docker.io/kjaebye/mujoco200:stable linux/amd64

docker.io/kjaebye/mujoco200:stable - 国内下载镜像源 浏览次数:24

该Docker镜像 docker.io/kjaebye/mujoco200 包含MuJoCo 200物理引擎。 它提供了一个预配置的环境,方便用户运行MuJoCo模拟。

源镜像 docker.io/kjaebye/mujoco200:stable
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable
镜像ID sha256:ad5b7fc7fe90ebabc0c76cfe3fccf0387e8939b0fa3420ce1a8c12bf686bf712
镜像TAG stable
大小 7.73GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD bash
启动入口
工作目录
OS/平台 linux/amd64
浏览量 24 次
贡献者 15*******8@qq.com
镜像创建 2023-04-03T07:51:58.758325816Z
同步时间 2025-05-13 09:15
更新时间 2025-05-17 14:08
环境变量
PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.2 brand=tesla,driver>=418,driver<419 brand=tesla,driver>=450,driver<451 NV_CUDA_CUDART_VERSION=11.2.152-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-2 CUDA_VERSION=11.2.2 LD_LIBRARY_PATH=/root/.mujoco/mujoco200/bin:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.2.2-1 NV_NVTX_VERSION=11.2.152-1 NV_LIBNPP_VERSION=11.3.2.152-1 NV_LIBNPP_PACKAGE=libnpp-11-2=11.3.2.152-1 NV_LIBCUSPARSE_VERSION=11.4.1.1152-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-2 NV_LIBCUBLAS_VERSION=11.4.1.1043-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-2=11.4.1.1043-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.8.4-1 NCCL_VERSION=2.8.4-1 NV_LIBNCCL_PACKAGE=libnccl2=2.8.4-1+cuda11.2 NV_CUDA_CUDART_DEV_VERSION=11.2.152-1 NV_NVML_DEV_VERSION=11.2.152-1 NV_LIBCUSPARSE_DEV_VERSION=11.4.1.1152-1 NV_LIBNPP_DEV_VERSION=11.3.2.152-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-2=11.3.2.152-1 NV_LIBCUBLAS_DEV_VERSION=11.4.1.1043-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-2 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-2=11.4.1.1043-1 NV_NVPROF_VERSION=11.2.152-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-2=11.2.152-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.8.4-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.8.4-1+cuda11.2 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.1.1.33 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.1.1.33-1+cuda11.2 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.1.1.33-1+cuda11.2
镜像标签
8.1.1.33: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable  docker.io/kjaebye/mujoco200:stable

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable  docker.io/kjaebye/mujoco200:stable

Shell快速替换命令

sed -i 's#kjaebye/mujoco200:stable#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable  docker.io/kjaebye/mujoco200:stable'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable  docker.io/kjaebye/mujoco200:stable'

镜像构建历史


# 2023-04-03 15:51:58  151.20MB 
/bin/sh -c pip install mujoco_py==2.0.2.8
                        
# 2023-04-03 15:51:27  2.39KB 
/bin/sh -c echo 'export LD_LIBRARY_PATH=/root/.mujoco/mujoco200/bin:${LD_LIBRARY_PATH}' >> /etc/bash.bashrc
                        
# 2023-04-03 15:51:27  0.00B 
/bin/sh -c #(nop)  ENV LD_LIBRARY_PATH=/root/.mujoco/mujoco200/bin:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-04-03 15:51:27  768.00B 
/bin/sh -c wget -P /root/.mujoco/mujoco200/bin/ https://roboti.us/file/mjkey.txt
                        
# 2023-04-03 15:51:25  8.87MB 
/bin/sh -c mv mujoco200_linux /root/.mujoco/mujoco200
                        
# 2023-04-03 15:51:24  0.00B 
/bin/sh -c rm mujoco200_linux.zip
                        
# 2023-04-03 15:51:24  8.87MB 
/bin/sh -c unzip mujoco200_linux.zip
                        
# 2023-04-03 15:51:23  4.43MB 
/bin/sh -c wget https://www.roboti.us/download/mujoco200_linux.zip
                        
# 2023-04-03 15:51:08  3.19KB 
/bin/sh -c echo '# startup run \n  if [ -f /root/start_ssh.sh ]; then \n      /root/start_ssh.sh \n  fi' >> /root/.bashrc
                        
# 2023-04-03 15:51:07  153.00B 
/bin/sh -c chmod +x /root/start_ssh.sh
                        
# 2023-04-03 15:51:07  153.00B 
/bin/sh -c echo '#!/bin/bash \n  LOGTIME=$(date "+%Y-%m-%d %H:%M:%S") \n  echo "[$LOGTIME] startup run..." >>/root/start_ssh.log \n  service ssh start >>/root/start_ssh.log' >> /root/start_ssh.sh
                        
# 2023-04-03 15:51:06  0.00B 
/bin/sh -c touch /root/start_ssh.sh
                        
# 2023-04-03 15:51:05  0.00B 
/bin/sh -c service ssh restart
                        
# 2023-04-03 15:51:05  3.39KB 
/bin/sh -c echo 'X11UseLocalhost no' >> /etc/ssh/sshd_config
                        
# 2023-04-03 15:51:04  3.37KB 
/bin/sh -c echo 'X11Displayoffset 10' >> /etc/ssh/sshd_config
                        
# 2023-04-03 15:51:03  3.35KB 
/bin/sh -c echo 'X11Forwarding yes' >> /etc/ssh/sshd_config
                        
# 2023-04-03 15:51:03  3.34KB 
/bin/sh -c echo 'PasswordAuthentication yes' >> /etc/ssh/sshd_config
                        
# 2023-04-03 15:51:02  3.31KB 
/bin/sh -c echo 'PermitRootLogin yes' >> /etc/ssh/sshd_config
                        
# 2023-04-03 15:51:02  776.00B 
/bin/sh -c echo "root:123123" | chpasswd
                        
# 2023-04-03 15:51:01  95.05MB 
/bin/sh -c apt-get install   libosmesa6-dev   libgl1-mesa-glx   libglfw3   libglew-dev   patchelf   gcc   python3.8-dev   unzip -y   libxrandr2   libxinerama1   libxcursor1   vim   openssh-server
                        
# 2023-04-03 15:50:36  768.00B 
/bin/sh -c #(nop) COPY file:b64b40240ac47710cb231cf8551ed20d6757514d4082863364f9b63d00439f49 in /root/.mujoco/mjkey.txt 
                        
# 2023-04-03 15:50:36  0.00B 
/bin/sh -c mkdir /root/.mujoco
                        
# 2023-04-03 15:50:36  0.00B 
/bin/sh -c rm get-pip.py
                        
# 2023-04-03 15:50:35  20.79MB 
/bin/sh -c python get-pip.py
                        
# 2023-04-03 15:50:28  2.57MB 
/bin/sh -c wget https://bootstrap.pypa.io/get-pip.py
                        
# 2023-04-03 15:50:27  4.08MB 
/bin/sh -c apt-get install python3-distutils -y
                        
# 2023-04-03 15:50:22  18.00B 
/bin/sh -c ln -s /usr/bin/python3.8 /usr/bin/python
                        
# 2023-04-03 15:50:22  18.00B 
/bin/sh -c ln -s /usr/bin/python3.8 /usr/bin/python3
                        
# 2023-04-03 15:50:21  0.00B 
/bin/sh -c rm /usr/bin/python3
                        
# 2023-04-03 15:50:20  14.63KB 
/bin/sh -c apt-get install python3.8 -y
                        
# 2023-04-03 15:50:19  676.42KB 
/bin/sh -c add-apt-repository ppa:deadsnakes/ppa -y
                        
# 2023-04-03 15:50:10  113.95MB 
/bin/sh -c apt-get install software-properties-common -y
                        
# 2023-04-03 15:49:31  217.66MB 
/bin/sh -c apt-get install git wget libgl1-mesa-glx -y
                        
# 2023-04-03 15:49:01  4.58MB 
/bin/sh -c DEBIAN_FRONTEND="noninteractive" apt-get install tzdata -y
                        
# 2023-04-03 15:48:57  43.32MB 
/bin/sh -c apt-get update
                        
# 2022-10-28 08:19:10  2.82GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-28 08:19:10  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.1.1.33
                        
# 2022-10-28 08:19:10  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-10-28 08:19:10  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-10-28 08:19:10  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.1.1.33-1+cuda11.2
                        
# 2022-10-28 08:19:10  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.1.1.33-1+cuda11.2
                        
# 2022-10-28 08:19:10  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2022-10-28 08:19:10  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.1.1.33
                        
# 2022-10-28 08:00:29  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2022-10-28 08:00:29  367.08KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2022-10-28 08:00:28  2.31GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     libtinfo5 libncursesw5     cuda-cudart-dev-11-2=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-2=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-2=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-2=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-2=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-2=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-28 08:00:28  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-10-28 08:00:28  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.8.4-1+cuda11.2
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.8.4-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.8.4-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-2=11.2.152-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.2.152-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-2=11.4.1.1043-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-2
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.4.1.1043-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-2=11.3.2.152-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.3.2.152-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.4.1.1152-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.2.152-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.2.152-1
                        
# 2022-10-28 08:00:28  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.2.2-1
                        
# 2022-10-28 07:50:56  252.23KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2022-10-28 07:50:55  1.79GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-2=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-2=${NV_NVTX_VERSION}     libcusparse-11-2=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-28 07:50:55  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-10-28 07:50:55  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.8.4-1+cuda11.2
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.8.4-1
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.8.4-1
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-2=11.4.1.1043-1
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.4.1.1043-1
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-2
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.4.1.1152-1
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-2=11.3.2.152-1
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.3.2.152-1
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.2.152-1
                        
# 2022-10-28 07:50:55  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.2.2-1
                        
# 2022-10-28 07:46:10  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2022-10-28 07:46:10  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2022-10-28 07:46:10  16.05KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2022-10-28 07:46:10  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2022-10-28 07:46:10  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2022-10-28 07:46:10  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2022-10-28 07:46:10  33.47MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-2=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && ln -s cuda-11.2 /usr/local/cuda &&     rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-28 07:46:01  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.2.2
                        
# 2022-10-28 07:46:01  18.29MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-10-28 07:46:01  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-10-28 07:46:01  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-10-28 07:46:01  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-2
                        
# 2022-10-28 07:46:01  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.2.152-1
                        
# 2022-10-28 07:46:01  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.2 brand=tesla,driver>=418,driver<419 brand=tesla,driver>=450,driver<451
                        
# 2022-10-28 07:46:01  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2022-10-25 09:53:35  0.00B 
/bin/sh -c #(nop)  CMD ["bash"]
                        
# 2022-10-25 09:53:34  72.79MB 
/bin/sh -c #(nop) ADD file:7633003155a1059419aa1a6756fafb6e4f419d65bff7feb7c945de1e29dccb1e in / 
                        
                    

镜像信息

{
    "Id": "sha256:ad5b7fc7fe90ebabc0c76cfe3fccf0387e8939b0fa3420ce1a8c12bf686bf712",
    "RepoTags": [
        "kjaebye/mujoco200:stable",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200:stable"
    ],
    "RepoDigests": [
        "kjaebye/mujoco200@sha256:155726315df852d74780f3ab47908562883a2858f3c9f5dede77baf0f9b61f25",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/kjaebye/mujoco200@sha256:155726315df852d74780f3ab47908562883a2858f3c9f5dede77baf0f9b61f25"
    ],
    "Parent": "",
    "Comment": "",
    "Created": "2023-04-03T07:51:58.758325816Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "20.10.22",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.2 brand=tesla,driver\u003e=418,driver\u003c419 brand=tesla,driver\u003e=450,driver\u003c451",
            "NV_CUDA_CUDART_VERSION=11.2.152-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-2",
            "CUDA_VERSION=11.2.2",
            "LD_LIBRARY_PATH=/root/.mujoco/mujoco200/bin:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.2.2-1",
            "NV_NVTX_VERSION=11.2.152-1",
            "NV_LIBNPP_VERSION=11.3.2.152-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-2=11.3.2.152-1",
            "NV_LIBCUSPARSE_VERSION=11.4.1.1152-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-2",
            "NV_LIBCUBLAS_VERSION=11.4.1.1043-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-2=11.4.1.1043-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.8.4-1",
            "NCCL_VERSION=2.8.4-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.8.4-1+cuda11.2",
            "NV_CUDA_CUDART_DEV_VERSION=11.2.152-1",
            "NV_NVML_DEV_VERSION=11.2.152-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.4.1.1152-1",
            "NV_LIBNPP_DEV_VERSION=11.3.2.152-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-2=11.3.2.152-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.4.1.1043-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-2",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-2=11.4.1.1043-1",
            "NV_NVPROF_VERSION=11.2.152-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-2=11.2.152-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.8.4-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.8.4-1+cuda11.2",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.1.1.33",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.1.1.33-1+cuda11.2",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.1.1.33-1+cuda11.2"
        ],
        "Cmd": [
            "bash"
        ],
        "Image": "sha256:5cdebd70b4efbeba2c431ee48fe7769bc1b2d7e2b5964edc3e4fa60addf18422",
        "Volumes": null,
        "WorkingDir": "",
        "Entrypoint": null,
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.1.1.33",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 7728000654,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/81a10a0955b90b4be69189a8f5bd022ffe2ec8690223abc2e1ee4b42443a09ea/diff:/var/lib/docker/overlay2/8222b278969994f657c7baf3f7acb937133f582a1ba43e3b7dfe99bc71cbf08a/diff:/var/lib/docker/overlay2/f9bc41666f1ab4acf55c391fe8fe143f2759cff0c61679b414fe17cb6405e36c/diff:/var/lib/docker/overlay2/087827e7a4f96afa19fba3606b04c49dbf244e67598e04b303fa6579605bd67f/diff:/var/lib/docker/overlay2/4955f3a48e5aca5c342e354ebb44ffca7fd51277196cd6ccedcc1fb0c17cdc71/diff:/var/lib/docker/overlay2/e7d4f2d48c3d0d644a0c2ba8b92bd6755a518f176c4ee28491d4fccd88de1649/diff:/var/lib/docker/overlay2/8f789d328eb42aed57f05f9d9e23322dacc9ab921aa0e5a0f4f00c5040e517b0/diff:/var/lib/docker/overlay2/ed1edc98207c5c860a9833c28f60148962a4cf9551a952b2db5a3f720162e92c/diff:/var/lib/docker/overlay2/4050192c64922d90feb2ce9b2295f5f887e04edb2082216a59513fcf22ecd1d8/diff:/var/lib/docker/overlay2/71904710b505b9ad8a7a9ddb07cf7d41c4b25b51265b70d0a6d15d2bf9746601/diff:/var/lib/docker/overlay2/4f16b522fc00150b605177ee8515a484ff1947195d3f4a0e8aab29188cf608a7/diff:/var/lib/docker/overlay2/23185cddc53dc82d9066dca872e2758fb3400818d267a0d8781cd8c7b0eaf753/diff:/var/lib/docker/overlay2/99a00aa03cd26e0a8d1dad4863ba3c0eb9e025d56eec961f3f162a8831be6859/diff:/var/lib/docker/overlay2/915a6506c9b7ef22a41a67d3cd09be0baf5fd22af4b982fcdf66fe492db0af93/diff:/var/lib/docker/overlay2/1c56514cac50e5320ace382da9268e3c60933e2f6e75c352a04df55aeedee161/diff:/var/lib/docker/overlay2/d5bab80771161e1e7ad6d073c2f3c4133330dc0be8abc5b514e3e4b5bf6d5f3f/diff:/var/lib/docker/overlay2/be451822f7d6827d8e6903a230717b0390e9398edd366951c5730f0b5c4a5887/diff:/var/lib/docker/overlay2/dc1d8578e7b10ffd0d695a6498a74b8d73e9a4015c52365505f2942b9ad41488/diff:/var/lib/docker/overlay2/73d2a32abeb1a36473d1fe11c8f39214c71a68a1c4ac087394fe2e7429d64b05/diff:/var/lib/docker/overlay2/109cbc097bdd91f909621c562cd640336d32bc0ee6241adbea25303c7a6f613a/diff:/var/lib/docker/overlay2/1d696f48090b89980303086f57dddc9783447a54eeba6233d93c6fe565b15aee/diff:/var/lib/docker/overlay2/4b09360942f2d2670fc4f2757f05e0efeddbcfeac145a6876d7f63765de90341/diff:/var/lib/docker/overlay2/81802700f55847e797fce3cbd9b9c1f6ef417c9cc774d54da5eb8618bb925102/diff:/var/lib/docker/overlay2/47deddd3a4fdb0d4acaf8550faf03fa9ae633b126ab31016d55cd590f7564fb9/diff:/var/lib/docker/overlay2/4d950fb7921f70aa845fd3291c1ee47daac41982168bf5f498eafcb408ef873d/diff:/var/lib/docker/overlay2/351b4b3b8aa500bb1b04fd6390d059d9f117fdac0fc0190135a3ff60526b2189/diff:/var/lib/docker/overlay2/444a8eeabc7fc2bd8417bf5a10364c4046358a7194cc0b93fa68df71efb2f23c/diff:/var/lib/docker/overlay2/c454b41488a12bb88bbb7245490752e97fe3aecac4cba7fb3dedc2be4001b27a/diff:/var/lib/docker/overlay2/1930877b294cbfd36f7b689846d05bb93c3ff25ee1bf7793a14c2a45b3cf51a1/diff:/var/lib/docker/overlay2/0d3f4096c72a032b43a3e044f6c28ffe31d516020aca80f64d6454933104c3fe/diff:/var/lib/docker/overlay2/f71f12bd0d4e87055b56bbc29afa80552a979f3eade46a6e4a2b2297dfff0a5e/diff:/var/lib/docker/overlay2/b3101f454450122a4d66cf0f9139246d5f204d98b2aa68d79e96b00560cbbf56/diff:/var/lib/docker/overlay2/65ec5ef1b19252c3f0efb72bfb5b089562a7543d429ccc620bb846fa00d17eeb/diff:/var/lib/docker/overlay2/991c0eedf61e1e2971cb2d239b738db48eb206a16faaed83d8461d24fbf80a63/diff:/var/lib/docker/overlay2/565fb7c5d33a5184f5e8107be958cfdf3dbbcb2a4c94e9a54dfbc15678c660da/diff:/var/lib/docker/overlay2/bb8cdfa4f380b3ec2231dd120a477e33fdae2dfea2bede00a465e507ac5fa7f6/diff:/var/lib/docker/overlay2/71ba6be82d16ef75341565d655ac5026925857383ec97b7536d82451e0b30896/diff:/var/lib/docker/overlay2/86d3e450636581260d303154404d6b54bb8d66268ea641694e43895731de73c7/diff:/var/lib/docker/overlay2/b4b3bbbf23418b2ff50b45caba7c8eda42a756069c63fcc418d6aab4ae8269e9/diff:/var/lib/docker/overlay2/e4b533ee605e34c8099aebd932a19eca8811af368e4222b812b4fe86dfca317f/diff:/var/lib/docker/overlay2/1d771b0d631a29620e91bde43d160e57b95cb0cd708d0b5fa3902b9c72e21b04/diff:/var/lib/docker/overlay2/a902a4ece1a613348efc2e08e31a67117cef2db84334a7c8f6652e57ee324051/diff:/var/lib/docker/overlay2/0839e2d1e2f315281b65d6c9abdd958b02dcbc2e32eca172e290b109739d56c9/diff",
            "MergedDir": "/var/lib/docker/overlay2/124e1ce19d8ef160df6a1844a6b7201ac0e2986e479c0efc26536c58f4174859/merged",
            "UpperDir": "/var/lib/docker/overlay2/124e1ce19d8ef160df6a1844a6b7201ac0e2986e479c0efc26536c58f4174859/diff",
            "WorkDir": "/var/lib/docker/overlay2/124e1ce19d8ef160df6a1844a6b7201ac0e2986e479c0efc26536c58f4174859/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:f4462d5b2da2985f37409c9b257afd2b9fb82356ce4e43e804ee34214242e34a",
            "sha256:3db8070c6f18b4d99269a0ad9d3ff659f4ddbff99c7bace7d4f001bcf94f0ede",
            "sha256:2d88fdd7be17f2d5f71833da6241ae16cf884cce28c7d044376d327f7013905f",
            "sha256:99f74e28b8f73c5e582cd0b1cf9bda3622b3eb0737f8c2a44e6cd5490fad591a",
            "sha256:5e34e8b67dbbcd442e4d1f2a15d5b6138cc3d588575ff830c2649da0867a5996",
            "sha256:dff1f22f7d2b16d25dd7ac1d2bdc7173c30b3138aa7a8fda4ade542ac0148444",
            "sha256:a25e57cc060acb21947affc94ae27804c4bfa8617c6987792daadb9c88302c91",
            "sha256:af87440b1c24f2e3910f8c5f3eea69eff4b8d04f0b1462dc7168eb09346a0300",
            "sha256:fd26b4474f7ac1122b8779629e069b798de3693361880c832a118e7d02c5ff9a",
            "sha256:d99dfa0172ae4d33854bacb5d92f0e32834f5d9bab2ea965ab8c90312c2d3ebf",
            "sha256:ecc08049c47e31020ddbd99db1e8570e4c97c60543eb3bacadda2713f5323e64",
            "sha256:7d6dc39f5c836575f5eddf45b1c3a6925d67beb802e4f59e00b5aa84bd316464",
            "sha256:ac42b6248feb6dfc4d26f845fb740d45edd08c1c7a9d23311e3c2fae94956ce6",
            "sha256:d59592b44cdadc1cd3070c9065cea395dc3cdb68937667b4ecca5f1cb01d861c",
            "sha256:0135c4c005db69cd76e4372edcfc8d91b628e40c6558bcd32806c094e99c07c3",
            "sha256:8dff067714400cbe38c9dc3d26c14b0f4a961b80febcc648e181aed61546e8e6",
            "sha256:a7e80ddb8280e010602041731e57fae9e293dab6ccd381410753fbaddb98ac33",
            "sha256:aa11006e155b6d2b7d3dda083991b11e0b2182d4dad2261432eefb7736c8ee8b",
            "sha256:db3fc4e3a9b3ec682f02b5fc6e8a17c5a2ec372394c0c829228d895446400913",
            "sha256:77b2f795169d01d9c58026fec1f91fec325278834bcaaab8b794de9ff15f8bba",
            "sha256:30f81e5cb70beee2b2f00a9fd15136757cb0e928f05ba0b65a08eeb6f96548b0",
            "sha256:a25bb9ba9b2a0ad356d73967efd295d3f7823eedd4bb6d45d811339205cab349",
            "sha256:3fc2bd64b605edee97f878a63f10cf33fec387553fc0e8d1ff6e1db9b58f2d37",
            "sha256:6f82b7baf9538789fca6fd1756a7ae843ed3e3f23199bbae3f3846854ef121cf",
            "sha256:a023675e450c487dae3db8a402b1abe514d96330f05f726a1535d235f822429c",
            "sha256:56b24c3891e157097ef49972dfb17d569b7ee2f834fc6bb3a18b8336c615bbe7",
            "sha256:6df1a9b1f788bee692e1f583c76bb0cd0557e43dfc44426df543508b38e23ba7",
            "sha256:12d2d9e870de20f62e7605779ccabc670277766eec8a1de35ae3196c8c37f8af",
            "sha256:509e2b82803b34d255c387200accd7ac086d0be60de9933f9f8cb0f525f30a13",
            "sha256:ade010690013d7bbb84c50a00d5081a80044ae7a4ba59c0f2601f3e4a83280f6",
            "sha256:32010d9e946ac724062e5bdd9aeb707a72770706947f90829c7c327601ba62c9",
            "sha256:8a2a9758fe77883feaf04d6b5ee6328e80062795ca4e587dc87d634be700dfa4",
            "sha256:940f272876b39336d7ccc5326932772e2e9fe9a7a67a98d40a9e4ab08fbb490f",
            "sha256:1b1864033280e60e6124ccc9b20154b83a0692a98f1cf2b91fa0f34348471d0b",
            "sha256:510c0f2e28f63294b490e43f98292e6bf75a1b73131f230e24d9355e5f09abe0",
            "sha256:d67c913309e4e71a806012a540fc2c120bbb77b5618e278de8375524b3bd7284",
            "sha256:36eaa27ee4ef0d4bc4c653665bea14846692ed8c7a738acf00da5960194768df",
            "sha256:95145f7ea0ab1db0c5a976596449635fcdfdcfa443624f3c9e6eb8a5e9478500",
            "sha256:55cb5bbabfc0ea63009a8900d13e5271a8092214adca81e519abda0d0bb778bc",
            "sha256:cd1d16c1ed592dc86af388420db50fcf7612742752f0f52b3e1b3e0ade9710a9",
            "sha256:7f36417c7f35895fbf84e521ba7756deb177d205168b2b0ab0468749993eb074",
            "sha256:a0826bb568ed4e99bbecef5520e26d83ea34ab4e64677520def3d548425a9214",
            "sha256:479ddacca19df757e58c47b7a024bba782eb29c3b4bf2f158a7229736dcd618e",
            "sha256:04f916335d206b43598ec4665198075d59c64855d34cf30f831f2c154d69f50d"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-05-13T09:06:57.552456118+08:00"
    }
}

更多版本

docker.io/kjaebye/mujoco200:stable

linux/amd64 docker.io7.73GB2025-05-13 09:15
23