docker.io/podwide/cosyvoice:v2.0.0 linux/amd64

docker.io/podwide/cosyvoice:v2.0.0 - 国内下载镜像源 浏览次数:126
```html

这是一个名为cosyvoice的Docker镜像,由podwide维护并托管在Docker Hub上 (docker.io)。 该镜像的具体功能描述需要参考镜像的文档或标签说明,因为仅凭名称无法得知其确切用途。

```
源镜像 docker.io/podwide/cosyvoice:v2.0.0
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0
镜像ID sha256:34e2a62db0e2b238a3940464bdf3bde05686bb340ae4100db33013132c7cf494
镜像TAG v2.0.0
大小 33.66GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /start.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 126 次
贡献者
镜像创建 2025-01-02T00:14:48.40749605-08:00
同步时间 2025-03-19 01:58
更新时间 2025-04-04 13:33
环境变量
PATH=/opt/conda/bin:/opt/conda/envs/cosyvoice/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.105-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.1 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.1-1 NV_NVTX_VERSION=12.1.105-1 NV_LIBNPP_VERSION=12.1.0.40-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 NV_LIBCUSPARSE_VERSION=12.1.0.106-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.3.1-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=12.1.105-1 NV_NVML_DEV_VERSION=12.1.105-1 NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1 NV_LIBNPP_DEV_VERSION=12.1.0.40-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1 NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1 NV_NVPROF_VERSION=12.1.105-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.9.0.131 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1 VENV=cosyvoice LANG=C.UTF-8 LC_ALL=C.UTF-8 DEBIAN_FRONTEND=noninteractive PYTHONUNBUFFERED=1 CONDA_DEFAULT_ENV=cosyvoice
镜像标签
8.9.0.131: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0  docker.io/podwide/cosyvoice:v2.0.0

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0  docker.io/podwide/cosyvoice:v2.0.0

Shell快速替换命令

sed -i 's#podwide/cosyvoice:v2.0.0#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0  docker.io/podwide/cosyvoice:v2.0.0'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0  docker.io/podwide/cosyvoice:v2.0.0'

镜像构建历史


# 2025-01-02 16:14:48  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/start.sh"]
                        
# 2025-01-02 16:14:48  2.00KB 执行命令并创建新的镜像层
RUN |1 VENV_NAME=cosyvoice /bin/sh -c chmod +x /start.sh # buildkit
                        
# 2025-01-02 16:14:48  2.00KB 复制新文件或目录到容器中
COPY start.sh / # buildkit
                        
# 2025-01-02 16:14:48  86.00B 复制新文件或目录到容器中
COPY post_stop.sh /post_stop.sh # buildkit
                        
# 2025-01-02 16:14:48  210.00B 复制新文件或目录到容器中
COPY post_start.sh /post_start.sh # buildkit
                        
# 2025-01-02 16:14:47  22.16GB 执行命令并创建新的镜像层
RUN |1 VENV_NAME=cosyvoice /bin/sh -c conda run -n ${VENV} conda install -y -c conda-forge pynini==2.1.5 &&     git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git &&     cd CosyVoice &&     git submodule update --init --recursive &&     conda run -n ${VENV} pip install --no-cache-dir -r requirements.txt &&     conda run -n ${VENV} pip install transformers[torch] &&     mkdir -p pretrained_models &&     git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B &&     git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd &&     cd pretrained_models/CosyVoice-ttsfrd/ &&     unzip resource.zip -d .  &&     conda run -n ${VENV} pip install ttsfrd_dependency-0.1-py3-none-any.whl &&     conda run -n ${VENV} pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl &&     conda run -n ${VENV} pip install --no-cache-dir jupyterlab ipywidgets ipykernel matplotlib &&     cd /workspace/ # buildkit
                        
# 2025-01-02 16:04:58  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2025-01-02 16:04:58  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/opt/conda/envs/cosyvoice/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-01-02 16:04:58  0.00B 设置环境变量 CONDA_DEFAULT_ENV
ENV CONDA_DEFAULT_ENV=cosyvoice
                        
# 2025-01-02 16:04:58  878.86MB 执行命令并创建新的镜像层
RUN |1 VENV_NAME=cosyvoice /bin/sh -c conda create -y -n ${VENV} python=3.10 # buildkit
                        
# 2025-01-02 16:04:21  128.00B 执行命令并创建新的镜像层
RUN |1 VENV_NAME=cosyvoice /bin/sh -c conda config --add channels conda-forge &&     conda config --set channel_priority strict # buildkit
                        
# 2025-01-02 16:04:20  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-01-02 16:04:20  640.20MB 执行命令并创建新的镜像层
RUN |1 VENV_NAME=cosyvoice /bin/sh -c wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh &&     bash ~/miniconda.sh -b -u -p /opt/conda &&     rm ~/miniconda.sh &&     /opt/conda/bin/conda init bash &&     echo "conda activate ${VENV}" >> $HOME/.bashrc # buildkit
                        
# 2025-01-02 15:51:31  494.99MB 执行命令并创建新的镜像层
RUN |1 VENV_NAME=cosyvoice /bin/sh -c chmod 1777 /tmp && apt-get update -y --fix-missing && apt-get install --no-install-recommends -y     git build-essential curl wget ffmpeg unzip git-lfs sox libsox-dev     net-tools vim openssh-server ca-certificates &&     apt-get clean &&     rm -rf /var/lib/apt/lists/* &&     git lfs install # buildkit
                        
# 2025-01-02 15:51:31  0.00B 设置环境变量 PYTHONUNBUFFERED
ENV PYTHONUNBUFFERED=1
                        
# 2025-01-02 15:51:31  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2025-01-02 15:51:31  0.00B 设置环境变量 LANG LC_ALL
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
                        
# 2025-01-02 15:51:31  0.00B 设置环境变量 VENV
ENV VENV=cosyvoice
                        
# 2025-01-02 15:51:31  0.00B 定义构建参数
ARG VENV_NAME=cosyvoice
                        
# 2023-11-10 13:52:16  2.45GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:52:16  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.0.131
                        
# 2023-11-10 13:52:16  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:52:16  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.0.131
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 13:25:51  385.69KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:25:51  4.79GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:25:51  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:25:51  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:13:35  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 13:13:35  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 13:13:35  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 13:13:35  261.40KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:13:35  2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:13:35  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:13:35  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:08:12  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:08:12  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:08:11  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
                        
# 2023-11-10 13:07:58  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:07:58  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:34e2a62db0e2b238a3940464bdf3bde05686bb340ae4100db33013132c7cf494",
    "RepoTags": [
        "podwide/cosyvoice:v2.0.0",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice:v2.0.0"
    ],
    "RepoDigests": [
        "podwide/cosyvoice@sha256:d393447949f0aaab9b38aa90d930738027b9ffd21cf15f36e185aa8d846dda49",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/podwide/cosyvoice@sha256:5b217ff52691dd8b56e1a48e87280a0847070511ecee78dfa59bd427af92f318"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-01-02T00:14:48.40749605-08:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/opt/conda/envs/cosyvoice/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.105-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.1",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.1-1",
            "NV_NVTX_VERSION=12.1.105-1",
            "NV_LIBNPP_VERSION=12.1.0.40-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
            "NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
            "NV_NVML_DEV_VERSION=12.1.105-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
            "NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
            "NV_NVPROF_VERSION=12.1.105-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.9.0.131",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1",
            "VENV=cosyvoice",
            "LANG=C.UTF-8",
            "LC_ALL=C.UTF-8",
            "DEBIAN_FRONTEND=noninteractive",
            "PYTHONUNBUFFERED=1",
            "CONDA_DEFAULT_ENV=cosyvoice"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/start.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.0.131",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 33663376447,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/10f701d8fcf664c6f515fa58f3e54e5632bc6d81c519c1804f9c6138bd0f9572/diff:/var/lib/docker/overlay2/888a2ee8ad393e5425327140327a50a094b6334cfd86e36e5da35412d0f624fc/diff:/var/lib/docker/overlay2/e30b33f431bd020961e2734e4ff63729befd5d631a7ff313af13915f34f83b95/diff:/var/lib/docker/overlay2/92570d095b8b4d99be6e1a81d50f75ee71a48c2ac0b0e9b92929ca8be6e155a7/diff:/var/lib/docker/overlay2/30bcb2c70068ffea87abd605403ee3dea868584297ef1b21dfa1cb204d2d5e61/diff:/var/lib/docker/overlay2/fd3975e9d34d763443ec192ce4c43e1d15dff52bea0f1012485e43573f45ad5e/diff:/var/lib/docker/overlay2/ec58e5edfe3c8bd98873b7eeeeb3466a6a5c4ae32f58364aa5bacfd42f3cda50/diff:/var/lib/docker/overlay2/ef9ce51bc451328880231ca302aacd7cd27694d1653bc6d9fbcc59532f16e309/diff:/var/lib/docker/overlay2/1668222af6c0120294d71647532883993c92627fb399bd0d241bf11e2468060f/diff:/var/lib/docker/overlay2/41126852a92be23389de0aa951a58011aff8e4db76900e09b592ee52ff824b67/diff:/var/lib/docker/overlay2/16656859196f01a90926db06ab7a9d9cbce4f628fa7aff0b448a6c308d385112/diff:/var/lib/docker/overlay2/5210552f0ec5a2d65f6917e13da344f714a21d438a783bc7d1c9a16af914a184/diff:/var/lib/docker/overlay2/be84fd046e39347d46e4b19d9ade2d51d1d70a40309bf0d63332c77ffc1f2679/diff:/var/lib/docker/overlay2/1ef02b89f822d9d60aa56a95101e13f21f422b3558bf567b4df864493d31a4da/diff:/var/lib/docker/overlay2/f2b8a1741c2536d6b61852d9568bf817fd9a63ac9fb8df11b7a19b0311f91954/diff:/var/lib/docker/overlay2/d20e9b5612f25be51b5fb44e91e45f61eb67c9d70660e670db49ee1998fb1c2a/diff:/var/lib/docker/overlay2/2c7cec8897aabb0388b4470488bf4951e8d7ad022433c73c763425f5d5813956/diff:/var/lib/docker/overlay2/d5234d942bac7845ea7dd140d4747fdec66c2c50467795afa6f2e577139027fd/diff:/var/lib/docker/overlay2/65edf56aea7268f113e7a860fa1cd5ba2b0ee61494b5b888524b08f97f620da5/diff:/var/lib/docker/overlay2/88cc313884619d0e223457ae9dff69f41729fa11bbd330fa57b65d5955229f89/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/4d6b2cb5dbc345a2e6ae477d89e80e95bdd4a805771024f8b51cefa4b352bb88/merged",
            "UpperDir": "/var/lib/docker/overlay2/4d6b2cb5dbc345a2e6ae477d89e80e95bdd4a805771024f8b51cefa4b352bb88/diff",
            "WorkDir": "/var/lib/docker/overlay2/4d6b2cb5dbc345a2e6ae477d89e80e95bdd4a805771024f8b51cefa4b352bb88/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:566cd9dd29d693cf0360da8a73391b843bb6ac8f11b4148acf69c4dc79fa87c5",
            "sha256:6ec2b659c9ab00e2b0fc0acd056577e609cc28649650ec7068b81686f6d1a996",
            "sha256:8afeff4e91d72f3de9232ffc0803f70236e316c27b23ee003e6d47fbfcb6e1c4",
            "sha256:bea30ebbe84377ed36503599c2087cd6bda6f4c96cb59525d238d4a00cf902d3",
            "sha256:b15b1df4adac82b2b46124c743a32d5e982cb6b5ee8a3c04949f809abf8962c9",
            "sha256:83ecbf43a888c43f43b0cd9ec7cf551770790c7aeab17f9536b8820db2c5d45d",
            "sha256:83687aeafbbf74a164a51590ffa36c46e9c41ce4ba3eae9daba1d381c64e5f4b",
            "sha256:3416903c2cc4c9f83472b397741f30365f53543862b03ff5727b42b1a2f938cb",
            "sha256:24e1e08aaa60ea10f478c1b68d9444b8ea74bff76e2547712984b5136e79018e",
            "sha256:7aee75a70a2ff35d4990fab501a025afa498f416cb726ace747ccd7fad6500d4",
            "sha256:0f7c883f1a4f4710753cfa1185d8e60584e41f04fe1693bd8c3ee6700b29c7f3",
            "sha256:c42702c1d2cf2288cbb652c59370f8168c5378987c25e7b08be906b04194ad8f",
            "sha256:ac2c4a3abb2db8b58e00624da88b66c32e55c9f74c8af99e0dd295346672d28a",
            "sha256:196f50660ceb8afd7fbe0caf61cfd4c2760e0cc2c3a5dbdf1b21b5edfcb0f6a1",
            "sha256:017633ce8348f7df1c029723e3eb0fd06ebade2ad5806f441ef8113922003b60",
            "sha256:55c07a50c2b85ca0adbbb30b965e5b8cad2f9e9a7142449369632e4644c12bba",
            "sha256:fda7c350602e6df05bb44d2abe4e41e93fde80ed9545672fdaff55bff18aa22a",
            "sha256:065f7cf5d6faaa66cabe154fea1963ca9d6e9a7b789cc2641c5ee486a25e5d5f",
            "sha256:01e0d07299a59810d6ead72b0da0a5a938cf92f585a064447598287ab5c16469",
            "sha256:e381577394d37ceb085ffeaf6c1ee2ad2538fd2d0954e20854c873bfae75c0ab",
            "sha256:7e68a876e85d56bf6f5c521ea300d72504e1d7aca2208858304b25b764b4c583"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-03-19T01:21:13.419397764+08:00"
    }
}

更多版本

docker.io/podwide/cosyvoice:v2.0.0

linux/amd64 docker.io33.66GB2025-03-19 01:58
125