd146a26a9f88cfd728d1e4ea63ce652535150ae88fea821",
            "sha256:ead76ef131ca1559a8d23a428530f5b5b9e2d47577156cab537df643fcabb2a9",
            "sha256:68f25652b577beb473321d021f202ed669dce366514db9071a334a56e9af1ddf",
            "sha256:5987c84bf960b8bd8d1e1deeb49f4d752ac6eb4686cdd644fa39815119709024",
            "sha256:0831a1130f7db67589ea60b6d7132264d81ee0301dd30bdcb95d09aefd674f60",
            "sha256:3d30658b2b86e7bd8b01b5ce9577fc673c7ab71b156638c45c8c63079dabfe1f",
            "sha256:dc36db325a7ab0e11892088f1bd0436076d08f9db3c26bed26863400bb8566e5",
            "sha256:bd5114e27cdad1f00bb10c98a0d6e9f74ec15524c4bfec93f6e69f47eb5b13ba",
            "sha256:f91480d37583386ca924f8fc685594071d8d235013b065bcd5c3c039c49b6d8c",
            "sha256:56988245e5e5f2e9532801d03f42dbcf4157b91aa7e37292f71c3d838eb14751",
            "sha256:fc4ad3cfb6de57cf07ae8cfaaf4eed16948be52fe0b5bc3f4c4cd69f8c6e2ef9",
            "sha256:93f1050968b5b5b07079fba47bd5194b3a549f45a914f55951b6ba9c1d749c3c",
            "sha256:60b8d3f1d4b85165f75220019860c2e1896c427c5fc2371f44768034d0cbdf03",
            "sha256:d4a638d12e84aec4ae40568a0f667a3f764958e0aa893640deda7c585bfb0963",
            "sha256:06f023a15b1f36a194b0f90e118da527458417a54e8c1bdb60a38e7e0a8573d5",
            "sha256:cc719adcd38dbb4515847e12f7d0f704b63cda6052ced99e67ed265b1ae06cac",
            "sha256:47c372ac6c4f4613b79b7bb59db863270fe402a1db7c8786492bbdd207d42e0a",
            "sha256:cde176d55a83beb951100402776db1aff4873622c4493b153eddc5a8bb23b607",
            "sha256:5d068ef3bf1ecbacbfce8f49d9b98d5f7f90c6a339f11f7ca238dc41d10f06ac",
            "sha256:d1ce2b44a8392a6276137d5078ac7ad15175598082a2c2d9ad801463d0d04478",
            "sha256:9d8900eb91a6c0d66f7a2efd307c617e21b93206596ce8d0aad817cd6f5491e9",
            "sha256:d9ebee02a910f565f04bbae98ee6d91626651ad89e0dcf15ced1701abd6d2b2f",
            "sha256:996967c303c9c422f7c8f5f7ee35e46709f14b8880cadfebefbcd789ceda8a78",
            "sha256:f86424e78f0d2170c1fe58baa5b7dcafd62d79197cbe5f5adace937aca3139ec",
            "sha256:db689f5bdd56aef640d383a5a1cbfa053196c538e91e9982ce257b3ff81dc4a1",
            "sha256:625cbf61ee05045cba77c45b4776fa0caa0e8dbbcb674596f83139d90b086928",
            "sha256:8768f04ddc6d36e4f47dca8007f4e3a075a7bcb4a177aa826b43ffca5978af9c",
            "sha256:f754f02e68a58e2c7301813438910abc20e1fcb6c25898a400b534a3a59d177d",
            "sha256:e2d3146eb46909575bd796b5a04c3d6115b6e95d22d43a58aa40e5da532bf87a",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:01897edf89c555137aacf1dea2fc2e81c8e60a8cda86fc6376b063da6d84ecf4",
            "sha256:12ff84e8a639c6be421070ae9fc4adc945572b954dac2ebf12ca7cb5e10cd1cd",
            "sha256:0bc423f2dad1a533a59c4e3604633517511e7098f35c5a017dfc3d1957ec60e3",
            "sha256:9efaeaca2e8f96d5af56839f0e5c0a5ee8ec7060b0882814b5c02797fcec3bd4",
            "sha256:252d11d607fe4462e35e9262a41269dc65458c250e82ff9c347057791bb6eee9",
            "sha256:6370df0406b5d02842a8acf23db8d1ba4a06a2c89896fac2f042ff47f00eb71c",
            "sha256:b451e10fbfb15a52f315313338c81931c9fa64c661ffb473d2bc5369a9e6012f",
            "sha256:bfdc2257709c5760d5b1f24a98c86ffaaedc40d40589713792f49f771f822dff",
            "sha256:02d9ae480fe1e8e3c961f29f5778726eff93957885a587da79544dc5c2cba266",
            "sha256:43fca6cf33f5671f9d2bc8591c3b97cecb2465e9606a69a920a36f2958385d26",
            "sha256:dd9c6ec46931d2c4da39fe90c69ef51a33511d8b46c3b5aef8aa6df6a776489f",
            "sha256:f691ea529e57c7fcb84dce3075025ccec54dedbf4c21c92e952f6ffabcbad4bb",
            "sha256:d3d07bcdd13e4a406b0df92028604b16a009af36508deaf57056310f7078d429",
            "sha256:9faf044c6be81e6acb77a87070cee00bc07a13ad852f2ff9c3aca7d3a554ca02",
            "sha256:d20d9417f312bc65986ba33d91cdcf7a2acff0ba70d2f36f058bea9b17db628d",
            "sha256:b7756f566352cbb95d1147d8f6190c5ea1ddcb5fa79048a815833250234205ed",
            "sha256:747529f83914183d6f6ea14d3d5532d44ba08b986064baec2af9d6a18af966f9",
            "sha256:d4ebd0e2d2233274ca03e042374ab70246050d08cc95eced455b382b74b54f28",
            "sha256:7bea22b7554cc8b6616752d1cb1b4cf6c31a55eec5710a4570989e993cdc159c"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-01-18T01:19:06.048947028+08:00"
    }
}

更多版本

docker.io/kenneth850511/llamafactory:v0.9.0

linux/amd64 docker.io22.68GB2025-01-18 00:42
5

docker.io/kenneth850511/llamafactory:v0.9.1

linux/amd64 docker.io22.79GB2025-01-18 01:19
7