PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
NVARCH=x86_64
NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=tesla,driver>=515,driver<516 brand=unknown,driver>=515,driver<516 brand=nvidia,driver>=515,driver<516 brand=nvidiartx,driver>=515,driver<516 brand=geforce,driver>=515,driver<516 brand=geforcertx,driver>=515,driver<516 brand=quadro,driver>=515,driver<516 brand=quadrortx,driver>=515,driver<516 brand=titan,driver>=515,driver<516 brand=titanrtx,driver>=515,driver<516
NV_CUDA_CUDART_VERSION=11.8.89-1
NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8
CUDA_VERSION=11.8.0
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/lib/x86_64-linux-gnu
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_DRIVER_CAPABILITIES=video,compute,utility
NV_CUDA_LIB_VERSION=11.8.0-1
NV_NVTX_VERSION=11.8.86-1
NV_LIBNPP_VERSION=11.8.0.86-1
NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1
NV_LIBCUSPARSE_VERSION=11.7.5.86-1
NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8
NV_LIBCUBLAS_VERSION=11.11.3.6-1
NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1
NV_LIBNCCL_PACKAGE_NAME=libnccl2
NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1
NCCL_VERSION=2.15.5-1
NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8
NVIDIA_PRODUCT_NAME=CUDA
NV_CUDA_CUDART_DEV_VERSION=11.8.89-1
NV_NVML_DEV_VERSION=11.8.86-1
NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1
NV_LIBNPP_DEV_VERSION=11.8.0.86-1
NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1
NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1
NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8
NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1
NV_NVPROF_VERSION=11.8.87-1
NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1
NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1
NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8
LIBRARY_PATH=/usr/local/cuda/lib64/stubs
NV_CUDNN_VERSION=8.7.0.84
NV_CUDNN_PACKAGE_NAME=libcudnn8
NV_CUDNN_PACKAGE=libcudnn8=8.7.0.84-1+cuda11.8
NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.7.0.84-1+cuda11.8
LANG=C.UTF-8
DEBIAN_FRONTEND=noninteractive
PYTHONPATH=:/workdir
TORCH_CUDA_ARCH_LIST=6.0;6.1;7.0;7.5;8.0;8.6;8.9
镜像构建历史
# 2023-05-17 19:56:12 36.36MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --branch=v2.0.0 --single-branch https://github.com/NVIDIA/VideoProcessingFramework && cd VideoProcessingFramework && pip3 install . && pip3 install src/PytorchNvCodec && cd .. && rm -rf VideoProcessingFramework # buildkit
# 2023-05-17 19:55:04 272.13MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt-get -y install libavfilter-dev libavformat-dev libavcodec-dev libswresample-dev libavutil-dev && apt-get clean && apt-get -y autoremove && rm -rf /var/lib/apt/lists/* && rm -rf /var/cache/apt/archives/* # buildkit
# 2023-05-17 19:53:06 275.59MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install --no-cache-dir triton==2.0.0.post1 pytorch-ignite==0.4.12 pytorch-argus==1.0.0 pretrainedmodels==0.7.4 efficientnet-pytorch==0.7.1 pytorch-toolbelt==0.6.3 kornia==0.6.12 timm==0.9.2 # buildkit
# 2023-05-17 03:12:11 13.40MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=v2.0.2 --single-branch https://github.com/pytorch/audio.git && cd audio && git submodule sync && git submodule update --init --recursive && python3 setup.py install && cd .. && rm -rf audio # buildkit
# 2023-05-17 02:51:49 54.37MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=v0.15.2 --single-branch https://github.com/pytorch/vision.git && cd vision && FORCE_CUDA=1 TORCHVISION_USE_FFMPEG=0 python3 setup.py install && cd .. && rm -rf vision # buildkit
# 2023-05-17 02:49:47 368.31MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=release/1.4 --single-branch https://github.com/pytorch/TensorRT.git && cp WORKSPACE TensorRT/ && cd TensorRT && bazel build //:libtorchtrt --compilation_mode opt && cd py && python3 setup.py install --use-cxx11-abi && cd ../.. && rm -rf TensorRT WORKSPACE # buildkit
# 2023-05-17 02:45:52 2.92KB 复制新文件或目录到容器中
COPY docker/torchtrt/WORKSPACE WORKSPACE # buildkit
# 2023-05-17 02:45:52 1.31GB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=v2.0.1 --single-branch https://github.com/pytorch/pytorch.git && cd pytorch && git submodule sync && git submodule update --init --recursive && sed -i 's/Store::kDefaultTimeout/::c10d::Store::kDefaultTimeout/' torch/csrc/distributed/c10d/ProcessGroupGloo.hpp && TORCH_NVCC_FLAGS="-Xfatbin -compress-all" python3 setup.py install && cd .. && rm -rf pytorch # buildkit
# 2023-05-17 01:14:53 4.06GB 执行命令并创建新的镜像层
RUN /bin/sh -c MAGMA_VERSION=2.7.1 && ln -s /usr/local/cuda/lib64/libcudart.so /usr/lib/libcudart.so && wget https://bitbucket.org/icl/magma/get/v${MAGMA_VERSION}.tar.gz && mkdir magma-${MAGMA_VERSION}/ && tar -xzf v${MAGMA_VERSION}.tar.gz -C magma-${MAGMA_VERSION}/ --strip-components=1 && cp make.inc magma-${MAGMA_VERSION} && cd magma-${MAGMA_VERSION} && make -j$(nproc) && make install && cd .. && rm -rf magma-${MAGMA_VERSION} v${MAGMA_VERSION}.tar.gz make.inc # buildkit
# 2023-05-17 00:38:27 2.96KB 复制新文件或目录到容器中
COPY docker/magma/make.inc make.inc # buildkit
# 2023-05-17 00:38:27 0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/lib/x86_64-linux-gnu
# 2023-05-17 00:38:27 3.31GB 执行命令并创建新的镜像层
RUN /bin/sh -c CUDA_VERSION=11.8.0 TRT_GA_VERSION=8.6.1.6 TRT_OSS_VERSION=v8.6.1 && GPU_ARCHS="60 61 70 75 80 86 89" && v="${TRT_GA_VERSION}-1+cuda${CUDA_VERSION%.*}" && apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub && apt-get update && apt-get -y install libnvinfer8=${v} libnvonnxparsers8=${v} libnvparsers8=${v} libnvinfer-plugin8=${v} libnvinfer-dev=${v} libnvonnxparsers-dev=${v} libnvparsers-dev=${v} libnvinfer-plugin-dev=${v} python3-libnvinfer=${v} libnvinfer-dispatch8=${v} libnvinfer-dispatch-dev=${v} libnvinfer-lean8=${v} libnvinfer-lean-dev=${v} libnvinfer-vc-plugin8=${v} libnvinfer-vc-plugin-dev=${v} libnvinfer-headers-dev=${v} libnvinfer-headers-plugin-dev=${v} && git clone --depth=1 --branch="$TRT_OSS_VERSION" --single-branch https://github.com/nvidia/TensorRT && cd TensorRT && git submodule sync && git submodule update --init --recursive && mkdir -p build && cd build && cmake .. -DGPU_ARCHS="$GPU_ARCHS" -DBUILD_SAMPLES=ON -DTRT_LIB_DIR=/usr/lib/x86_64-linux-gnu -DTRT_OUT_DIR=/usr/lib/x86_64-linux-gnu && make -j$(nproc) && cd ../.. && rm -rf TensorRT && ln -s /usr/lib/x86_64-linux-gnu/trtexec /usr/bin/trtexec && apt-get clean && apt-get -y autoremove && rm -rf /var/lib/apt/lists/* && rm -rf /var/cache/apt/archives/* # buildkit
# 2023-05-17 00:38:27 0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=6.0;6.1;7.0;7.5;8.0;8.6;8.9
# 2023-05-17 00:30:10 1.07GB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install --no-cache-dir numpy==1.24.3 opencv-python==4.7.0.72 sympy==1.12 scipy==1.10.1 matplotlib==3.7.1 pandas==2.0.1 scikit-learn==1.2.2 scikit-image==0.20.0 Pillow==9.5.0 librosa==0.10.0.post2 albumentations==1.3.0 pyzmq==25.0.2 Cython==0.29.34 numba==0.57.0 requests==2.30.0 psutil==5.9.5 pydantic==1.10.7 PyYAML==6.0 notebook==6.5.2 ipywidgets==8.0.6 tqdm==4.65.0 pytest==7.3.1 pytest-cov==4.0.0 mypy==1.3.0 flake8==6.0.0 pre-commit==3.3.1 # buildkit
# 2023-05-17 00:28:46 24.70MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=n6.0 --single-branch https://github.com/FFmpeg/FFmpeg.git && cd FFmpeg && mkdir ffmpeg_build && cd ffmpeg_build && ../configure --enable-cuda --enable-cuvid --enable-shared --disable-static --disable-doc --extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64 --enable-gpl --enable-libx264 --enable-libmp3lame --extra-libs=-lpthread --enable-openssl --enable-nonfree --nvccflags="-arch=sm_60 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_61,code=sm_61 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_86,code=sm_86 -gencode=arch=compute_89,code=sm_89 -gencode=arch=compute_89,code=compute_89" && make -j$(nproc) && make install && ldconfig && cd ../.. && rm -rf FFmpeg # buildkit
# 2023-05-17 00:27:43 416.27KB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=n12.0.16.0 --single-branch https://github.com/FFmpeg/nv-codec-headers.git && cd nv-codec-headers && make install && cd .. && rm -rf nv-codec-headers # buildkit
# 2023-05-17 00:27:41 17.59MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install --upgrade --no-cache-dir pip==23.1.2 setuptools==67.7.2 packaging==23.1 # buildkit
# 2023-05-17 00:27:37 5.19MB 执行命令并创建新的镜像层
RUN /bin/sh -c wget https://github.com/bazelbuild/bazelisk/releases/download/v1.16.0/bazelisk-linux-amd64 && chmod +x bazelisk-linux-amd64 && mv bazelisk-linux-amd64 /usr/local/bin/bazel # buildkit
# 2023-05-17 00:27:35 667.80MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt -y upgrade && apt-get -y install software-properties-common apt-utils build-essential yasm nasm ninja-build cmake unzip git wget curl nano vim tmux sysstat libtcmalloc-minimal4 pkgconf autoconf libtool flex bison libsm6 libxext6 libxrender1 libgl1-mesa-glx libx264-dev libsndfile1 libssl-dev python3 python3-dev python3-pip libpng-dev libjpeg-dev libmp3lame-dev liblapack-dev libopenblas-dev gfortran && ln -s /usr/bin/python3 /usr/bin/python && apt-get clean && apt-get -y autoremove && rm -rf /var/lib/apt/lists/* && rm -rf /var/cache/apt/archives/* # buildkit
# 2023-05-17 00:14:56 0.00B 设置工作目录为/workdir
WORKDIR /workdir
# 2023-05-17 00:14:56 0.00B 设置环境变量 PYTHONPATH
ENV PYTHONPATH=:/workdir
# 2023-05-17 00:14:56 0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=video,compute,utility
# 2023-05-17 00:14:56 0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
# 2023-05-17 00:14:56 0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
# 2023-02-02 14:03:52 2.58GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends ${NV_CUDNN_PACKAGE} ${NV_CUDNN_PACKAGE_DEV} && apt-mark hold ${NV_CUDNN_PACKAGE_NAME} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-02-02 14:03:52 0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.7.0.84
# 2023-02-02 14:03:52 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-02-02 14:03:52 0.00B 定义构建参数
ARG TARGETARCH
# 2023-02-02 14:03:52 0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.7.0.84-1+cuda11.8
# 2023-02-02 14:03:52 0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.7.0.84-1+cuda11.8
# 2023-02-02 14:03:52 0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
# 2023-02-02 14:03:52 0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.7.0.84
# 2023-02-02 13:43:52 0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
# 2023-02-02 13:43:52 381.31KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
# 2023-02-02 13:43:52 3.76GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-cudart-dev-11-8=${NV_CUDA_CUDART_DEV_VERSION} cuda-command-line-tools-11-8=${NV_CUDA_LIB_VERSION} cuda-minimal-build-11-8=${NV_CUDA_LIB_VERSION} cuda-libraries-dev-11-8=${NV_CUDA_LIB_VERSION} cuda-nvml-dev-11-8=${NV_NVML_DEV_VERSION} ${NV_NVPROF_DEV_PACKAGE} ${NV_LIBNPP_DEV_PACKAGE} libcusparse-dev-11-8=${NV_LIBCUSPARSE_DEV_VERSION} ${NV_LIBCUBLAS_DEV_PACKAGE} ${NV_LIBNCCL_DEV_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-02-02 13:43:52 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-02-02 13:43:52 0.00B 定义构建参数
ARG TARGETARCH
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8
# 2023-02-02 13:43:52 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.8.87-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.8.0.86-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.8.86-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.8.89-1
# 2023-02-02 13:43:52 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
# 2023-02-02 13:34:07 0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
# 2023-02-02 13:34:07 0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
# 2023-02-02 13:34:07 2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
# 2023-02-02 13:34:06 3.04KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
# 2023-02-02 13:34:06 259.96KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
# 2023-02-02 13:34:05 2.41GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-libraries-11-8=${NV_CUDA_LIB_VERSION} ${NV_LIBNPP_PACKAGE} cuda-nvtx-11-8=${NV_NVTX_VERSION} libcusparse-11-8=${NV_LIBCUSPARSE_VERSION} ${NV_LIBCUBLAS_PACKAGE} ${NV_LIBNCCL_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-02-02 13:34:05 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-02-02 13:34:05 0.00B 定义构建参数
ARG TARGETARCH
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8
# 2023-02-02 13:34:05 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.11.3.6-1
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.5.86-1
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.8.0.86-1
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.8.86-1
# 2023-02-02 13:34:05 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
# 2023-02-02 13:29:24 0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# 2023-02-02 13:29:24 0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
# 2023-02-02 13:29:24 16.05KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
# 2023-02-02 13:29:24 0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
# 2023-02-02 13:29:24 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2023-02-02 13:29:24 46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
# 2023-02-02 13:29:24 150.66MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-cudart-11-8=${NV_CUDA_CUDART_VERSION} ${NV_CUDA_COMPAT_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-02-02 13:29:13 0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.8.0
# 2023-02-02 13:29:13 10.51MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends gnupg2 curl ca-certificates && curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb && dpkg -i cuda-keyring_1.0-1_all.deb && apt-get purge --autoremove -y curl && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-02-02 13:29:13 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-02-02 13:29:13 0.00B 定义构建参数
ARG TARGETARCH
# 2023-02-02 13:29:13 0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8
# 2023-02-02 13:29:13 0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.8.89-1
# 2023-02-02 13:29:13 0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=tesla,driver>=515,driver<516 brand=unknown,driver>=515,driver<516 brand=nvidia,driver>=515,driver<516 brand=nvidiartx,driver>=515,driver<516 brand=geforce,driver>=515,driver<516 brand=geforcertx,driver>=515,driver<516 brand=quadro,driver>=515,driver<516 brand=quadrortx,driver>=515,driver<516 brand=titan,driver>=515,driver<516 brand=titanrtx,driver>=515,driver<516
# 2023-02-02 13:29:13 0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
# 2023-01-26 12:58:02 0.00B
/bin/sh -c #(nop) CMD ["/bin/bash"]
# 2023-01-26 12:58:02 77.81MB
/bin/sh -c #(nop) ADD file:18e71f049606f6339ce7a995839623f50e6ec6474bfd0a3a7ca799db726f47f6 in /
# 2023-01-26 12:58:00 0.00B
/bin/sh -c #(nop) LABEL org.opencontainers.image.version=22.04
# 2023-01-26 12:58:00 0.00B
/bin/sh -c #(nop) LABEL org.opencontainers.image.ref.name=ubuntu
# 2023-01-26 12:57:59 0.00B
/bin/sh -c #(nop) ARG LAUNCHPAD_BUILD_ARCH
# 2023-01-26 12:57:59 0.00B
/bin/sh -c #(nop) ARG RELEASE
镜像信息
{
"Id": "sha256:f13c3cd1ec6e119b3bda64e0a84edebf21ac49f6ab7c38dd36d04f1af903e640",
"RepoTags": [
"osaiai/dokai:23.05-vpf",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf"
],
"RepoDigests": [
"osaiai/dokai@sha256:295fb0f5779a8d591a6132be11282fb2728e15085a9449c593bcb8d2509156c0",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai@sha256:d7591ee75741c3146aa256639b583170933a92d69bfd2c0f574902a25b821ba7"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2023-05-17T14:56:12.965813099+03:00",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"NVARCH=x86_64",
"NVIDIA_REQUIRE_CUDA=cuda\u003e=11.8 brand=tesla,driver\u003e=450,driver\u003c451 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=510,driver\u003c511 brand=unknown,driver\u003e=510,driver\u003c511 brand=nvidia,driver\u003e=510,driver\u003c511 brand=nvidiartx,driver\u003e=510,driver\u003c511 brand=geforce,driver\u003e=510,driver\u003c511 brand=geforcertx,driver\u003e=510,driver\u003c511 brand=quadro,driver\u003e=510,driver\u003c511 brand=quadrortx,driver\u003e=510,driver\u003c511 brand=titan,driver\u003e=510,driver\u003c511 brand=titanrtx,driver\u003e=510,driver\u003c511 brand=tesla,driver\u003e=515,driver\u003c516 brand=unknown,driver\u003e=515,driver\u003c516 brand=nvidia,driver\u003e=515,driver\u003c516 brand=nvidiartx,driver\u003e=515,driver\u003c516 brand=geforce,driver\u003e=515,driver\u003c516 brand=geforcertx,driver\u003e=515,driver\u003c516 brand=quadro,driver\u003e=515,driver\u003c516 brand=quadrortx,driver\u003e=515,driver\u003c516 brand=titan,driver\u003e=515,driver\u003c516 brand=titanrtx,driver\u003e=515,driver\u003c516",
"NV_CUDA_CUDART_VERSION=11.8.89-1",
"NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8",
"CUDA_VERSION=11.8.0",
"LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/lib/x86_64-linux-gnu",
"NVIDIA_VISIBLE_DEVICES=all",
"NVIDIA_DRIVER_CAPABILITIES=video,compute,utility",
"NV_CUDA_LIB_VERSION=11.8.0-1",
"NV_NVTX_VERSION=11.8.86-1",
"NV_LIBNPP_VERSION=11.8.0.86-1",
"NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1",
"NV_LIBCUSPARSE_VERSION=11.7.5.86-1",
"NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8",
"NV_LIBCUBLAS_VERSION=11.11.3.6-1",
"NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1",
"NV_LIBNCCL_PACKAGE_NAME=libnccl2",
"NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1",
"NCCL_VERSION=2.15.5-1",
"NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8",
"NVIDIA_PRODUCT_NAME=CUDA",
"NV_CUDA_CUDART_DEV_VERSION=11.8.89-1",
"NV_NVML_DEV_VERSION=11.8.86-1",
"NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1",
"NV_LIBNPP_DEV_VERSION=11.8.0.86-1",
"NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1",
"NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1",
"NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8",
"NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1",
"NV_NVPROF_VERSION=11.8.87-1",
"NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1",
"NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
"NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1",
"NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8",
"LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
"NV_CUDNN_VERSION=8.7.0.84",
"NV_CUDNN_PACKAGE_NAME=libcudnn8",
"NV_CUDNN_PACKAGE=libcudnn8=8.7.0.84-1+cuda11.8",
"NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.7.0.84-1+cuda11.8",
"LANG=C.UTF-8",
"DEBIAN_FRONTEND=noninteractive",
"PYTHONPATH=:/workdir",
"TORCH_CUDA_ARCH_LIST=6.0;6.1;7.0;7.5;8.0;8.6;8.9"
],
"Cmd": null,
"Image": "",
"Volumes": null,
"WorkingDir": "/workdir",
"Entrypoint": [
"/opt/nvidia/nvidia_entrypoint.sh"
],
"OnBuild": null,
"Labels": {
"com.nvidia.cudnn.version": "8.7.0.84",
"maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
"org.opencontainers.image.ref.name": "ubuntu",
"org.opencontainers.image.version": "22.04"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 20490185295,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/c39da8167e78d747da42167fa1281726cc37a0ff4e47a43d26c43d11d4998920/diff:/var/lib/docker/overlay2/e130b2d4cf8db2075208955c29f72cb0d45a95ed9c3cc02fae3fdbab21227fb7/diff:/var/lib/docker/overlay2/cb629af7f8d92f4c2e6854090b71de5194e0229be2fd8f2d6b0b9c63b5739287/diff:/var/lib/docker/overlay2/95ddd0eeeb2fdc3e9ee4eeff8461d6a4a3ec7d111f83b0bdaecf26eb061346b3/diff:/var/lib/docker/overlay2/60fbd1f9c34cce709d1d495d95921ec6d4ed43bdd1edf0005fd5163839f9f246/diff:/var/lib/docker/overlay2/ef37db73df3461afa5b1cc313e189663c744aba50c4257b85c844ce6b849569b/diff:/var/lib/docker/overlay2/06d929aa5196a6b077eb1d198f4f4423104e94ea74968afda8471b7692ac9935/diff:/var/lib/docker/overlay2/025602e669cc0be740d2c8a50be3eb65b2bb03d66c3e7239c55b395d57ade78a/diff:/var/lib/docker/overlay2/80785afe5f5b42d8bec3f0d4c0c9493507cbbabf0c7c8f6165f48488ade677a1/diff:/var/lib/docker/overlay2/025b75ef253e92300af93208ed6b0d45ee35c79840a244a3ec3b89f313c077b6/diff:/var/lib/docker/overlay2/aae84a31e6f374e65148a259317d96c4d98c7f7289fcaa1cc27e300877a6a9ef/diff:/var/lib/docker/overlay2/959c8485652e1b9b70bb190ba65bcc8e00ff6d985dd1d54a3263a44c648112e1/diff:/var/lib/docker/overlay2/e8aef65224baffaff8b198ec93f8137aa33037c00cb2ef9402ccc7dbf2e95f27/diff:/var/lib/docker/overlay2/fafb2efec4dc380d24a2d631b03ecbfa1ef161ec6a88c98a06ebcd81f0b70619/diff:/var/lib/docker/overlay2/d6b8c7fe1d4dae1be1430e60c499743855e13cc64261a995172549ea3ec35a30/diff:/var/lib/docker/overlay2/878daf030d673069ed9d21148c4246d729dae3f639c332c421b0b50e1371cd06/diff:/var/lib/docker/overlay2/6a30558104ec18ce676fe83c4dc4e1bcb5da615954677e3d3d830516b09372eb/diff:/var/lib/docker/overlay2/0bc1b690f9a2512acf52db84002556857fd249dae61fb39ec5305360d6e0b7a5/diff:/var/lib/docker/overlay2/edad9de6fcda7affad023b8f10d656194076bf5713c9ac9565892e69f828a1b3/diff:/var/lib/docker/overlay2/09884695b6d22adab7feca44413ff34ea3e4fd57a951e34fb12f38b997700693/diff:/var/lib/docker/overlay2/4bf330220690a54417474cb3cf574b13fa8026bbc50c20ab8c9abc37ae08608e/diff:/var/lib/docker/overlay2/73adf254659ee19ecd5ad43341ef5e18e810c6028b05a6124cb168d778d268d1/diff:/var/lib/docker/overlay2/aa92d141bf236a5b64f1a0ec848879895507f3be26d97ca43ff590b4ee984528/diff:/var/lib/docker/overlay2/b6bbf6f8db79e7466d71a036457171d9ca3c84a36fb87cbd832179b92b0cc0f2/diff:/var/lib/docker/overlay2/ebbf976fcceb418c2c543b1e1d111d9ff56704ae4c4e2dcc376125f9315a451b/diff:/var/lib/docker/overlay2/0f46ba68adab66c5388face3b37289db2b44ae664bd4a23fa89dda382e7c72cb/diff:/var/lib/docker/overlay2/17c7727ca933f5145f458e957c61fc0267ac692bd29e7fe4ac0f2d59f7173e60/diff:/var/lib/docker/overlay2/b1a26c6fcdf965e4524983677b00e9a0d5bd86f1e7c916f54deae6e2c9efd172/diff:/var/lib/docker/overlay2/c4fa6ab695c16c46c025c098680e43c5188c387b82c6f8eb197181c6f8bbc955/diff",
"MergedDir": "/var/lib/docker/overlay2/e375cd1903250c0521a52f31fe8d65731f7d25cb0151bde31e245ae92c37215f/merged",
"UpperDir": "/var/lib/docker/overlay2/e375cd1903250c0521a52f31fe8d65731f7d25cb0151bde31e245ae92c37215f/diff",
"WorkDir": "/var/lib/docker/overlay2/e375cd1903250c0521a52f31fe8d65731f7d25cb0151bde31e245ae92c37215f/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:c5ff2d88f67954bdcf1cfdd46fe3d683858d69c2cadd6660812edfc83726c654",
"sha256:65abf0edb23dfc0cba7ee91e2724cdd7831b5d44bc1b43fb5e63d5acc8dbf65a",
"sha256:ea83d1f80fcaf16bbd963c19f6a2b331465b007e6f61acf68264b46e43e8ebd8",
"sha256:af561c199f2f727d3e5d29603bcf0039dd142bd490ce3067f249af4684413d81",
"sha256:8f6106a133b8d05a9f2410c0c53603cbccedd5bb14307cfacce90ce455fe2cc2",
"sha256:f403f5c5948af13d4fbb252944df5580fe4168d79221a35822cc71ddb49c9ea2",
"sha256:2106d7cd10269fbf230d872994fe0b13829ca6c017ba6f5cfb74396a5a121dec",
"sha256:11df89f48870131f699ac3001947561e898a9e1567ef9e5e2a1d39a9f00ed9b6",
"sha256:3a12ac953428e2c14b7ff24b3bd48022721b2f4c44da6b377c5e850d64ba08c4",
"sha256:d2e28f4121e3df3516ab38c5acbfae5fd006629f581f11c4f59905ad1c0646e2",
"sha256:bd889e83e6524ebb7721b2bed5399845b26cbb2101ccfa627f1a37b039cd12d6",
"sha256:73f72eabba298ce4abd1d414ae9b3016f2ad15d867f256487d314d84aa67f23f",
"sha256:42228e52177d98ef6064f17ad679536876f680ec714cd50be5e59047b7d7b5e0",
"sha256:bf29309497afadc0f359d02b170405cab192417e574aec9dca9d53ccdbb86981",
"sha256:2bb49054d77cff1c41dee199544435d468c0af40f0811da8b8e317a6d5cb7648",
"sha256:5d034d629d0692d3eca0702d3507fdfbe0196c6660f48394ffb80a81e775aae1",
"sha256:70327f077f667f43dfc766c50613be9515de0a3f8270ec7d8ecdc8bea92683a6",
"sha256:fd4c2ee634234f28a459b39831a0c05ad842df5608011d36877b2a13bb983b00",
"sha256:aecd01a1891d18d9326d6b0dcf4655591a071c9d1f9ed48dc594323f0fa29767",
"sha256:aafea1e470c1662ebe0aa1d14c9dbcbd2708ac74603391dc4be07858fc38e1b7",
"sha256:209a6b16b3353af7c0cf6c1b00854e631bd1b8949cff61640ebb2d7e20c1d8b0",
"sha256:88950b8073f9484c11003eb672280ff757581b690fbd3c3cdb9c93945feabe01",
"sha256:1ec4157860563f56e36fb77863eea7331091a87b04ecfad7b24a08688dfd7c09",
"sha256:41c0721d301f87565160101530d172ffa6b5d4222d73e75d5d077efe3c0cafd4",
"sha256:ce3edfc03602c6e9da55946861001695344b038f3cfd19da2810704d8da25679",
"sha256:9b9b204b179d113401832b1646ca9d00f0e79b1a3b2ad22b80ab2c0f0681bd8e",
"sha256:3be913431eae9419631bc16be212b5c95c275c0c7564639635f49c096b99846b",
"sha256:303262c1ffde5f0b4ed16c85e30cf0ca02f9cb7f64509a2bce642ea108392cb0",
"sha256:b2a97803339489dd2b211b922b87976a8429005a2a3c1d72d3a910c6ec62a37e",
"sha256:21ec554afba268ee7f83de3b8a7cbd6cc0e751a226a20bec80b3c38f3a8027ac"
]
},
"Metadata": {
"LastTagTime": "2024-12-10T11:48:38.693396174+08:00"
}
}