docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts linux/amd64

docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts - 国内下载镜像源 浏览次数:167
```html

这是一个基于OpenEuler操作系统的虚拟大语言模型 (LLM) CPU镜像。它包含了运行VLLM (一个高效的LLM推理服务)所需的所有依赖项,可以在CPU上运行各种大型语言模型。

```
源镜像 docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts
镜像ID sha256:9166be3d5732082d755e911aac10ff4b8bf602e17ed21f011aefed00db133a11
镜像TAG 0.6.3-oe2403lts
大小 10.76GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 python3 -m vllm.entrypoints.openai.api_server
工作目录 /workspace/
OS/平台 linux/amd64
浏览量 167 次
贡献者 15*******8@qq.com
镜像创建 2024-10-24T08:25:44.812671296Z
同步时间 2025-02-28 16:37
更新时间 2025-04-20 06:00
环境变量
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin CCACHE_DIR=/root/.cache/ccache CMAKE_CXX_COMPILER_LAUNCHER=ccache LD_PRELOAD=/usr/lib64/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so PIP_EXTRA_INDEX_URL=https://download.pytorch.org/whl/cpu VLLM_CPU_DISABLE_AVX512=

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts  docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts  docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts

Shell快速替换命令

sed -i 's#openeuler/vllm-cpu:0.6.3-oe2403lts#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts  docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts  docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts'

镜像构建历史


# 2024-10-24 16:25:44  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["python3" "-m" "vllm.entrypoints.openai.api_server"]
                        
# 2024-10-24 16:25:44  71.00B 执行命令并创建新的镜像层
RUN |1 VLLM_CPU_DISABLE_AVX512= /bin/sh -c ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks # buildkit
                        
# 2024-10-24 16:25:44  0.00B 设置工作目录为/workspace/
WORKDIR /workspace/
                        
# 2024-10-24 16:25:44  5.60GB 执行命令并创建新的镜像层
RUN |1 VLLM_CPU_DISABLE_AVX512= /bin/sh -c VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel &&     pip install dist/*.whl &&     rm -rf dist # buildkit
                        
# 2024-10-24 16:19:30  0.00B 设置环境变量 VLLM_CPU_DISABLE_AVX512
ENV VLLM_CPU_DISABLE_AVX512=
                        
# 2024-10-24 16:19:30  0.00B 定义构建参数
ARG VLLM_CPU_DISABLE_AVX512
                        
# 2024-10-24 16:19:30  870.85MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install -v -r requirements-cpu.txt # buildkit
                        
# 2024-10-24 16:18:54  0.00B 设置工作目录为/workspace/vllm
WORKDIR /workspace/vllm
                        
# 2024-10-24 16:18:54  377.80MB 执行命令并创建新的镜像层
RUN |1 PIP_EXTRA_INDEX_URL=https://download.pytorch.org/whl/cpu /bin/sh -c cmake -B ./oneDNN/build -S ./oneDNN -G Ninja -DONEDNN_LIBRARY_TYPE=STATIC     -DONEDNN_BUILD_DOC=OFF     -DONEDNN_BUILD_EXAMPLES=OFF     -DONEDNN_BUILD_TESTS=OFF     -DONEDNN_BUILD_GRAPH=OFF     -DONEDNN_ENABLE_WORKLOAD=INFERENCE     -DONEDNN_ENABLE_PRIMITIVE=MATMUL &&     cmake --build ./oneDNN/build --target install --config Release # buildkit
                        
# 2024-10-24 16:15:28  285.53MB 执行命令并创建新的镜像层
RUN |1 PIP_EXTRA_INDEX_URL=https://download.pytorch.org/whl/cpu /bin/sh -c git clone -b rls-v3.5 https://github.com/oneapi-src/oneDNN.git # buildkit
                        
# 2024-10-24 16:15:15  926.08MB 执行命令并创建新的镜像层
RUN |1 PIP_EXTRA_INDEX_URL=https://download.pytorch.org/whl/cpu /bin/sh -c pip3 install --upgrade pip &&     pip install -r vllm/requirements-build.txt # buildkit
                        
# 2024-10-24 16:14:50  0.00B 设置环境变量 PIP_EXTRA_INDEX_URL
ENV PIP_EXTRA_INDEX_URL=https://download.pytorch.org/whl/cpu
                        
# 2024-10-24 16:14:50  0.00B 定义构建参数
ARG PIP_EXTRA_INDEX_URL=https://download.pytorch.org/whl/cpu
                        
# 2024-10-24 16:14:50  46.23MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone https://github.com/vllm-project/vllm.git # buildkit
                        
# 2024-10-24 16:14:49  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-10-24 16:14:49  529.92MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install intel_extension_for_pytorch==2.4.0 # buildkit
                        
# 2024-10-24 16:14:41  188.00B 执行命令并创建新的镜像层
RUN /bin/sh -c echo 'ulimit -c 0' >> ~/.bashrc # buildkit
                        
# 2024-10-24 16:14:41  0.00B 设置环境变量 LD_PRELOAD
ENV LD_PRELOAD=/usr/lib64/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so
                        
# 2024-10-24 16:14:41  120.04MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install intel-openmp # buildkit
                        
# 2024-10-24 16:14:39  1.73GB 执行命令并创建新的镜像层
RUN /bin/sh -c yum update -y     && yum install -y curl ccache git wget vim numactl gcc g++ python3-devel python3-pip gperftools-libs numactl-libs numactl-devel     && yum install -y ffmpeg libSM libXext mesa-libGL     && update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12 # buildkit
                        
# 2024-10-24 16:14:39  0.00B 设置环境变量 CMAKE_CXX_COMPILER_LAUNCHER
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
                        
# 2024-10-24 16:14:39  0.00B 设置环境变量 CCACHE_DIR
ENV CCACHE_DIR=/root/.cache/ccache
                        
# 2024-09-28 09:44:53  0.00B 设置默认要执行的命令
CMD ["bash"]
                        
# 2024-09-28 09:44:53  99.84MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c ln -sf /usr/share/zoneinfo/UTC /etc/localtime &&     sed -i "s/TMOUT=300/TMOUT=0/g" /etc/bashrc &&     yum -y update && yum clean all # buildkit
                        
# 2024-09-28 09:42:32  172.15MB 复制文件或目录到容器中
ADD openEuler-docker-rootfs.amd64.tar.xz / # buildkit
                        
# 2024-09-28 09:42:32  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
                    

镜像信息

{
    "Id": "sha256:9166be3d5732082d755e911aac10ff4b8bf602e17ed21f011aefed00db133a11",
    "RepoTags": [
        "openeuler/vllm-cpu:0.6.3-oe2403lts",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts"
    ],
    "RepoDigests": [
        "openeuler/vllm-cpu@sha256:b36c99217d7caa575a9094eb06dfb33ace7f895b417c655b518cd13e05b231e2",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/openeuler/vllm-cpu@sha256:b36c99217d7caa575a9094eb06dfb33ace7f895b417c655b518cd13e05b231e2"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-10-24T08:25:44.812671296Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "CCACHE_DIR=/root/.cache/ccache",
            "CMAKE_CXX_COMPILER_LAUNCHER=ccache",
            "LD_PRELOAD=/usr/lib64/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so",
            "PIP_EXTRA_INDEX_URL=https://download.pytorch.org/whl/cpu",
            "VLLM_CPU_DISABLE_AVX512="
        ],
        "Cmd": null,
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace/",
        "Entrypoint": [
            "python3",
            "-m",
            "vllm.entrypoints.openai.api_server"
        ],
        "OnBuild": null,
        "Labels": null
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 10756421612,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/e1a63c8095e436bf1dd01f2fc11993f4fe04b054ad8918befb5a42ab35809ebc/diff:/var/lib/docker/overlay2/4018ef9018437919e52701a6dcaf055c1a478a4df721c09a4aae394a22bbd622/diff:/var/lib/docker/overlay2/0c33f630747b928a7bf120927c9ab672a1ceb10ca48bc6be421733e770374611/diff:/var/lib/docker/overlay2/7a3aaf546c1995e71f82c06defc60ab3db156536ac43073919ff74fecb48e1fe/diff:/var/lib/docker/overlay2/bdb363bde8b4b8713feff53550e47555a537fc2cdc66642cd49ffec3eadbab01/diff:/var/lib/docker/overlay2/4860d83ab5947a28c5c7b4d72fb335d09ad71d852cccd6080867975c809eebf3/diff:/var/lib/docker/overlay2/6540dc1f8af47c1da33823013830c555d82d7b15fa702e3893cfa7a40a1dbb7a/diff:/var/lib/docker/overlay2/5c3958ac645b569dc7fe775f0496e31b8f8ee70007a9c1fb44154f3381402c5c/diff:/var/lib/docker/overlay2/a87d25c5483da44b19158db192b326640b4a9c8f7d23ce49b6764e73cefadc8a/diff:/var/lib/docker/overlay2/92ebc27e103cd60dd0221c5784f4c1384f7b46a60947491ce764902b46df0d16/diff:/var/lib/docker/overlay2/ef127bb316b7405943a38aedf64a898e65791b9e0d8ea4ab2ecdfd1a6eee42dc/diff:/var/lib/docker/overlay2/10d6a60e296159b80d1751a2dcf34dfadcdf5f9c8977b5cc3055c806b6ea9837/diff:/var/lib/docker/overlay2/485841c8670d683a4599ff5d7c24573a7afc2aba3e98f6906f03cf4546e81479/diff:/var/lib/docker/overlay2/1f0e10c213ca4a74c93578fd83cf844393b758a1fbe611804bdf8b51fa327c14/diff:/var/lib/docker/overlay2/826fee721fad5abfb4ee769f9fed102e0f35f307c98006c11c63ec197566990a/diff",
            "MergedDir": "/var/lib/docker/overlay2/e1493ce38d72e9b4a58b4c011383741d6ace4b0f40d91be119bce1ce80c07c19/merged",
            "UpperDir": "/var/lib/docker/overlay2/e1493ce38d72e9b4a58b4c011383741d6ace4b0f40d91be119bce1ce80c07c19/diff",
            "WorkDir": "/var/lib/docker/overlay2/e1493ce38d72e9b4a58b4c011383741d6ace4b0f40d91be119bce1ce80c07c19/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:5234ffa1a57fe77e84b4b68099961a3191724bed8f88b53a5cbd86eb7155cf2d",
            "sha256:ff2b641a7650b71a16a18dd5eb4d6ac9aad571bca0dfc097dbd7ddeb640bf914",
            "sha256:63ea34d001c4101f14195d6bd77e7973defd0541759e3540c465b0dd26dabab0",
            "sha256:f288e9731b5db4fa4aa0b9321b78e15707890ebff09a2d77a20b29594fa61ce4",
            "sha256:8554467160496a93fdd46a02f0a432a93944287451d5e76fc016353e6891ddf0",
            "sha256:ffd1af75e70ebb5b4f11c8f2b3d106d98d1a0119fe996937faa192cfe0e85232",
            "sha256:990af6efa971bfd4f74e69e5fae4663907106c4261949a3f0abff7cc538f0906",
            "sha256:16ec3465aec9631d885779716825c48ad43931b5cba498cd620cb396e26dafe4",
            "sha256:8f7edc97c97926a2aa4d8bf0402b523d138b7f8215136407f36eacc7ef7ecc1d",
            "sha256:24cd8bdf26c7477d2ff970cf7caadff91f4e244aa40091d8ebd302a5aefc7b75",
            "sha256:6830808aa769a5f1d302142c05781353d794180779a466d69a466afe63e2505d",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:05b3264d811a296650a2eba9fef2e6c6f3f7aa86fc0e757debef2dfd9713216c",
            "sha256:7ecca3a4e40441b04b6212a7ece09a8c90cce0ec0c5bab313fa48f5db4fa9fe0",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:09c302bb55e0fd27c67971a0c4b866d38e66b17bdc803ff82c5aa9ebf47e55f3"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-02-28T16:30:42.056484112+08:00"
    }
}

更多版本

docker.io/openeuler/vllm-cpu:0.6.3-oe2403lts

linux/amd64 docker.io10.76GB2025-02-28 16:37
166