docker.io/opencsghq/llama-factory:0.9.3 linux/amd64

docker.io/opencsghq/llama-factory:0.9.3 - 国内下载镜像源 浏览次数:30

这是一个用于创建和管理Llama模型的Docker镜像。它由OpenCSG团队维护,提供了方便易用的工具来构建、训练和部署Llama模型。

源镜像 docker.io/opencsghq/llama-factory:0.9.3
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3
镜像ID sha256:8592c2d1ed76766a2bca3a9d29e4254df8fa8f832db83d8de9b716b546a2d821
镜像TAG 0.9.3
大小 14.15GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /usr/bin/supervisord -c /etc/supervisor/conf.d/supervisord.conf
工作目录 /workspace/
OS/平台 linux/amd64
浏览量 30 次
贡献者
镜像创建 2025-07-23T08:22:45.607853315Z
同步时间 2025-09-12 01:31
更新时间 2025-09-15 09:39
开放端口
8000/tcp
环境变量
PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.105-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.1 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.1-1 NV_NVTX_VERSION=12.1.105-1 NV_LIBNPP_VERSION=12.1.0.40-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 NV_LIBCUSPARSE_VERSION=12.1.0.106-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.3.1-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=12.1.105-1 NV_NVML_DEV_VERSION=12.1.105-1 NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1 NV_LIBNPP_DEV_VERSION=12.1.0.40-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1 NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1 NV_NVPROF_VERSION=12.1.105-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 LIBRARY_PATH=/usr/local/cuda/lib64/stubs SHELL=/bin/bash JUPYTERHUB_SERVICE_PREFIX=/proxy/ GRADIO_ROOT_PATH=/proxy/7860/ TZ=Asia/Shanghai NCCL_IB_DISABLE=1 NCCL_P2P_DISABLE=1 HF_HOME=/workspace/.cache DEBIAN_FRONTEND=noninteractive
镜像标签
NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3  docker.io/opencsghq/llama-factory:0.9.3

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3  docker.io/opencsghq/llama-factory:0.9.3

Shell快速替换命令

sed -i 's#opencsghq/llama-factory:0.9.3#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3  docker.io/opencsghq/llama-factory:0.9.3'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3  docker.io/opencsghq/llama-factory:0.9.3'

镜像构建历史


# 2025-07-23 16:22:45  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/usr/bin/supervisord" "-c" "/etc/supervisor/conf.d/supervisord.conf"]
                        
# 2025-07-23 16:22:45  0.00B 声明容器运行时监听的端口
EXPOSE map[8000/tcp:{}]
                        
# 2025-07-23 16:22:45  0.00B 设置工作目录为/workspace/
WORKDIR /workspace/
                        
# 2025-07-23 16:22:45  220.43MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install https://git-devops.opencsg.com/opensource/gradio/-/raw/main/gradio-5.31.0-py3-none-any.whl --force-reinstall --no-deps # buildkit
                        
# 2025-07-23 16:22:24  335.00B 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir -p /var/log/supervisord &&     chmod +x /etc/csghub/*.sh &&     mkdir -p /root/.jupyter/lab/user-settings/@jupyterlab/apputils-extension && 	echo '{"theme":"JupyterLab Dark"}' > /root/.jupyter/lab/user-settings/@jupyterlab/apputils-extension/themes.jupyterlab-settings && 	mkdir -p /root/.jupyter/lab/user-settings/@jupyterlab/notebook-extension && 	echo '{"codeCellConfig":{"lineNumbers":true }}' > /root/.jupyter/lab/user-settings/@jupyterlab/notebook-extension/tracker.jupyterlab-settings # buildkit
                        
# 2025-07-23 16:22:23  44.56KB 复制新文件或目录到容器中
COPY llama-factory/ /etc/csghub/ # buildkit
                        
# 2025-07-23 16:22:23  1.34KB 复制新文件或目录到容器中
COPY llama-factory/jupyter_notebook_config.py /root/.jupyter/jupyter_notebook_config.py # buildkit
                        
# 2025-07-23 16:22:23  706.00B 复制新文件或目录到容器中
COPY llama-factory/supervisord.conf /etc/supervisor/conf.d/supervisord.conf # buildkit
                        
# 2025-07-23 16:22:23  1.16GB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth 1 https://gitee.com/xzgan/LLaMA-Factory.git --branch v0.9.3 --single-branch && cd LLaMA-Factory &&     pip install --no-cache-dir -e ".[metrics,deepspeed]" # buildkit
                        
# 2025-07-23 16:15:43  0.00B 设置工作目录为/etc/csghub
WORKDIR /etc/csghub
                        
# 2025-07-23 16:15:42  5.61GB 执行命令并创建新的镜像层
RUN /bin/sh -c ln -sf /usr/bin/python3 /usr/bin/python &&     pip config set global.index-url https://mirrors.aliyun.com/pypi/simple &&     pip install --no-cache-dir jupyterlab numpy==1.26.4     torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1     jupyter-server-proxy==4.4.0 fastapi==0.112.2     gradio-client==1.10.1 pydantic==2.10.6 # buildkit
                        
# 2025-07-23 15:29:55  1.64MB 执行命令并创建新的镜像层
RUN /bin/sh -c ln -snf /usr/share/zoneinfo/$TZ /etc/localtime &&     echo $TZ > /etc/timezone &&     dpkg-reconfigure -f noninteractive tzdata # buildkit
                        
# 2025-07-23 15:29:55  127.72MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     python3-pip apt-utils wget curl vim     git git-lfs supervisor unzip tzdata &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-07-23 15:29:55  0.00B 设置环境变量 SHELL JUPYTERHUB_SERVICE_PREFIX GRADIO_ROOT_PATH TZ NCCL_IB_DISABLE NCCL_P2P_DISABLE HF_HOME DEBIAN_FRONTEND
ENV SHELL=/bin/bash JUPYTERHUB_SERVICE_PREFIX=/proxy/ GRADIO_ROOT_PATH=/proxy/7860/ TZ=Asia/Shanghai NCCL_IB_DISABLE=1 NCCL_P2P_DISABLE=1 HF_HOME=/workspace/.cache DEBIAN_FRONTEND=noninteractive
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 13:25:51  385.69KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:25:51  4.79GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:25:51  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:25:51  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:13:35  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 13:13:35  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 13:13:35  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 13:13:35  261.40KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:13:35  2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:13:35  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:13:35  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:08:12  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:08:12  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:08:11  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
                        
# 2023-11-10 13:07:58  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:07:58  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:8592c2d1ed76766a2bca3a9d29e4254df8fa8f832db83d8de9b716b546a2d821",
    "RepoTags": [
        "opencsghq/llama-factory:0.9.3",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory:0.9.3"
    ],
    "RepoDigests": [
        "opencsghq/llama-factory@sha256:d782730656d04ef72b586892265106b16fba217f3bd7c592eca1794b39a497d5",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/opencsghq/llama-factory@sha256:43150a5c22aec6927020588d6eefbc45128cf0f508321b04acddd26b63127878"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-07-23T08:22:45.607853315Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "8000/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.105-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.1",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.1-1",
            "NV_NVTX_VERSION=12.1.105-1",
            "NV_LIBNPP_VERSION=12.1.0.40-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
            "NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
            "NV_NVML_DEV_VERSION=12.1.105-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
            "NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
            "NV_NVPROF_VERSION=12.1.105-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "SHELL=/bin/bash",
            "JUPYTERHUB_SERVICE_PREFIX=/proxy/",
            "GRADIO_ROOT_PATH=/proxy/7860/",
            "TZ=Asia/Shanghai",
            "NCCL_IB_DISABLE=1",
            "NCCL_P2P_DISABLE=1",
            "HF_HOME=/workspace/.cache",
            "DEBIAN_FRONTEND=noninteractive"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace/",
        "Entrypoint": [
            "/usr/bin/supervisord",
            "-c",
            "/etc/supervisor/conf.d/supervisord.conf"
        ],
        "OnBuild": null,
        "Labels": {
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 14150646683,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/4d1620165f0b456e15b7f1337c166304a2e42b539e689e9fc0d10b450b42231c/diff:/var/lib/docker/overlay2/8d7fb68e3291bd1417041cb9be8d7609de253f28e84ed561e02dda7d1cd66d0f/diff:/var/lib/docker/overlay2/88412be536eba669777b01e1e1f0ee4d791da3f11deaeeb419a7021419ce42a5/diff:/var/lib/docker/overlay2/c25e62219cfcbba52f510aa083e9dd5f177a2ba5c6644e15e89b97545e0101e8/diff:/var/lib/docker/overlay2/1ec9ee180b842e437c21aa60d6298e78bd85d4a0f37b8fcd3fadc2eada0f112a/diff:/var/lib/docker/overlay2/0ebb007db52eb107e2c85118eed364c5bfd7b7d9d0939ce16087038597c69163/diff:/var/lib/docker/overlay2/fdf9592ee41f28e8ae4d23489a79f9728bca4716330f96aecec73dfa1534ef8e/diff:/var/lib/docker/overlay2/57f879d892640aa0daf025390c19534c028a656631ab421de0b0ddc70e4b5b80/diff:/var/lib/docker/overlay2/41ae74944ee71e7d7dee2ba87a40c92896349cd84804564d01736624a0bb4b5b/diff:/var/lib/docker/overlay2/47b0382b676535b88f42b17c7a503e1de4f4856eba733d1afaed0a605e76bf08/diff:/var/lib/docker/overlay2/ffddfb7b471c59f0b515e901e3cd7c6846b354f5230b8c3da38fe43a64f51d5a/diff:/var/lib/docker/overlay2/e64e07c312e5d4a0a9a3d590740247dcdc23200663caaf52d9187a6124b98424/diff:/var/lib/docker/overlay2/1d4f69640e87c9be3e16a995b851b6972c63af4a7e9308ae10c3685134d02afc/diff:/var/lib/docker/overlay2/d88b2f795d8cc6146b802dbc9dab223f571c9efee25d1e82b0efa1a8c18b318f/diff:/var/lib/docker/overlay2/7457362c93bf67cce66230eb46bc2d8ecf1e21ea09bba436af338e23d997ad54/diff:/var/lib/docker/overlay2/aa06e59213f2d4d080e3d0fd949ca99475a5906f1b62e25cbb95b0ebd9d39d88/diff:/var/lib/docker/overlay2/26d0b5199c6e4cefd9ec1257e4593980409fd601ed8f67b35e9bf75d762defb5/diff:/var/lib/docker/overlay2/1b27529a80919826560f81148f52e9c73f4561e480ae7d7164935095349f460a/diff:/var/lib/docker/overlay2/8f2b2b17a43d2d466d032e07e09c8b34d1ef2e864b841de667b375a3b4e765b6/diff:/var/lib/docker/overlay2/e96c7bc080906948160023ab141ea56aace179540c2b86413bc0e580422f0fdf/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/7d369cdbdb80ac00a7346f583becb12b93c57e75ad7f3586578fb92edd873a47/merged",
            "UpperDir": "/var/lib/docker/overlay2/7d369cdbdb80ac00a7346f583becb12b93c57e75ad7f3586578fb92edd873a47/diff",
            "WorkDir": "/var/lib/docker/overlay2/7d369cdbdb80ac00a7346f583becb12b93c57e75ad7f3586578fb92edd873a47/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:566cd9dd29d693cf0360da8a73391b843bb6ac8f11b4148acf69c4dc79fa87c5",
            "sha256:6ec2b659c9ab00e2b0fc0acd056577e609cc28649650ec7068b81686f6d1a996",
            "sha256:8afeff4e91d72f3de9232ffc0803f70236e316c27b23ee003e6d47fbfcb6e1c4",
            "sha256:bea30ebbe84377ed36503599c2087cd6bda6f4c96cb59525d238d4a00cf902d3",
            "sha256:b15b1df4adac82b2b46124c743a32d5e982cb6b5ee8a3c04949f809abf8962c9",
            "sha256:83ecbf43a888c43f43b0cd9ec7cf551770790c7aeab17f9536b8820db2c5d45d",
            "sha256:83687aeafbbf74a164a51590ffa36c46e9c41ce4ba3eae9daba1d381c64e5f4b",
            "sha256:3416903c2cc4c9f83472b397741f30365f53543862b03ff5727b42b1a2f938cb",
            "sha256:24e1e08aaa60ea10f478c1b68d9444b8ea74bff76e2547712984b5136e79018e",
            "sha256:7aee75a70a2ff35d4990fab501a025afa498f416cb726ace747ccd7fad6500d4",
            "sha256:d43227db2db7b50a65b4c32bb2c161a32c607a7ef20026263b1b90a5d6d76521",
            "sha256:7008a9238490a4d6c1490d0da3b0536e7ca2e3e0c4c796429294ec233eaaa2b0",
            "sha256:9b38a937a65b7f0e715424dac521bd0d026982a59f1a5130efcc69b3e4ef6e59",
            "sha256:34d3e97ef5f62105e1d260844ca5c7d459d5a893d88a8059a60f17bb4aeb6b66",
            "sha256:1809f21d3037d733da4ea8f6648c847caf1c82f439a94bdc65812e28737f4aca",
            "sha256:cbe74525e13a9e6b36252b8adafed280ec263fce5df9305116486ad598d15e7d",
            "sha256:674f3059f4b3601260b92a5c77db9d4556a0e2d88523420ce48943d92aa6feea",
            "sha256:5fdd3f52315fc61f044cbd449a6a0e2ccf9b2cbf7c703ffd0fbf49027d167595",
            "sha256:2e36405c0710cddcf9a3f7fdf6ea9c954029f212c444fb5033755fd7d7c50f20",
            "sha256:210ce0973d6d3d9f5aae6a0a1e0794708a72dd293ebdf4964e2ef14d7db82957",
            "sha256:0aea3ecb03ec04d92d7044044a8aa0b12ee01fbfceed23de6dbfd8eb2a6ae462"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-09-12T01:22:53.839812954+08:00"
    }
}

更多版本

docker.io/opencsghq/llama-factory:0.9.3

linux/amd64 docker.io14.15GB2025-09-12 01:31
29