docker.io/osaiai/dokai:23.05-vpf linux/amd64

docker.io/osaiai/dokai:23.05-vpf - 国内下载镜像源 浏览次数:41
```html

该Docker镜像 docker.io/osaiai/dokai 的描述信息目前无法直接获得。 Docker Hub 等镜像仓库通常会提供镜像的描述信息,但需要访问该镜像的页面才能查看。 没有其他上下文信息的情况下,无法得知该镜像的具体用途或包含的内容。

```
源镜像 docker.io/osaiai/dokai:23.05-vpf
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf
镜像ID sha256:f13c3cd1ec6e119b3bda64e0a84edebf21ac49f6ab7c38dd36d04f1af903e640
镜像TAG 23.05-vpf
大小 20.49GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workdir
OS/平台 linux/amd64
浏览量 41 次
贡献者
镜像创建 2023-05-17T14:56:12.965813099+03:00
同步时间 2024-12-10 12:09
更新时间 2025-01-20 08:53
环境变量
PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=tesla,driver>=515,driver<516 brand=unknown,driver>=515,driver<516 brand=nvidia,driver>=515,driver<516 brand=nvidiartx,driver>=515,driver<516 brand=geforce,driver>=515,driver<516 brand=geforcertx,driver>=515,driver<516 brand=quadro,driver>=515,driver<516 brand=quadrortx,driver>=515,driver<516 brand=titan,driver>=515,driver<516 brand=titanrtx,driver>=515,driver<516 NV_CUDA_CUDART_VERSION=11.8.89-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8 CUDA_VERSION=11.8.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/lib/x86_64-linux-gnu NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=video,compute,utility NV_CUDA_LIB_VERSION=11.8.0-1 NV_NVTX_VERSION=11.8.86-1 NV_LIBNPP_VERSION=11.8.0.86-1 NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1 NV_LIBCUSPARSE_VERSION=11.7.5.86-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8 NV_LIBCUBLAS_VERSION=11.11.3.6-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1 NCCL_VERSION=2.15.5-1 NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=11.8.89-1 NV_NVML_DEV_VERSION=11.8.86-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1 NV_LIBNPP_DEV_VERSION=11.8.0.86-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1 NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1 NV_NVPROF_VERSION=11.8.87-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.7.0.84 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.7.0.84-1+cuda11.8 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.7.0.84-1+cuda11.8 LANG=C.UTF-8 DEBIAN_FRONTEND=noninteractive PYTHONPATH=:/workdir TORCH_CUDA_ARCH_LIST=6.0;6.1;7.0;7.5;8.0;8.6;8.9
镜像标签
8.7.0.84: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version
镜像安全扫描 查看Trivy扫描报告

系统OS: ubuntu 22.04 扫描引擎: Trivy 扫描时间: 2024-12-10 12:13

低危漏洞:515 中危漏洞:2594 高危漏洞:121 严重漏洞:5

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf  docker.io/osaiai/dokai:23.05-vpf

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf  docker.io/osaiai/dokai:23.05-vpf

Shell快速替换命令

sed -i 's#osaiai/dokai:23.05-vpf#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf  docker.io/osaiai/dokai:23.05-vpf'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf  docker.io/osaiai/dokai:23.05-vpf'

镜像构建历史


# 2023-05-17 19:56:12  36.36MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --branch=v2.0.0 --single-branch https://github.com/NVIDIA/VideoProcessingFramework &&     cd VideoProcessingFramework &&     pip3 install . &&     pip3 install src/PytorchNvCodec &&     cd .. && rm -rf VideoProcessingFramework # buildkit
                        
# 2023-05-17 19:55:04  272.13MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update &&     apt-get -y install     libavfilter-dev     libavformat-dev     libavcodec-dev     libswresample-dev     libavutil-dev &&     apt-get clean &&     apt-get -y autoremove &&     rm -rf /var/lib/apt/lists/* &&     rm -rf /var/cache/apt/archives/* # buildkit
                        
# 2023-05-17 19:53:06  275.59MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install --no-cache-dir     triton==2.0.0.post1     pytorch-ignite==0.4.12     pytorch-argus==1.0.0     pretrainedmodels==0.7.4     efficientnet-pytorch==0.7.1     pytorch-toolbelt==0.6.3     kornia==0.6.12     timm==0.9.2 # buildkit
                        
# 2023-05-17 03:12:11  13.40MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=v2.0.2 --single-branch https://github.com/pytorch/audio.git &&     cd audio &&     git submodule sync && git submodule update --init --recursive &&     python3 setup.py install &&     cd .. && rm -rf audio # buildkit
                        
# 2023-05-17 02:51:49  54.37MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=v0.15.2 --single-branch https://github.com/pytorch/vision.git &&     cd vision &&     FORCE_CUDA=1 TORCHVISION_USE_FFMPEG=0 python3 setup.py install &&     cd .. && rm -rf vision # buildkit
                        
# 2023-05-17 02:49:47  368.31MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=release/1.4 --single-branch https://github.com/pytorch/TensorRT.git &&     cp WORKSPACE TensorRT/ && cd TensorRT &&     bazel build //:libtorchtrt --compilation_mode opt &&     cd py && python3 setup.py install --use-cxx11-abi &&     cd ../.. && rm -rf TensorRT WORKSPACE # buildkit
                        
# 2023-05-17 02:45:52  2.92KB 复制新文件或目录到容器中
COPY docker/torchtrt/WORKSPACE WORKSPACE # buildkit
                        
# 2023-05-17 02:45:52  1.31GB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=v2.0.1 --single-branch https://github.com/pytorch/pytorch.git &&     cd pytorch &&     git submodule sync && git submodule update --init --recursive &&     sed -i 's/Store::kDefaultTimeout/::c10d::Store::kDefaultTimeout/' torch/csrc/distributed/c10d/ProcessGroupGloo.hpp &&     TORCH_NVCC_FLAGS="-Xfatbin -compress-all" python3 setup.py install &&     cd .. && rm -rf pytorch # buildkit
                        
# 2023-05-17 01:14:53  4.06GB 执行命令并创建新的镜像层
RUN /bin/sh -c MAGMA_VERSION=2.7.1 &&     ln -s /usr/local/cuda/lib64/libcudart.so /usr/lib/libcudart.so &&     wget https://bitbucket.org/icl/magma/get/v${MAGMA_VERSION}.tar.gz &&     mkdir magma-${MAGMA_VERSION}/ &&     tar -xzf v${MAGMA_VERSION}.tar.gz -C magma-${MAGMA_VERSION}/ --strip-components=1 &&     cp make.inc magma-${MAGMA_VERSION} &&     cd magma-${MAGMA_VERSION} &&     make -j$(nproc) && make install &&     cd .. && rm -rf magma-${MAGMA_VERSION} v${MAGMA_VERSION}.tar.gz make.inc # buildkit
                        
# 2023-05-17 00:38:27  2.96KB 复制新文件或目录到容器中
COPY docker/magma/make.inc make.inc # buildkit
                        
# 2023-05-17 00:38:27  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/lib/x86_64-linux-gnu
                        
# 2023-05-17 00:38:27  3.31GB 执行命令并创建新的镜像层
RUN /bin/sh -c CUDA_VERSION=11.8.0 TRT_GA_VERSION=8.6.1.6 TRT_OSS_VERSION=v8.6.1 &&     GPU_ARCHS="60 61 70 75 80 86 89" &&     v="${TRT_GA_VERSION}-1+cuda${CUDA_VERSION%.*}" &&    apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub &&    apt-get update &&    apt-get -y install     libnvinfer8=${v} libnvonnxparsers8=${v} libnvparsers8=${v} libnvinfer-plugin8=${v}     libnvinfer-dev=${v} libnvonnxparsers-dev=${v} libnvparsers-dev=${v} libnvinfer-plugin-dev=${v}     python3-libnvinfer=${v} libnvinfer-dispatch8=${v} libnvinfer-dispatch-dev=${v} libnvinfer-lean8=${v}     libnvinfer-lean-dev=${v} libnvinfer-vc-plugin8=${v} libnvinfer-vc-plugin-dev=${v}     libnvinfer-headers-dev=${v} libnvinfer-headers-plugin-dev=${v} &&     git clone --depth=1 --branch="$TRT_OSS_VERSION" --single-branch https://github.com/nvidia/TensorRT &&     cd TensorRT &&     git submodule sync && git submodule update --init --recursive &&     mkdir -p build && cd build &&     cmake .. -DGPU_ARCHS="$GPU_ARCHS" -DBUILD_SAMPLES=ON     -DTRT_LIB_DIR=/usr/lib/x86_64-linux-gnu -DTRT_OUT_DIR=/usr/lib/x86_64-linux-gnu &&     make -j$(nproc) &&     cd ../.. && rm -rf TensorRT &&     ln -s /usr/lib/x86_64-linux-gnu/trtexec /usr/bin/trtexec &&     apt-get clean &&     apt-get -y autoremove &&     rm -rf /var/lib/apt/lists/* &&     rm -rf /var/cache/apt/archives/* # buildkit
                        
# 2023-05-17 00:38:27  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=6.0;6.1;7.0;7.5;8.0;8.6;8.9
                        
# 2023-05-17 00:30:10  1.07GB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install --no-cache-dir     numpy==1.24.3     opencv-python==4.7.0.72     sympy==1.12     scipy==1.10.1     matplotlib==3.7.1     pandas==2.0.1     scikit-learn==1.2.2     scikit-image==0.20.0     Pillow==9.5.0     librosa==0.10.0.post2     albumentations==1.3.0     pyzmq==25.0.2     Cython==0.29.34     numba==0.57.0     requests==2.30.0     psutil==5.9.5     pydantic==1.10.7     PyYAML==6.0     notebook==6.5.2     ipywidgets==8.0.6     tqdm==4.65.0     pytest==7.3.1     pytest-cov==4.0.0     mypy==1.3.0     flake8==6.0.0     pre-commit==3.3.1 # buildkit
                        
# 2023-05-17 00:28:46  24.70MB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=n6.0 --single-branch https://github.com/FFmpeg/FFmpeg.git &&     cd FFmpeg &&     mkdir ffmpeg_build && cd ffmpeg_build &&     ../configure     --enable-cuda     --enable-cuvid     --enable-shared     --disable-static     --disable-doc     --extra-cflags=-I/usr/local/cuda/include     --extra-ldflags=-L/usr/local/cuda/lib64     --enable-gpl     --enable-libx264     --enable-libmp3lame     --extra-libs=-lpthread     --enable-openssl     --enable-nonfree     --nvccflags="-arch=sm_60  -gencode=arch=compute_60,code=sm_60  -gencode=arch=compute_61,code=sm_61  -gencode=arch=compute_70,code=sm_70  -gencode=arch=compute_75,code=sm_75  -gencode=arch=compute_80,code=sm_80  -gencode=arch=compute_86,code=sm_86  -gencode=arch=compute_89,code=sm_89  -gencode=arch=compute_89,code=compute_89" &&     make -j$(nproc) && make install && ldconfig &&     cd ../.. && rm -rf FFmpeg # buildkit
                        
# 2023-05-17 00:27:43  416.27KB 执行命令并创建新的镜像层
RUN /bin/sh -c git clone --depth=1 --branch=n12.0.16.0 --single-branch https://github.com/FFmpeg/nv-codec-headers.git &&     cd nv-codec-headers && make install &&     cd .. && rm -rf nv-codec-headers # buildkit
                        
# 2023-05-17 00:27:41  17.59MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install --upgrade --no-cache-dir     pip==23.1.2     setuptools==67.7.2     packaging==23.1 # buildkit
                        
# 2023-05-17 00:27:37  5.19MB 执行命令并创建新的镜像层
RUN /bin/sh -c wget https://github.com/bazelbuild/bazelisk/releases/download/v1.16.0/bazelisk-linux-amd64 &&     chmod +x bazelisk-linux-amd64 &&     mv bazelisk-linux-amd64 /usr/local/bin/bazel # buildkit
                        
# 2023-05-17 00:27:35  667.80MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt -y upgrade &&     apt-get -y install     software-properties-common apt-utils     build-essential yasm nasm ninja-build cmake    unzip git wget curl nano vim tmux     sysstat libtcmalloc-minimal4 pkgconf     autoconf libtool flex bison     libsm6 libxext6 libxrender1 libgl1-mesa-glx     libx264-dev libsndfile1 libssl-dev     python3 python3-dev python3-pip     libpng-dev libjpeg-dev libmp3lame-dev     liblapack-dev libopenblas-dev gfortran &&     ln -s /usr/bin/python3 /usr/bin/python &&     apt-get clean &&     apt-get -y autoremove &&     rm -rf /var/lib/apt/lists/* &&     rm -rf /var/cache/apt/archives/* # buildkit
                        
# 2023-05-17 00:14:56  0.00B 设置工作目录为/workdir
WORKDIR /workdir
                        
# 2023-05-17 00:14:56  0.00B 设置环境变量 PYTHONPATH
ENV PYTHONPATH=:/workdir
                        
# 2023-05-17 00:14:56  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=video,compute,utility
                        
# 2023-05-17 00:14:56  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2023-05-17 00:14:56  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2023-02-02 14:03:52  2.58GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-02-02 14:03:52  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.7.0.84
                        
# 2023-02-02 14:03:52  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-02-02 14:03:52  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-02-02 14:03:52  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.7.0.84-1+cuda11.8
                        
# 2023-02-02 14:03:52  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.7.0.84-1+cuda11.8
                        
# 2023-02-02 14:03:52  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-02-02 14:03:52  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.7.0.84
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-02-02 13:43:52  381.31KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-02-02 13:43:52  3.76GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-11-8=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-8=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-8=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-8=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-8=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-8=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-02-02 13:43:52  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-02-02 13:43:52  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.8.87-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.8.0.86-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.8.86-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.8.89-1
                        
# 2023-02-02 13:43:52  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-02-02 13:34:07  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-02-02 13:34:07  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-02-02 13:34:07  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-02-02 13:34:06  3.04KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-02-02 13:34:06  259.96KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-02-02 13:34:05  2.41GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-8=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-8=${NV_NVTX_VERSION}     libcusparse-11-8=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-02-02 13:34:05  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-02-02 13:34:05  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.11.3.6-1
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.5.86-1
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.8.0.86-1
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.8.86-1
                        
# 2023-02-02 13:34:05  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-02-02 13:29:24  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-02-02 13:29:24  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-02-02 13:29:24  16.05KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-02-02 13:29:24  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-02-02 13:29:24  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-02-02 13:29:24  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-02-02 13:29:24  150.66MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-8=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-02-02 13:29:13  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.8.0
                        
# 2023-02-02 13:29:13  10.51MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-02-02 13:29:13  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-02-02 13:29:13  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-02-02 13:29:13  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8
                        
# 2023-02-02 13:29:13  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.8.89-1
                        
# 2023-02-02 13:29:13  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=tesla,driver>=515,driver<516 brand=unknown,driver>=515,driver<516 brand=nvidia,driver>=515,driver<516 brand=nvidiartx,driver>=515,driver<516 brand=geforce,driver>=515,driver<516 brand=geforcertx,driver>=515,driver<516 brand=quadro,driver>=515,driver<516 brand=quadrortx,driver>=515,driver<516 brand=titan,driver>=515,driver<516 brand=titanrtx,driver>=515,driver<516
                        
# 2023-02-02 13:29:13  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-01-26 12:58:02  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-01-26 12:58:02  77.81MB 
/bin/sh -c #(nop) ADD file:18e71f049606f6339ce7a995839623f50e6ec6474bfd0a3a7ca799db726f47f6 in / 
                        
# 2023-01-26 12:58:00  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-01-26 12:58:00  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-01-26 12:57:59  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-01-26 12:57:59  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:f13c3cd1ec6e119b3bda64e0a84edebf21ac49f6ab7c38dd36d04f1af903e640",
    "RepoTags": [
        "osaiai/dokai:23.05-vpf",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai:23.05-vpf"
    ],
    "RepoDigests": [
        "osaiai/dokai@sha256:295fb0f5779a8d591a6132be11282fb2728e15085a9449c593bcb8d2509156c0",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/osaiai/dokai@sha256:d7591ee75741c3146aa256639b583170933a92d69bfd2c0f574902a25b821ba7"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2023-05-17T14:56:12.965813099+03:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.8 brand=tesla,driver\u003e=450,driver\u003c451 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=510,driver\u003c511 brand=unknown,driver\u003e=510,driver\u003c511 brand=nvidia,driver\u003e=510,driver\u003c511 brand=nvidiartx,driver\u003e=510,driver\u003c511 brand=geforce,driver\u003e=510,driver\u003c511 brand=geforcertx,driver\u003e=510,driver\u003c511 brand=quadro,driver\u003e=510,driver\u003c511 brand=quadrortx,driver\u003e=510,driver\u003c511 brand=titan,driver\u003e=510,driver\u003c511 brand=titanrtx,driver\u003e=510,driver\u003c511 brand=tesla,driver\u003e=515,driver\u003c516 brand=unknown,driver\u003e=515,driver\u003c516 brand=nvidia,driver\u003e=515,driver\u003c516 brand=nvidiartx,driver\u003e=515,driver\u003c516 brand=geforce,driver\u003e=515,driver\u003c516 brand=geforcertx,driver\u003e=515,driver\u003c516 brand=quadro,driver\u003e=515,driver\u003c516 brand=quadrortx,driver\u003e=515,driver\u003c516 brand=titan,driver\u003e=515,driver\u003c516 brand=titanrtx,driver\u003e=515,driver\u003c516",
            "NV_CUDA_CUDART_VERSION=11.8.89-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8",
            "CUDA_VERSION=11.8.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/lib/x86_64-linux-gnu",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=video,compute,utility",
            "NV_CUDA_LIB_VERSION=11.8.0-1",
            "NV_NVTX_VERSION=11.8.86-1",
            "NV_LIBNPP_VERSION=11.8.0.86-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1",
            "NV_LIBCUSPARSE_VERSION=11.7.5.86-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8",
            "NV_LIBCUBLAS_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1",
            "NCCL_VERSION=2.15.5-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=11.8.89-1",
            "NV_NVML_DEV_VERSION=11.8.86-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1",
            "NV_LIBNPP_DEV_VERSION=11.8.0.86-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1",
            "NV_NVPROF_VERSION=11.8.87-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.7.0.84",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.7.0.84-1+cuda11.8",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.7.0.84-1+cuda11.8",
            "LANG=C.UTF-8",
            "DEBIAN_FRONTEND=noninteractive",
            "PYTHONPATH=:/workdir",
            "TORCH_CUDA_ARCH_LIST=6.0;6.1;7.0;7.5;8.0;8.6;8.9"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workdir",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.7.0.84",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 20490185295,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/c39da8167e78d747da42167fa1281726cc37a0ff4e47a43d26c43d11d4998920/diff:/var/lib/docker/overlay2/e130b2d4cf8db2075208955c29f72cb0d45a95ed9c3cc02fae3fdbab21227fb7/diff:/var/lib/docker/overlay2/cb629af7f8d92f4c2e6854090b71de5194e0229be2fd8f2d6b0b9c63b5739287/diff:/var/lib/docker/overlay2/95ddd0eeeb2fdc3e9ee4eeff8461d6a4a3ec7d111f83b0bdaecf26eb061346b3/diff:/var/lib/docker/overlay2/60fbd1f9c34cce709d1d495d95921ec6d4ed43bdd1edf0005fd5163839f9f246/diff:/var/lib/docker/overlay2/ef37db73df3461afa5b1cc313e189663c744aba50c4257b85c844ce6b849569b/diff:/var/lib/docker/overlay2/06d929aa5196a6b077eb1d198f4f4423104e94ea74968afda8471b7692ac9935/diff:/var/lib/docker/overlay2/025602e669cc0be740d2c8a50be3eb65b2bb03d66c3e7239c55b395d57ade78a/diff:/var/lib/docker/overlay2/80785afe5f5b42d8bec3f0d4c0c9493507cbbabf0c7c8f6165f48488ade677a1/diff:/var/lib/docker/overlay2/025b75ef253e92300af93208ed6b0d45ee35c79840a244a3ec3b89f313c077b6/diff:/var/lib/docker/overlay2/aae84a31e6f374e65148a259317d96c4d98c7f7289fcaa1cc27e300877a6a9ef/diff:/var/lib/docker/overlay2/959c8485652e1b9b70bb190ba65bcc8e00ff6d985dd1d54a3263a44c648112e1/diff:/var/lib/docker/overlay2/e8aef65224baffaff8b198ec93f8137aa33037c00cb2ef9402ccc7dbf2e95f27/diff:/var/lib/docker/overlay2/fafb2efec4dc380d24a2d631b03ecbfa1ef161ec6a88c98a06ebcd81f0b70619/diff:/var/lib/docker/overlay2/d6b8c7fe1d4dae1be1430e60c499743855e13cc64261a995172549ea3ec35a30/diff:/var/lib/docker/overlay2/878daf030d673069ed9d21148c4246d729dae3f639c332c421b0b50e1371cd06/diff:/var/lib/docker/overlay2/6a30558104ec18ce676fe83c4dc4e1bcb5da615954677e3d3d830516b09372eb/diff:/var/lib/docker/overlay2/0bc1b690f9a2512acf52db84002556857fd249dae61fb39ec5305360d6e0b7a5/diff:/var/lib/docker/overlay2/edad9de6fcda7affad023b8f10d656194076bf5713c9ac9565892e69f828a1b3/diff:/var/lib/docker/overlay2/09884695b6d22adab7feca44413ff34ea3e4fd57a951e34fb12f38b997700693/diff:/var/lib/docker/overlay2/4bf330220690a54417474cb3cf574b13fa8026bbc50c20ab8c9abc37ae08608e/diff:/var/lib/docker/overlay2/73adf254659ee19ecd5ad43341ef5e18e810c6028b05a6124cb168d778d268d1/diff:/var/lib/docker/overlay2/aa92d141bf236a5b64f1a0ec848879895507f3be26d97ca43ff590b4ee984528/diff:/var/lib/docker/overlay2/b6bbf6f8db79e7466d71a036457171d9ca3c84a36fb87cbd832179b92b0cc0f2/diff:/var/lib/docker/overlay2/ebbf976fcceb418c2c543b1e1d111d9ff56704ae4c4e2dcc376125f9315a451b/diff:/var/lib/docker/overlay2/0f46ba68adab66c5388face3b37289db2b44ae664bd4a23fa89dda382e7c72cb/diff:/var/lib/docker/overlay2/17c7727ca933f5145f458e957c61fc0267ac692bd29e7fe4ac0f2d59f7173e60/diff:/var/lib/docker/overlay2/b1a26c6fcdf965e4524983677b00e9a0d5bd86f1e7c916f54deae6e2c9efd172/diff:/var/lib/docker/overlay2/c4fa6ab695c16c46c025c098680e43c5188c387b82c6f8eb197181c6f8bbc955/diff",
            "MergedDir": "/var/lib/docker/overlay2/e375cd1903250c0521a52f31fe8d65731f7d25cb0151bde31e245ae92c37215f/merged",
            "UpperDir": "/var/lib/docker/overlay2/e375cd1903250c0521a52f31fe8d65731f7d25cb0151bde31e245ae92c37215f/diff",
            "WorkDir": "/var/lib/docker/overlay2/e375cd1903250c0521a52f31fe8d65731f7d25cb0151bde31e245ae92c37215f/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:c5ff2d88f67954bdcf1cfdd46fe3d683858d69c2cadd6660812edfc83726c654",
            "sha256:65abf0edb23dfc0cba7ee91e2724cdd7831b5d44bc1b43fb5e63d5acc8dbf65a",
            "sha256:ea83d1f80fcaf16bbd963c19f6a2b331465b007e6f61acf68264b46e43e8ebd8",
            "sha256:af561c199f2f727d3e5d29603bcf0039dd142bd490ce3067f249af4684413d81",
            "sha256:8f6106a133b8d05a9f2410c0c53603cbccedd5bb14307cfacce90ce455fe2cc2",
            "sha256:f403f5c5948af13d4fbb252944df5580fe4168d79221a35822cc71ddb49c9ea2",
            "sha256:2106d7cd10269fbf230d872994fe0b13829ca6c017ba6f5cfb74396a5a121dec",
            "sha256:11df89f48870131f699ac3001947561e898a9e1567ef9e5e2a1d39a9f00ed9b6",
            "sha256:3a12ac953428e2c14b7ff24b3bd48022721b2f4c44da6b377c5e850d64ba08c4",
            "sha256:d2e28f4121e3df3516ab38c5acbfae5fd006629f581f11c4f59905ad1c0646e2",
            "sha256:bd889e83e6524ebb7721b2bed5399845b26cbb2101ccfa627f1a37b039cd12d6",
            "sha256:73f72eabba298ce4abd1d414ae9b3016f2ad15d867f256487d314d84aa67f23f",
            "sha256:42228e52177d98ef6064f17ad679536876f680ec714cd50be5e59047b7d7b5e0",
            "sha256:bf29309497afadc0f359d02b170405cab192417e574aec9dca9d53ccdbb86981",
            "sha256:2bb49054d77cff1c41dee199544435d468c0af40f0811da8b8e317a6d5cb7648",
            "sha256:5d034d629d0692d3eca0702d3507fdfbe0196c6660f48394ffb80a81e775aae1",
            "sha256:70327f077f667f43dfc766c50613be9515de0a3f8270ec7d8ecdc8bea92683a6",
            "sha256:fd4c2ee634234f28a459b39831a0c05ad842df5608011d36877b2a13bb983b00",
            "sha256:aecd01a1891d18d9326d6b0dcf4655591a071c9d1f9ed48dc594323f0fa29767",
            "sha256:aafea1e470c1662ebe0aa1d14c9dbcbd2708ac74603391dc4be07858fc38e1b7",
            "sha256:209a6b16b3353af7c0cf6c1b00854e631bd1b8949cff61640ebb2d7e20c1d8b0",
            "sha256:88950b8073f9484c11003eb672280ff757581b690fbd3c3cdb9c93945feabe01",
            "sha256:1ec4157860563f56e36fb77863eea7331091a87b04ecfad7b24a08688dfd7c09",
            "sha256:41c0721d301f87565160101530d172ffa6b5d4222d73e75d5d077efe3c0cafd4",
            "sha256:ce3edfc03602c6e9da55946861001695344b038f3cfd19da2810704d8da25679",
            "sha256:9b9b204b179d113401832b1646ca9d00f0e79b1a3b2ad22b80ab2c0f0681bd8e",
            "sha256:3be913431eae9419631bc16be212b5c95c275c0c7564639635f49c096b99846b",
            "sha256:303262c1ffde5f0b4ed16c85e30cf0ca02f9cb7f64509a2bce642ea108392cb0",
            "sha256:b2a97803339489dd2b211b922b87976a8429005a2a3c1d72d3a910c6ec62a37e",
            "sha256:21ec554afba268ee7f83de3b8a7cbd6cc0e751a226a20bec80b3c38f3a8027ac"
        ]
    },
    "Metadata": {
        "LastTagTime": "2024-12-10T11:48:38.693396174+08:00"
    }
}

更多版本

docker.io/osaiai/dokai:23.05-vpf

linux/amd64 docker.io20.49GB2024-12-10 12:09
40