docker.io/nvcr.io/nvidia/pytorch:24.05-py3 linux/amd64

docker.io/nvcr.io/nvidia/pytorch:24.05-py3 - 国内下载镜像源 浏览次数:60
这里是镜像的描述信息: NVIDIA PyTorch Docker Image

这是一个基于PyTorch框架的Docker容器镜像,提供了一个完整的深度学习环境。该镜像包含了PyTorch 1.x版本,以及其他必需的依赖包,如CUDA、cuDNN等。

使用这个镜像,您可以轻松地在本地环境中搭建一个深度学习工作站,进行各种机器学习和计算机视觉任务的实验和开发。

此外,该镜像还支持GPU加速,通过NVIDIA的CUDA和cuDNN技术,可以显著提高PyTorch的性能和效率。

源镜像 docker.io/nvcr.io/nvidia/pytorch:24.05-py3
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3
镜像ID sha256:d936dd218d4ffcfa353712b966e83f9b8cfe22a6ea68a813cfdc94cae9b2efce
镜像TAG 24.05-py3
大小 18.78GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 60 次
贡献者
镜像创建 2024-05-03T04:13:04.181019051Z
同步时间 2025-03-18 01:37
更新时间 2025-03-31 09:52
开放端口
6006/tcp 8888/tcp
环境变量
PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin CUDA_VERSION=12.4.1.003 CUDA_DRIVER_VERSION=550.54.15 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS= _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0 NCCL_VERSION=2.21.5 CUBLAS_VERSION=12.4.5.8 CUFFT_VERSION=11.2.1.3 CURAND_VERSION=10.3.5.147 CUSPARSE_VERSION=12.3.1.170 CUSOLVER_VERSION=11.6.1.9 CUTENSOR_VERSION=2.0.1.2 NPP_VERSION=12.2.5.30 NVJPEG_VERSION=12.3.1.117 CUDNN_VERSION=9.1.0.70 TRT_VERSION=10.0.1.6 TRTOSS_VERSION=24.05 NSIGHT_SYSTEMS_VERSION=2024.2.1.106 NSIGHT_COMPUTE_VERSION=2024.1.1.4 DALI_VERSION=1.37.1 DALI_BUILD=14636516 POLYGRAPHY_VERSION=0.49.10 TRANSFORMER_ENGINE_VERSION=1.6 LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video NVIDIA_PRODUCT_NAME=PyTorch GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0 OPAL_PREFIX=/opt/hpcx/ompi OMPI_MCA_coll_hcoll_enable=0 LIBRARY_PATH=/usr/local/cuda/lib64/stubs: PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 PYTORCH_VERSION=2.4.0a0+07cecf4 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.05 NVFUSER_BUILD_VERSION=0ff5802 NVFUSER_VERSION=0ff5802 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python PYTHONIOENCODING=utf-8 LC_ALL=C.UTF-8 PIP_DEFAULT_TIMEOUT=100 NVM_DIR=/usr/local/nvm JUPYTER_PORT=8888 TENSORBOARD_PORT=6006 UCC_CL_BASIC_TLS=^sharp TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX PYTORCH_HOME=/opt/pytorch/pytorch CUDA_HOME=/usr/local/cuda TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1 USE_EXPERIMENTAL_CUDNN_V8_API=1 COCOAPI_VERSION=2.0+nv0.8.0 TORCH_CUDNN_V8_API_ENABLED=1 CUDA_MODULE_LOADING=LAZY NVIDIA_BUILD_ID=91431255
镜像标签
91431255: com.nvidia.build.id 532819f386be489bee79e60e2b9878f8fc403e5b: com.nvidia.build.ref 12.4.5.8: com.nvidia.cublas.version 9.0: com.nvidia.cuda.version 9.1.0.70: com.nvidia.cudnn.version 11.2.1.3: com.nvidia.cufft.version 10.3.5.147: com.nvidia.curand.version 11.6.1.9: com.nvidia.cusolver.version 12.3.1.170: com.nvidia.cusparse.version 2.0.1.2: com.nvidia.cutensor.version 2.21.5: com.nvidia.nccl.version 12.2.5.30: com.nvidia.npp.version 2024.1.1.4: com.nvidia.nsightcompute.version 2024.2.1.106: com.nvidia.nsightsystems.version 12.3.1.117: com.nvidia.nvjpeg.version 2.4.0a0+07cecf4: com.nvidia.pytorch.version 10.0.1.6: com.nvidia.tensorrt.version 24.05: com.nvidia.tensorrtoss.version nvidia_driver: com.nvidia.volumes.needed ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3  docker.io/nvcr.io/nvidia/pytorch:24.05-py3

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3  docker.io/nvcr.io/nvidia/pytorch:24.05-py3

Shell快速替换命令

sed -i 's#nvcr.io/nvidia/pytorch:24.05-py3#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3  docker.io/nvcr.io/nvidia/pytorch:24.05-py3'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3  docker.io/nvcr.io/nvidia/pytorch:24.05-py3'

镜像构建历史


# 2024-05-03 12:13:04  0.00B 添加元数据标签
LABEL com.nvidia.build.ref=532819f386be489bee79e60e2b9878f8fc403e5b
                        
# 2024-05-03 12:13:04  0.00B 定义构建参数
ARG NVIDIA_BUILD_REF
                        
# 2024-05-03 12:13:04  0.00B 添加元数据标签
LABEL com.nvidia.build.id=91431255
                        
# 2024-05-03 12:13:04  0.00B 设置环境变量 NVIDIA_BUILD_ID
ENV NVIDIA_BUILD_ID=91431255
                        
# 2024-05-03 12:13:04  0.00B 定义构建参数
ARG NVIDIA_BUILD_ID
                        
# 2024-05-03 12:13:04  719.00B 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2024-05-03 12:13:04  83.67KB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c ln -sf ${_CUDA_COMPAT_PATH}/lib.real ${_CUDA_COMPAT_PATH}/lib  && echo ${_CUDA_COMPAT_PATH}/lib > /etc/ld.so.conf.d/00-cuda-compat.conf  && ldconfig  && rm -f ${_CUDA_COMPAT_PATH}/lib # buildkit
                        
# 2024-05-03 12:13:04  0.00B 设置环境变量 CUDA_MODULE_LOADING
ENV CUDA_MODULE_LOADING=LAZY
                        
# 2024-05-03 12:13:04  0.00B 设置环境变量 TORCH_CUDNN_V8_API_ENABLED
ENV TORCH_CUDNN_V8_API_ENABLED=1
                        
# 2024-05-03 12:13:04  305.71MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Transformer Engine in iGPU container until Version variable is set"; else     pip install --no-cache-dir --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@release_v${TRANSFORMER_ENGINE_VERSION}; fi # buildkit
                        
# 2024-05-03 12:08:13  400.33MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c env MAX_JOBS=4 pip install flash-attn==2.4.2 # buildkit
                        
# 2024-05-03 11:30:03  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2024-05-03 11:30:03  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-05-03 11:30:03  45.25MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c pip install --no-cache-dir /opt/pytorch/torch_tensorrt/dist/*.whl # buildkit
                        
# 2024-05-03 11:26:53  0.00B 定义构建参数
ARG PYVER
                        
# 2024-05-03 11:26:53  148.64MB 复制新文件或目录到容器中
COPY torch_tensorrt/ /opt/pytorch/torch_tensorrt/ # buildkit
                        
# 2024-05-03 11:26:52  14.00MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip --version && python -c 'import sys; print(sys.platform)'     && pip install --no-cache-dir nvidia-pyindex     && if [ "${L4T}" = "1" ]; then pip install polygraphy; else       pip install --extra-index-url https://urm.nvidia.com/artifactory/api/pypi/sw-tensorrt-pypi/simple --no-cache-dir polygraphy==${POLYGRAPHY_VERSION}; fi     && pip install --extra-index-url http://sqrl/dldata/pip-simple --trusted-host sqrl --no-cache-dir pytorch-quantization==2.1.2 # buildkit
                        
# 2024-05-03 11:26:37  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2024-05-03 11:26:37  5.40MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -x  && URL=$(VERIFY=1 /nvidia/build-scripts/installTRT.sh | sed -n "s/^.*\(http.*\)tar.*$/\1/p")tar  && FILE=$(wget -O - $URL | sed -n 's/^.*href="\(TensorRT[^"]*\)".*$/\1/p' | egrep -v "internal|safety")  && wget $URL/$FILE -O - | tar -xz  && PY=$(python -c 'import sys; print(str(sys.version_info[0])+str(sys.version_info[1]))')  && pip install TensorRT-*/python/tensorrt-*-cp$PY*.whl  && mv /usr/src/tensorrt /opt  && ln -s /opt/tensorrt /usr/src/tensorrt  && rm -r TensorRT-* # buildkit
                        
# 2024-05-03 11:25:59  51.00MB 执行命令并创建新的镜像层
RUN /bin/sh -c chmod -R a+w . # buildkit
                        
# 2024-05-03 11:25:58  34.89MB 复制新文件或目录到容器中
COPY tutorials tutorials # buildkit
                        
# 2024-05-03 11:25:58  15.96MB 复制新文件或目录到容器中
COPY examples examples # buildkit
                        
# 2024-05-03 11:25:58  2.07KB 复制新文件或目录到容器中
COPY docker-examples docker-examples # buildkit
                        
# 2024-05-03 11:25:58  2.05KB 复制新文件或目录到容器中
COPY NVREADME.md README.md # buildkit
                        
# 2024-05-03 11:25:58  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-05-03 11:25:58  2.21GB 执行命令并创建新的镜像层
RUN /bin/sh -c if [ "${L4T}" = "1" ]; then     echo "Not installing rapids for L4T build." ; else     find /rapids  -name "*-Linux.tar.gz" -exec     tar -C /usr --exclude="*.a" --exclude="bin/xgboost" --strip-components=1 -xvf {} \;  && find /rapids -name "*.whl"     ! -name "Pillow-*"     ! -name "certifi-*"     ! -name "protobuf-*" -exec     pip install --no-cache-dir {} + ; pip install numpy==1.24.4; fi # buildkit
                        
# 2024-05-03 11:25:20  201.84KB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir --disable-pip-version-check tabulate # buildkit
                        
# 2024-05-03 11:25:18  3.66MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip uninstall -y pillow  && cd /tmp  && git clone https://github.com/uploadcare/pillow-simd  && cd pillow-simd  && git fetch --all --tags --prune  && git checkout tags/9.5.0  && sed -i 's/DEBUG = False/DEBUG = True/' setup.py  && patch -p1 < /opt/pytorch/pil_10.0.0_CVE-2023-44271_for_pillow_simd_9.5.0.patch  && patch -p1 < /opt/pytorch/pil_CVE-2023-50447_for_pillow_sim_9.5.0.patch  && rm /opt/pytorch/pil_10.0.0_CVE-2023-44271_for_pillow_simd_9.5.0.patch  && rm /opt/pytorch/pil_CVE-2023-50447_for_pillow_sim_9.5.0.patch  && if [[ $TARGETARCH = "amd64" ]] ; then CC="cc -mavx" pip install --no-cache-dir --disable-pip-version-check  . ; fi  && if [[ $TARGETARCH = "arm64" ]] ; then pip install --no-cache-dir --disable-pip-version-check  . ; fi  && rm -rf ../pillow-simd # buildkit
                        
# 2024-05-03 11:24:57  786.47MB 执行命令并创建新的镜像层
RUN /bin/sh -c ( cd vision && export PYTORCH_VERSION=$(python -c "import torch; print(torch.__version__)") && CFLAGS="-g0" FORCE_CUDA=1 NVCC_APPEND_FLAGS="--threads 8" pip install --no-cache-dir --no-build-isolation --disable-pip-version-check . )  && ( cd vision && cmake -Bbuild -H. -GNinja -DWITH_CUDA=1 -DCMAKE_PREFIX_PATH=`python -c 'import torch;print(torch.utils.cmake_prefix_path)'` && cmake --build build --target install && rm -rf build )  && ( cd fuser && pip install -r requirements.txt &&  python setup.py -version-tag=a0+${NVFUSER_VERSION} install && python setup.py clean && cp $(find /usr/local/lib/python3.10/dist-packages/ -name libnvfuser_codegen.so)  /usr/local/lib/python3.10/dist-packages/torch/lib/ )  && ( cd lightning-thunder && python setup.py install && rm -rf build)  && ( cd apex && CFLAGS="-g0" NVCC_APPEND_FLAGS="--threads 8" pip install -v --no-build-isolation --no-cache-dir --disable-pip-version-check --config-settings "--build-option=--cpp_ext --cuda_ext --bnp --xentropy --deprecated_fused_adam --deprecated_fused_lamb --fast_multihead_attn --distributed_lamb --fast_layer_norm --transducer --distributed_adam --fmha --fast_bottleneck --nccl_p2p --peer_memory --permutation_search --focal_loss --fused_conv_bias_relu --index_mul_2d --cudnn_gbn --group_norm --nccl_allocator --gpu_direct_storage" . && rm -rf build )  && ( cd pytorch/third_party && rm -rf cudnn_frontend && git clone -b v1.3.0 --recursive --single-branch https://github.com/NVIDIA/cudnn-frontend.git && cd cudnn-frontend && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . && rm -rf build )  && ( cd pytorch/third_party/onnx && pip uninstall typing -y && CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . ) # buildkit
                        
# 2024-05-03 10:50:16  2.21KB 复制新文件或目录到容器中
COPY singularity/ /.singularity.d/ # buildkit
                        
# 2024-05-03 10:50:16  90.86MB 执行命令并创建新的镜像层
RUN /bin/sh -c export COCOAPI_TAG=$(echo ${COCOAPI_VERSION} | sed 's/^.*+n//')  && pip install --disable-pip-version-check --no-cache-dir git+https://github.com/nvidia/cocoapi.git@${COCOAPI_TAG}#subdirectory=PythonAPI # buildkit
                        
# 2024-05-03 10:49:54  0.00B 设置环境变量 COCOAPI_VERSION
ENV COCOAPI_VERSION=2.0+nv0.8.0
                        
# 2024-05-03 10:49:54  631.47MB 执行命令并创建新的镜像层
RUN /bin/sh -c if [ -z "${DALI_VERSION}" ] ; then   echo "Not Installing DALI for L4T Build." ; else   export DALI_PKG_SUFFIX="cuda${CUDA_VERSION%%.*}0"   && pip install --disable-pip-version-check --no-cache-dir                 --extra-index-url https://developer.download.nvidia.com/compute/redist                 --extra-index-url http://sqrl/dldata/pip-dali${DALI_URL_SUFFIX:-} --trusted-host sqrl         nvidia-dali-${DALI_PKG_SUFFIX}==${DALI_VERSION}; fi # buildkit
                        
# 2024-05-03 10:49:44  563.46MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir /tmp/dist/*.whl # buildkit
                        
# 2024-05-03 10:49:38  1.74MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir -v -r /opt/pytorch/pytorch/requirements.txt # buildkit
                        
# 2024-05-03 10:49:35  2.23GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install /opt/transfer/torch*.whl      && patchelf --set-rpath '/usr/local/lib' /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_global_deps.so # buildkit
                        
# 2024-05-03 10:49:07  0.00B 设置环境变量 USE_EXPERIMENTAL_CUDNN_V8_API
ENV USE_EXPERIMENTAL_CUDNN_V8_API=1
                        
# 2024-05-03 10:49:07  0.00B 设置环境变量 TORCH_ALLOW_TF32_CUBLAS_OVERRIDE
ENV TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
                        
# 2024-05-03 10:49:07  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2024-05-03 10:49:07  0.00B 设置环境变量 PYTORCH_HOME
ENV PYTORCH_HOME=/opt/pytorch/pytorch
                        
# 2024-05-03 10:49:07  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX
                        
# 2024-05-03 10:49:07  0.00B 设置环境变量 UCC_CL_BASIC_TLS
ENV UCC_CL_BASIC_TLS=^sharp
                        
# 2024-05-03 10:49:07  53.68MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c OPENCV_VERSION=4.7.0 &&     cd / &&     wget -q -O - https://github.com/opencv/opencv/archive/${OPENCV_VERSION}.tar.gz | tar -xzf - &&     cd /opencv-${OPENCV_VERSION} &&     cmake -GNinja -Bbuild -H.           -DWITH_CUDA=OFF -DWITH_1394=OFF           -DPYTHON3_PACKAGES_PATH="/usr/local/lib/python${PYVER}/dist-packages"           -DBUILD_opencv_cudalegacy=OFF -DBUILD_opencv_stitching=OFF -DWITH_IPP=OFF -DWITH_PROTOBUF=OFF &&     cmake --build build --target install &&     cd modules/python/package &&     pip install --no-cache-dir --disable-pip-version-check -v . &&     rm -rf /opencv-${OPENCV_VERSION} # buildkit
                        
# 2024-05-03 10:46:28  0.00B 声明容器运行时监听的端口
EXPOSE map[6006/tcp:{}]
                        
# 2024-05-03 10:46:28  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2024-05-03 10:46:28  0.00B 设置环境变量 TENSORBOARD_PORT
ENV TENSORBOARD_PORT=6006
                        
# 2024-05-03 10:46:28  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2024-05-03 10:46:28  427.00B 复制新文件或目录到容器中
COPY jupyter_notebook_config.py /usr/local/etc/jupyter/ # buildkit
                        
# 2024-05-03 10:46:28  161.45MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --disable-pip-version-check --no-cache-dir git+https://github.com/cliffwoolley/jupyter_tensorboard.git@0.2.0+nv21.03  && mkdir -p $NVM_DIR  && curl -Lo- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.2/install.sh | bash  && source "$NVM_DIR/nvm.sh"  && nvm install 16.20.2 node  && jupyter labextension install jupyterlab_tensorboard  && jupyter serverextension enable jupyterlab  && pip install --no-cache-dir jupytext  && jupyter labextension install jupyterlab-jupytext@1.2.2  && ( cd /usr/local/share/jupyter/lab/staging       && npm prune --production )  && npm cache clean --force  && rm -rf /usr/local/share/.cache  && echo "source $NVM_DIR/nvm.sh" >> /etc/bash.bashrc  && mv /root/.jupyter/jupyter_notebook_config.json /usr/local/etc/jupyter/  && jupyter lab clean # buildkit
                        
# 2024-05-03 10:44:31  0.00B 设置环境变量 NVM_DIR
ENV NVM_DIR=/usr/local/nvm
                        
# 2024-05-03 10:44:31  27.51KB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c PATCHED_FILE=$(python -c "from tensorboard.plugins.core import core_plugin as _; print(_.__file__)") &&     sed -i 's/^\( *"--bind_all",\)$/\1 default=True,/' "$PATCHED_FILE" &&     test $(grep '^ *"--bind_all", default=True,$' "$PATCHED_FILE" | wc -l) -eq 1 # buildkit
                        
# 2024-05-03 10:44:31  175.59MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c git config --global url."https://github".insteadOf git://github &&     pip install --no-cache-dir notebook==6.4.10 jupyterlab==2.3.2 python-hostlist traitlets==5.9.0 &&     pip install --no-cache-dir tensorboard==2.9.0 # buildkit
                        
# 2024-05-03 10:44:15  2.15GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir         numpy==1.24.4         scipy==1.11.3         "PyYAML>=5.4.1"         astunparse         typing_extensions         cffi         spacy         mock         tqdm         librosa==0.10.1         expecttest==0.1.3         hypothesis==5.35.1         xdoctest==1.0.2         pytest==8.1.1         pytest-xdist         pytest-rerunfailures         pytest-shard         pytest-flakefinder         pybind11         Cython         "regex>=2020.1.8"         protobuf==4.24.4 &&     if [[ $TARGETARCH = "amd64" ]] ; then pip install --no-cache-dir mkl==2021.1.1 mkl-include==2021.1.1 mkl-devel==2021.1.1 ;     find /usr/local/lib -maxdepth 1 -type f -regex '.*\/lib\(tbb\|mkl\).*\.so\($\|\.[0-9]*\.[0-9]*\)' -exec rm -v {} + ; fi # buildkit
                        
# 2024-05-03 10:43:30  0.00B 设置环境变量 PIP_DEFAULT_TIMEOUT
ENV PIP_DEFAULT_TIMEOUT=100
                        
# 2024-05-03 10:43:30  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-05-03 10:43:30  0.00B 设置环境变量 PYTHONIOENCODING
ENV PYTHONIOENCODING=utf-8
                        
# 2024-05-03 10:43:30  1.34GB 复制新文件或目录到容器中
COPY . . # buildkit
                        
# 2024-05-03 10:43:21  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2024-05-03 10:43:21  0.00B 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c if [ $TARGETARCH = "arm64" ]; then cd /opt &&     curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/nvpl_slim_24.04/sbsa/nvpl_slim_24.04.tar" --output nvpl_slim_24.04.tar &&     tar -xf nvpl_slim_24.04.tar &&     cp -r nvpl_slim_24.04/lib/* /usr/local/lib &&     cp -r nvpl_slim_24.04/include/* /usr/local/include &&     rm -rf nvpl_slim_24.04.tar nvpl_slim_24.04 ; fi # buildkit
                        
# 2024-05-03 10:43:21  46.71MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/OpenBLAS/0.3.24-$(uname -m)/OpenBLAS-0.3.24-$(uname -m).tar.gz" --output OpenBLAS.tar.gz &&     tar -xf OpenBLAS.tar.gz -C /usr/local/ &&     rm OpenBLAS.tar.gz # buildkit
                        
# 2024-05-03 10:43:20  70.34MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir pip setuptools==68.2.2 &&     pip install --no-cache-dir cmake # buildkit
                        
# 2024-05-03 10:43:15  21.32MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c curl -O https://bootstrap.pypa.io/get-pip.py &&     python get-pip.py &&     rm get-pip.py # buildkit
                        
# 2024-05-03 10:43:10  0.00B 设置环境变量 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION
ENV PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
                        
# 2024-05-03 10:43:10  198.72MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.05 PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 NVFUSER_BUILD_VERSION=0ff5802 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c export PYSFX=`echo "$PYVER" | cut -c1-1` &&     export DEBIAN_FRONTEND=noninteractive &&     apt-get update &&     apt-get install -y --no-install-recommends         python$PYVER-dev         python$PYSFX         python$PYSFX-dev         python$PYSFX-distutils         python-is-python$PYSFX         autoconf         automake         libatlas-base-dev         libgoogle-glog-dev         libbz2-dev         libc-ares2         libre2-9         libleveldb-dev         liblmdb-dev         libprotobuf-dev         libsnappy-dev         libtool         nasm         protobuf-compiler         pkg-config         unzip         sox         libsndfile1         libpng-dev         libhdf5-103         libhdf5-dev         gfortran         rapidjson-dev         ninja-build         libedit-dev         build-essential         patchelf      && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-05-03 10:43:10  0.00B 定义构建参数
ARG L4T=0
                        
# 2024-05-03 10:43:10  0.00B 定义构建参数
ARG PYVER=3.10
                        
# 2024-05-03 10:43:10  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2024-05-03 10:43:10  0.00B 添加元数据标签
LABEL com.nvidia.pytorch.version=2.4.0a0+07cecf4
                        
# 2024-05-03 10:43:10  0.00B 设置环境变量 NVFUSER_BUILD_VERSION NVFUSER_VERSION
ENV NVFUSER_BUILD_VERSION=0ff5802 NVFUSER_VERSION=0ff5802
                        
# 2024-05-03 10:43:10  0.00B 设置环境变量 PYTORCH_BUILD_VERSION PYTORCH_VERSION PYTORCH_BUILD_NUMBER NVIDIA_PYTORCH_VERSION
ENV PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4 PYTORCH_VERSION=2.4.0a0+07cecf4 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.05
                        
# 2024-05-03 10:43:10  0.00B 定义构建参数
ARG NVFUSER_BUILD_VERSION
                        
# 2024-05-03 10:43:10  0.00B 定义构建参数
ARG PYTORCH_BUILD_VERSION
                        
# 2024-05-03 10:43:10  0.00B 定义构建参数
ARG NVIDIA_PYTORCH_VERSION
                        
# 2024-05-03 10:43:10  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=PyTorch
                        
# 2024-05-01 23:58:19  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:
                        
# 2024-05-01 23:58:19  949.71MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 TARGETARCH=amd64 /bin/sh -c export DEVEL=1 BASE=0  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUDA.sh  && /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installNCCL.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && if [ -f "/tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch" ]; then patch -p0 < /tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch; fi  && rm -f /tmp/cuda-*.patch # buildkit
                        
# 2024-05-01 23:54:01  1.49KB 复制新文件或目录到容器中
COPY cuda-*.patch /tmp # buildkit
                        
# 2024-05-01 23:54:01  0.00B 设置环境变量 OMPI_MCA_coll_hcoll_enable
ENV OMPI_MCA_coll_hcoll_enable=0
                        
# 2024-05-01 23:54:01  0.00B 设置环境变量 OPAL_PREFIX PATH
ENV OPAL_PREFIX=/opt/hpcx/ompi PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin
                        
# 2024-05-01 23:54:01  229.15MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 TARGETARCH=amd64 /bin/sh -c cd /nvidia  && ( export DEBIAN_FRONTEND=noninteractive        && apt-get update                            && apt-get install -y --no-install-recommends              libibverbs1                                  libibverbs-dev                               librdmacm1                                   librdmacm-dev                                libibumad3                                   libibumad-dev                                ibverbs-utils                                ibverbs-providers                     && rm -rf /var/lib/apt/lists/*               && rm $(dpkg-query -L                                    libibverbs-dev                               librdmacm-dev                                libibumad-dev                            | grep "\(\.so\|\.a\)$")          )                                            && ( cd opt/gdrcopy/                              && dpkg -i libgdrapi_*.deb                   )                                         && ( cp -r opt/hpcx /opt/                                         && cp etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/          && ln -sf /opt/hpcx/ompi /usr/local/mpi                      && ln -sf /opt/hpcx/ucx  /usr/local/ucx                      && sed -i 's/^\(hwloc_base_binding_policy\) = core$/\1 = none/' /opt/hpcx/ompi/etc/openmpi-mca-params.conf         && sed -i 's/^\(btl = self\)$/#\1/'                             /opt/hpcx/ompi/etc/openmpi-mca-params.conf       )                                                         && ldconfig # buildkit
                        
# 2024-05-01 23:54:01  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2024-05-01 23:54:01  0.00B 设置环境变量 GDRCOPY_VERSION HPCX_VERSION MOFED_VERSION OPENUCX_VERSION OPENMPI_VERSION RDMACORE_VERSION
ENV GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0
                        
# 2024-05-01 23:54:01  0.00B 定义构建参数
ARG OPENMPI_VERSION
                        
# 2024-05-01 23:54:01  0.00B 定义构建参数
ARG OPENUCX_VERSION
                        
# 2024-05-01 23:54:01  0.00B 定义构建参数
ARG MOFED_VERSION=5.4-rdmacore39.0
                        
# 2024-05-01 23:54:01  0.00B 定义构建参数
ARG RDMACORE_VERSION
                        
# 2024-05-01 23:54:01  0.00B 定义构建参数
ARG HPCX_VERSION
                        
# 2024-05-01 23:54:01  0.00B 定义构建参数
ARG GDRCOPY_VERSION
                        
# 2024-05-01 23:53:52  84.88MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         build-essential         git         libglib2.0-0         less         libnl-route-3-200         libnl-3-dev         libnl-route-3-dev         libnuma-dev         libnuma1         libpmi2-0-dev         nano         numactl         openssh-client         vim         wget  && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-05-01 23:53:35  148.72KB 复制新文件或目录到容器中
COPY NVIDIA_Deep_Learning_Container_License.pdf /workspace/ # buildkit
                        
# 2024-05-01 23:53:35  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2024-05-01 23:53:35  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2024-05-01 23:53:35  14.85KB 复制新文件或目录到容器中
COPY entrypoint/ /opt/nvidia/ # buildkit
                        
# 2024-05-01 23:53:35  0.00B 设置环境变量 PATH LD_LIBRARY_PATH NVIDIA_VISIBLE_DEVICES NVIDIA_DRIVER_CAPABILITIES
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
                        
# 2024-05-01 23:53:35  0.00B 定义构建参数
ARG _LIBPATH_SUFFIX
                        
# 2024-05-01 23:53:35  46.00B 执行命令并创建新的镜像层
RUN |21 CUDA_VERSION=12.4.1.003 CUDA_DRIVER_VERSION=550.54.15 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.21.5 CUBLAS_VERSION=12.4.5.8 CUFFT_VERSION=11.2.1.3 CURAND_VERSION=10.3.5.147 CUSPARSE_VERSION=12.3.1.170 CUSOLVER_VERSION=11.6.1.9 CUTENSOR_VERSION=2.0.1.2 NPP_VERSION=12.2.5.30 NVJPEG_VERSION=12.3.1.117 CUDNN_VERSION=9.1.0.70 TRT_VERSION=10.0.1.6 TRTOSS_VERSION=24.05 NSIGHT_SYSTEMS_VERSION=2024.2.1.106 NSIGHT_COMPUTE_VERSION=2024.1.1.4 DALI_VERSION=1.37.1 DALI_BUILD=14636516 POLYGRAPHY_VERSION=0.49.10 TRANSFORMER_ENGINE_VERSION=1.6 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf  && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2024-04-30 23:19:23  13.39KB 复制文件或目录到容器中
ADD docs.tgz / # buildkit
                        
# 2024-04-30 23:19:23  0.00B 设置环境变量 DALI_VERSION DALI_BUILD POLYGRAPHY_VERSION TRANSFORMER_ENGINE_VERSION
ENV DALI_VERSION=1.37.1 DALI_BUILD=14636516 POLYGRAPHY_VERSION=0.49.10 TRANSFORMER_ENGINE_VERSION=1.6
                        
# 2024-04-30 23:19:23  0.00B 定义构建参数
ARG TRANSFORMER_ENGINE_VERSION
                        
# 2024-04-30 23:19:23  0.00B 定义构建参数
ARG POLYGRAPHY_VERSION
                        
# 2024-04-30 23:19:23  0.00B 定义构建参数
ARG DALI_BUILD
                        
# 2024-04-30 23:19:23  0.00B 定义构建参数
ARG DALI_VERSION
                        
# 2024-04-30 23:19:23  0.00B 添加元数据标签
LABEL com.nvidia.nccl.version=2.21.5 com.nvidia.cublas.version=12.4.5.8 com.nvidia.cufft.version=11.2.1.3 com.nvidia.curand.version=10.3.5.147 com.nvidia.cusparse.version=12.3.1.170 com.nvidia.cusolver.version=11.6.1.9 com.nvidia.cutensor.version=2.0.1.2 com.nvidia.npp.version=12.2.5.30 com.nvidia.nvjpeg.version=12.3.1.117 com.nvidia.cudnn.version=9.1.0.70 com.nvidia.tensorrt.version=10.0.1.6 com.nvidia.tensorrtoss.version=24.05 com.nvidia.nsightsystems.version=2024.2.1.106 com.nvidia.nsightcompute.version=2024.1.1.4
                        
# 2024-04-30 23:19:23  4.89GB 执行命令并创建新的镜像层
RUN |17 CUDA_VERSION=12.4.1.003 CUDA_DRIVER_VERSION=550.54.15 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.21.5 CUBLAS_VERSION=12.4.5.8 CUFFT_VERSION=11.2.1.3 CURAND_VERSION=10.3.5.147 CUSPARSE_VERSION=12.3.1.170 CUSOLVER_VERSION=11.6.1.9 CUTENSOR_VERSION=2.0.1.2 NPP_VERSION=12.2.5.30 NVJPEG_VERSION=12.3.1.117 CUDNN_VERSION=9.1.0.70 TRT_VERSION=10.0.1.6 TRTOSS_VERSION=24.05 NSIGHT_SYSTEMS_VERSION=2024.2.1.106 NSIGHT_COMPUTE_VERSION=2024.1.1.4 /bin/sh -c /nvidia/build-scripts/installNCCL.sh  && /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUTENSOR.sh # buildkit
                        
# 2024-04-30 23:16:35  0.00B 设置环境变量 NCCL_VERSION CUBLAS_VERSION CUFFT_VERSION CURAND_VERSION CUSPARSE_VERSION CUSOLVER_VERSION CUTENSOR_VERSION NPP_VERSION NVJPEG_VERSION CUDNN_VERSION TRT_VERSION TRTOSS_VERSION NSIGHT_SYSTEMS_VERSION NSIGHT_COMPUTE_VERSION
ENV NCCL_VERSION=2.21.5 CUBLAS_VERSION=12.4.5.8 CUFFT_VERSION=11.2.1.3 CURAND_VERSION=10.3.5.147 CUSPARSE_VERSION=12.3.1.170 CUSOLVER_VERSION=11.6.1.9 CUTENSOR_VERSION=2.0.1.2 NPP_VERSION=12.2.5.30 NVJPEG_VERSION=12.3.1.117 CUDNN_VERSION=9.1.0.70 TRT_VERSION=10.0.1.6 TRTOSS_VERSION=24.05 NSIGHT_SYSTEMS_VERSION=2024.2.1.106 NSIGHT_COMPUTE_VERSION=2024.1.1.4
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG NSIGHT_COMPUTE_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG NSIGHT_SYSTEMS_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG TRTOSS_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG TRT_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG CUDNN_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG NVJPEG_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG NPP_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG CUTENSOR_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG CUSOLVER_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG CUSPARSE_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG CURAND_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG CUFFT_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG CUBLAS_VERSION
                        
# 2024-04-30 23:16:35  0.00B 定义构建参数
ARG NCCL_VERSION
                        
# 2024-04-30 23:16:35  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver com.nvidia.cuda.version=9.0
                        
# 2024-04-30 23:16:35  0.00B 设置环境变量 _CUDA_COMPAT_PATH ENV BASH_ENV SHELL NVIDIA_REQUIRE_CUDA
ENV _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0
                        
# 2024-04-30 23:16:35  58.91KB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.4.1.003 CUDA_DRIVER_VERSION=550.54.15 JETPACK_HOST_MOUNTS= /bin/sh -c cp -vprd /nvidia/. /  &&  patch -p0 < /etc/startup_scripts.patch  &&  rm -f /etc/startup_scripts.patch # buildkit
                        
# 2024-04-30 23:16:35  462.85MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.4.1.003 CUDA_DRIVER_VERSION=550.54.15 JETPACK_HOST_MOUNTS= /bin/sh -c /nvidia/build-scripts/installCUDA.sh # buildkit
                        
# 2024-04-26 23:10:57  0.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.4.1.003 CUDA_DRIVER_VERSION=550.54.15 JETPACK_HOST_MOUNTS= /bin/sh -c if [ -n "${JETPACK_HOST_MOUNTS}" ]; then        echo "/usr/lib/aarch64-linux-gnu/tegra" > /etc/ld.so.conf.d/nvidia-tegra.conf     && echo "/usr/lib/aarch64-linux-gnu/tegra-egl" >> /etc/ld.so.conf.d/nvidia-tegra.conf;     fi # buildkit
                        
# 2024-04-26 23:10:57  0.00B 设置环境变量 CUDA_VERSION CUDA_DRIVER_VERSION CUDA_CACHE_DISABLE NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS
ENV CUDA_VERSION=12.4.1.003 CUDA_DRIVER_VERSION=550.54.15 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
                        
# 2024-04-26 23:10:57  0.00B 定义构建参数
ARG JETPACK_HOST_MOUNTS
                        
# 2024-04-26 23:10:57  0.00B 定义构建参数
ARG CUDA_DRIVER_VERSION
                        
# 2024-04-26 23:10:57  0.00B 定义构建参数
ARG CUDA_VERSION
                        
# 2024-04-30 23:16:21  333.97MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         apt-utils         build-essential         ca-certificates         curl         libncurses5         libncursesw5         patch         wget         rsync         unzip         jq         gnupg         libtcmalloc-minimal4 # buildkit
                        
# 2024-04-18 01:56:35  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2024-04-18 01:56:35  77.86MB 
/bin/sh -c #(nop) ADD file:aa631666e3d7f8925e1308c15b2b63b5649db2cfcb079cba8218af98a5966923 in / 
                        
# 2024-04-18 01:56:33  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2024-04-18 01:56:33  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2024-04-18 01:56:33  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2024-04-18 01:56:33  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:d936dd218d4ffcfa353712b966e83f9b8cfe22a6ea68a813cfdc94cae9b2efce",
    "RepoTags": [
        "nvcr.io/nvidia/pytorch:24.05-py3",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.05-py3"
    ],
    "RepoDigests": [
        "nvcr.io/nvidia/pytorch@sha256:d4030fc006cce2e56497fa07d003c5996de0eb7bde3610599fedbe7e7d03adea",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch@sha256:aee54b9ff9c1d608fd595018784ea3f904be46602309b8f8486e7e5c2039f5a0"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-05-03T04:13:04.181019051Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "6006/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin",
            "CUDA_VERSION=12.4.1.003",
            "CUDA_DRIVER_VERSION=550.54.15",
            "CUDA_CACHE_DISABLE=1",
            "NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=",
            "_CUDA_COMPAT_PATH=/usr/local/cuda/compat",
            "ENV=/etc/shinit_v2",
            "BASH_ENV=/etc/bash.bashrc",
            "SHELL=/bin/bash",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=9.0",
            "NCCL_VERSION=2.21.5",
            "CUBLAS_VERSION=12.4.5.8",
            "CUFFT_VERSION=11.2.1.3",
            "CURAND_VERSION=10.3.5.147",
            "CUSPARSE_VERSION=12.3.1.170",
            "CUSOLVER_VERSION=11.6.1.9",
            "CUTENSOR_VERSION=2.0.1.2",
            "NPP_VERSION=12.2.5.30",
            "NVJPEG_VERSION=12.3.1.117",
            "CUDNN_VERSION=9.1.0.70",
            "TRT_VERSION=10.0.1.6",
            "TRTOSS_VERSION=24.05",
            "NSIGHT_SYSTEMS_VERSION=2024.2.1.106",
            "NSIGHT_COMPUTE_VERSION=2024.1.1.4",
            "DALI_VERSION=1.37.1",
            "DALI_BUILD=14636516",
            "POLYGRAPHY_VERSION=0.49.10",
            "TRANSFORMER_ENGINE_VERSION=1.6",
            "LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility,video",
            "NVIDIA_PRODUCT_NAME=PyTorch",
            "GDRCOPY_VERSION=2.3.1-1",
            "HPCX_VERSION=2.19",
            "MOFED_VERSION=5.4-rdmacore39.0",
            "OPENUCX_VERSION=1.17.0",
            "OPENMPI_VERSION=4.1.7",
            "RDMACORE_VERSION=39.0",
            "OPAL_PREFIX=/opt/hpcx/ompi",
            "OMPI_MCA_coll_hcoll_enable=0",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs:",
            "PYTORCH_BUILD_VERSION=2.4.0a0+07cecf4",
            "PYTORCH_VERSION=2.4.0a0+07cecf4",
            "PYTORCH_BUILD_NUMBER=0",
            "NVIDIA_PYTORCH_VERSION=24.05",
            "NVFUSER_BUILD_VERSION=0ff5802",
            "NVFUSER_VERSION=0ff5802",
            "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python",
            "PYTHONIOENCODING=utf-8",
            "LC_ALL=C.UTF-8",
            "PIP_DEFAULT_TIMEOUT=100",
            "NVM_DIR=/usr/local/nvm",
            "JUPYTER_PORT=8888",
            "TENSORBOARD_PORT=6006",
            "UCC_CL_BASIC_TLS=^sharp",
            "TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX",
            "PYTORCH_HOME=/opt/pytorch/pytorch",
            "CUDA_HOME=/usr/local/cuda",
            "TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1",
            "USE_EXPERIMENTAL_CUDNN_V8_API=1",
            "COCOAPI_VERSION=2.0+nv0.8.0",
            "TORCH_CUDNN_V8_API_ENABLED=1",
            "CUDA_MODULE_LOADING=LAZY",
            "NVIDIA_BUILD_ID=91431255"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.build.id": "91431255",
            "com.nvidia.build.ref": "532819f386be489bee79e60e2b9878f8fc403e5b",
            "com.nvidia.cublas.version": "12.4.5.8",
            "com.nvidia.cuda.version": "9.0",
            "com.nvidia.cudnn.version": "9.1.0.70",
            "com.nvidia.cufft.version": "11.2.1.3",
            "com.nvidia.curand.version": "10.3.5.147",
            "com.nvidia.cusolver.version": "11.6.1.9",
            "com.nvidia.cusparse.version": "12.3.1.170",
            "com.nvidia.cutensor.version": "2.0.1.2",
            "com.nvidia.nccl.version": "2.21.5",
            "com.nvidia.npp.version": "12.2.5.30",
            "com.nvidia.nsightcompute.version": "2024.1.1.4",
            "com.nvidia.nsightsystems.version": "2024.2.1.106",
            "com.nvidia.nvjpeg.version": "12.3.1.117",
            "com.nvidia.pytorch.version": "2.4.0a0+07cecf4",
            "com.nvidia.tensorrt.version": "10.0.1.6",
            "com.nvidia.tensorrtoss.version": "24.05",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 18777784670,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/636b41a13029ad107d4a6f4eb492204f4a2539966b3f97cd50f41cde706ed230/diff:/var/lib/docker/overlay2/c547618b2f8281e45132af8ea74e529beeb3f687f4a7d1c1880f1256d24a547e/diff:/var/lib/docker/overlay2/0f7d5b24826e4ae9d87d6cf73f14d54bb8784070173e34b34fb38b4e8436a167/diff:/var/lib/docker/overlay2/0776288f7e986dff501f72fbb0b7d622538e2315380fb8b49014b82dee303189/diff:/var/lib/docker/overlay2/adaefec39d6910f3fed7554ba12b46c4ed98760355d8729852db547b90ec59ce/diff:/var/lib/docker/overlay2/a3b894490addcb15c22c4761f6ff8d02da95ff773f6730da4cfcd41c664ca01a/diff:/var/lib/docker/overlay2/98095b4f0c1423a32fcd3b78a35e060c6bfb0d7042175ff913293aabec7d2c84/diff:/var/lib/docker/overlay2/00ce0d5a2edb2c2d75fbec178ca5bee112162bcf9bdcf49426dce7ad9e510a02/diff:/var/lib/docker/overlay2/a0f1b1ba837bb1c3494f43a4e862362dc62837c25ec059367a7c40b907425d49/diff:/var/lib/docker/overlay2/225e79a7165fac815d3d2d1701efb0b164665e5a33657be945fb84bd416c7e96/diff:/var/lib/docker/overlay2/6a4e5fd59e0c09dbb35714a349f071246f16172428b69beca9a9a30db1b9e11a/diff:/var/lib/docker/overlay2/cbec0ed441157c4ec4ec786636b46c8ee9a6a37d584f172b1891140cf76b79c2/diff:/var/lib/docker/overlay2/9a4047ad2ac2881091d1a55f74efec7b5effa1e3581d2afea51d242e5465494f/diff:/var/lib/docker/overlay2/c22a95294a9a7551327553d3d8f85f7186a6e9f9e84a448e0b2b1bf29763c7d1/diff:/var/lib/docker/overlay2/bfe98881475523ce90fc4a3db957f48d8824dac449bf51fa91ddcd8dc8ce0d29/diff:/var/lib/docker/overlay2/83ce4b46cacc2eb3f561b298e2dcc69664aa9a1eb5acfce5dfca5b13e91f302d/diff:/var/lib/docker/overlay2/bf950c49128d6cd7ec50d9112573a32416f620194a1266c76bccfe6a15d4d15b/diff:/var/lib/docker/overlay2/93de40539ed706bf68492f63171117af96dc7f417feecfaac13ea7e54d3a0674/diff:/var/lib/docker/overlay2/53619701c1a2a37184e424b627422896c612fe3cb292aebfe16a0451b2e41eb4/diff:/var/lib/docker/overlay2/d92ff5c96d67953df33827aff24788d594113e372a07d08837452457d1397bfe/diff:/var/lib/docker/overlay2/5a27f6969474ee43af1686cdb7fbc972f767c758f8590a97a38cb0fa93cc0462/diff:/var/lib/docker/overlay2/d748aeec315b9a59550b80e2b988aba6553e88cded2365732d6a622c48abe932/diff:/var/lib/docker/overlay2/e9f0845af2379304777665ec3afb114e0624c8239e09a5ebcc2941a51cb1183a/diff:/var/lib/docker/overlay2/e92b9cbd7080508803b9a86548546fec115d5378e86c021f204b96530b17ca43/diff:/var/lib/docker/overlay2/c2f3892bb8e3e44ac689918f7ac4eb6594a5d7e2b7b469f649abefdee8c6807e/diff:/var/lib/docker/overlay2/5bbbffa08183d1c85220957068d0339c02b1ba04c19e492065492fbe0ec01e89/diff:/var/lib/docker/overlay2/8ca4d5117f3870ef6a633f217513f27ee5c400da44089e93c65279be11652e61/diff:/var/lib/docker/overlay2/d60a450a02c192f79ecff43d598a2e4fbe73c541f1c26e5fea5224a82eca4936/diff:/var/lib/docker/overlay2/210d0ce4681da0df855b520754364a16633105dde3b24c4adf256ab25a0a3a1a/diff:/var/lib/docker/overlay2/6cee78b9f9d4c4a9dee52198619f55ad5d9548ecc53d1be00c3ef50b466c75c5/diff:/var/lib/docker/overlay2/dc357b58d23d60282013d3f8b5cc0b92d4cbe9c726c3bfddcfa481b638ee26b6/diff:/var/lib/docker/overlay2/2851008d338f7d1f0fbc190324c0fb9c19b5126ef0aaae9152ce5f87985525c3/diff:/var/lib/docker/overlay2/17adfae0e4803c300419fef244ffb69c182a6685e696d7f28b91f5041607be8c/diff:/var/lib/docker/overlay2/ec3cf74575c7af8251ad65e62f6feb3a3b48a2b4f577f76ee95e1099d7a2f2fb/diff:/var/lib/docker/overlay2/7c9a324d8e748f6f55011904758094a9b42fd11c03901cf206f2ee123f58cc5e/diff:/var/lib/docker/overlay2/244d4fd7a6946dc3b90f0f1c82131a8d8b73c9914ab0a1c83bb604ffe16efd7e/diff:/var/lib/docker/overlay2/540884820baf4689fb252e117c46c6665c4187ee30d5ced4f5782ca2e3513478/diff:/var/lib/docker/overlay2/bf8fce9f5185e18dfd2c26c724661fca773c63bc5fa2b4a590d01d4b3f95115a/diff:/var/lib/docker/overlay2/560d1dd3e3c33fc38bd36789e63e1855c5097b39ea6bfcd30d63af533926a047/diff:/var/lib/docker/overlay2/9235ac518b98031a2a8c32a6a62f442f778d332657fe2a87ec38b1c5ab1115aa/diff:/var/lib/docker/overlay2/1af521f6aa94aa384c4293e308d1ab9c7fe5ccdecc6ac95346632298c1b65594/diff:/var/lib/docker/overlay2/deb94c1ab6adbeb76e9a9ae2d0008257067c305585051a5b3e467d7810850673/diff:/var/lib/docker/overlay2/98ace7c8c05af0bd1a3237cd074c407a9d22493b1e9c42a999e9637dcedf0ddc/diff:/var/lib/docker/overlay2/fc14f0f0ec6206bec48ea8c71e2cfff1573159e7e9ace77482ce407920aed589/diff:/var/lib/docker/overlay2/10714886572b8e2eee7105fa95e0cda77b8e69cf4218c63200766c64dd53bc6a/diff:/var/lib/docker/overlay2/6e597922ddb06e90ab189cf5d394d8d6d3c5075309057f3b62c3ff66c5bda7da/diff:/var/lib/docker/overlay2/ab0794590bb1286491ca3df4625ed26ac99fa3f4dea97e19654a9f7051458e54/diff:/var/lib/docker/overlay2/ccfe58b69a67780bf5f3984637b1ddceaf19ee19300ae00ead73cc10b96566d3/diff:/var/lib/docker/overlay2/09653dde771b1ce3daa06f151fe742f2493ed4289cbd3e7b27c1671977d223a5/diff:/var/lib/docker/overlay2/7380b11eeb3c668b42907f7884daec77e1b36945c49ecc47376197ce3cf91260/diff",
            "MergedDir": "/var/lib/docker/overlay2/092edc5c5fe40990c93d6bb2c7a6b788af85899459089a3b8615a14fc9a43f72/merged",
            "UpperDir": "/var/lib/docker/overlay2/092edc5c5fe40990c93d6bb2c7a6b788af85899459089a3b8615a14fc9a43f72/diff",
            "WorkDir": "/var/lib/docker/overlay2/092edc5c5fe40990c93d6bb2c7a6b788af85899459089a3b8615a14fc9a43f72/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:b706c187b212a5c2242e664f21d3eb12fee4c1e150b300d12035284d53c56b7a",
            "sha256:54f854b757935a320c564303ed9f7dab4973c8a8c41d543c631d5493c2ab9516",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:cb1f1b5933a7619698112461bb74cd0f23a60adb2d0a465acb1c409d697fa5e3",
            "sha256:e67b609a3f39f55addf0178fa2a68a93cd89094e10cbe453036bdccb9ab49092",
            "sha256:ef09f2a6740500683e3ede8d4d9ad77fe75528cf241b65509d61a126bf418862",
            "sha256:bc800d7133b3dc90ce8f166bfe259636d2686d5ff67fdaf53d84e372c837f225",
            "sha256:f20d1ee9f81e3f0e6316afb76944224aec75a209e2cdcae638f97b0c4673da3b",
            "sha256:e5b0921cc57ae9300fd555acdb0994dc9f2f6dc7ad5900f6d507fe5c70f8e451",
            "sha256:91127d3b2dd601bc95578f0b8b8e4eed91fbbad62f2aa7029d048d55bce841f6",
            "sha256:d89cd3a2b75ad37e378e45e995b629b76dc1afe2c937d1cc01fcd7b0ef0c1c5e",
            "sha256:f994547a6e2c6a8efcaf901903dc48a958876daba70c30821a15b78030570040",
            "sha256:6a0490f164a0ed4e6694ead35f2a328a15d99480375ace6050db53713944cd5c",
            "sha256:ffc8df4a5bf644b064fd9f6f61a7bae3642cf8d2e49eb4e267c689ddbdf3e145",
            "sha256:c6ecbc81580686f7b20f3452fc7a81cb56412fdacb7fb400db8aa343d4238060",
            "sha256:9c016b22aa0798301fdd0504c8eb6a2cf003b1f820b3fe2e140f23d2a3a00c29",
            "sha256:b50f54c8a823a8bd3b0b36256f4fbd873e0129c75a5fccfa90ce536b0cdbd505",
            "sha256:8eb65f8c63c53737f3466a6f967f0cd4a8a748e56bc018772e5bf4d5e4a71129",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:29117d8e13ab582572a347082a8b4d220f855051f495c98b3c44c553311d38d8",
            "sha256:15c8f31a3ec0a66e472bc327b1f902ed739bdab42f5d6be68c61ec6e4bb8d8ef",
            "sha256:a711306c53d17e98ac67c655a975d95d2436a02bf565b33bc3eb177c54755a76",
            "sha256:25e12717b6bd2d2491a5b02e8efcb6fea8b11b52a93fbbb7bee3f91ba5b59cef",
            "sha256:1b4790bb17f2d812ef8de81fa0072a244b7e992f5bd03b9112a933508a249e47",
            "sha256:751c143377480596ec1f895fae9a0b942de0173652b10e68af53c1272dfea144",
            "sha256:9dcf4ce1834b06687b9487e251c92c547ddfd6ea2118dcf397b3eaaf13e7a25a",
            "sha256:2a1d6fb6df0e98b8f784cd02767fa4b6b99005b1057603a3d7b8cc61a30c132a",
            "sha256:4ca4fa5052565fde9e7e3a19390499f5d2a0a7e990b91fe8c7b554ba68aae401",
            "sha256:3f1a9fd46f4a307726ff086baa2a300cecd6a3226d63fbba8fc335385b9fa386",
            "sha256:1446291274a803ccf7b7c0f15f0776da0588a4ef812012e2c282cdb56c266f09",
            "sha256:53d0bad1a7ed0a897a72150f26bfa190aa2e8fe7dc2aeecdc4239a3f22fb57d4",
            "sha256:481f3c00afe7c0c433add3458a33e8275f0503948a4e04a0585e82001886f740",
            "sha256:03a3725ace3a21485428fe150bc2fb7fae9c9058ca66ba57a4470ff1e55deaee",
            "sha256:fd4d7ba17058658f088b7fd36c0d377cfde92cd9a054af63abd5e8f63487bbbb",
            "sha256:abb6d1e8390f0cf4cf8410a8f31157e0b6d9b517cf4d28c8f16a99e2c7e7dd5b",
            "sha256:d2406d733b112cf94f97dc751b38170386a04451ad27049a3f4b39534ae1ea3e",
            "sha256:93b1d61404e6b2798c0cb22b051c9a8636342a9711543481abce9e323acc148e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:9c2a749896ceaed2561ca70efd58e800d362a1fcad86dabe6eb70102a216ae5a",
            "sha256:d75b4f704a6b77d1b9c4dc36a0f2d6b1720289e9b9e2d36575b4f6da726771d8",
            "sha256:af305d2d188dd95b15c2c01e9ee4fe0b922edc1c46866886fe9869fd631d8e46",
            "sha256:bbbb42126cd22d692f3defe8b67f3b944d207927aad4fc926cdccdb4b68c6152",
            "sha256:5e39e12626bab87e7105897f7707d58221751fbcb863be729622c2d6f63dcf12",
            "sha256:f5ce98f4fec5553a8ea336607062f014112eea266c0970765a3910dd52a1e157",
            "sha256:988377a801a2ba5810435cf8b05a5a6ed93aabe694911f680a88be158de839aa",
            "sha256:c85b9878f5bfad1ba70125503c01f6229afc43eba6107db0954b2cd350a81e6a",
            "sha256:0136bb677211afbec2ad987bcdb6b4e68a6b86c642e468676da82a8e7afd6281",
            "sha256:3d8e7e3341e87e37d9cdb741db41f845831907f7ef3a52366d649adbc7fa20b8",
            "sha256:4520f983b6684b1233279b428b00117eded6e07dead777370161c62cf5f3ff71",
            "sha256:bd109e60fbeec43cbf3de180647967f4726bbd61a1ba820c113cd8430decbadf",
            "sha256:dafc9c8edafcb0d97c3c069d2f8c6a7ce0c4fdd2960a1833c35b8d7d25477fff"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-03-18T01:17:48.831579352+08:00"
    }
}

更多版本

docker.io/nvcr.io/nvidia/pytorch:24.01-py3

linux/amd64 docker.io22.02GB2024-09-20 00:38
759

docker.io/nvcr.io/nvidia/pytorch:22.12-py3

linux/amd64 docker.io18.27GB2024-10-17 00:56
429

docker.io/nvcr.io/nvidia/pytorch:23.04-py3

linux/amd64 docker.io20.38GB2024-10-18 01:26
367

docker.io/nvcr.io/nvidia/pytorch:24.06-py3

linux/amd64 docker.io19.15GB2024-10-22 00:29
499

docker.io/nvcr.io/nvidia/pytorch:21.11-py3

linux/amd64 docker.io14.47GB2024-10-22 10:38
357

docker.io/nvcr.io/nvidia/pytorch:24.07-py3

linux/amd64 docker.io20.19GB2025-01-09 00:29
413

docker.io/nvcr.io/nvidia/pytorch:24.02-py3

linux/amd64 docker.io22.21GB2025-02-23 20:44
416

docker.io/nvcr.io/nvidia/pytorch:24.05-py3

linux/amd64 docker.io18.78GB2025-03-18 01:37
59