docker.io/pppppm/xtuner:v0.1.19 linux/amd64

docker.io/pppppm/xtuner:v0.1.19 - 国内下载镜像源 浏览次数:16
源镜像 docker.io/pppppm/xtuner:v0.1.19
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19
镜像ID sha256:cedecd2c0f84c9d7ba14762485bb17e203ef2facf3068fd1bd61b651ed74c283
镜像TAG v0.1.19
大小 23.57GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 16 次
贡献者
镜像创建 2024-05-13T21:52:08.690634295+08:00
同步时间 2025-10-31 02:01
更新时间 2025-11-01 05:36
开放端口
6006/tcp 8888/tcp
环境变量
PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin CUDA_VERSION=12.2.2.009 CUDA_DRIVER_VERSION=535.104.05 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS= _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0 NCCL_VERSION=2.19.3 CUBLAS_VERSION=12.2.5.6 CUFFT_VERSION=11.0.8.103 CURAND_VERSION=10.3.3.141 CUSPARSE_VERSION=12.1.2.141 CUSOLVER_VERSION=11.5.2.141 CUTENSOR_VERSION=1.7.0.1 NPP_VERSION=12.2.1.4 NVJPEG_VERSION=12.2.2.4 CUDNN_VERSION=8.9.5.29 TRT_VERSION=8.6.1.6+cuda12.0.1.011 TRTOSS_VERSION=23.10 NSIGHT_SYSTEMS_VERSION=2023.3.1.92 NSIGHT_COMPUTE_VERSION=2023.2.2.3 DALI_VERSION=1.30.0 DALI_BUILD=9783408 POLYGRAPHY_VERSION=0.49.0 TRANSFORMER_ENGINE_VERSION=0.12 LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video NVIDIA_PRODUCT_NAME=PyTorch GDRCOPY_VERSION=2.3 HPCX_VERSION=2.16rc4 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.15.0 OPENMPI_VERSION=4.1.5rc2 RDMACORE_VERSION=39.0 OPAL_PREFIX=/opt/hpcx/ompi OMPI_MCA_coll_hcoll_enable=0 LIBRARY_PATH=/usr/local/cuda/lib64/stubs: PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 PYTORCH_VERSION=2.1.0a0+32f93b1 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=23.10 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python SETUPTOOLS_USE_DISTUTILS=stdlib OPENBLAS_VERSION=0.3.23 PYTHONIOENCODING=utf-8 LC_ALL=C.UTF-8 PIP_DEFAULT_TIMEOUT=100 NVM_DIR=/usr/local/nvm JUPYTER_PORT=8888 TENSORBOARD_PORT=6006 UCC_CL_BASIC_TLS=^sharp TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX PYTORCH_HOME=/opt/pytorch/pytorch CUDA_HOME=/usr/local/cuda TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1 USE_EXPERIMENTAL_CUDNN_V8_API=1 COCOAPI_VERSION=2.0+nv0.7.3 TORCH_CUDNN_V8_API_ENABLED=1 CUDA_MODULE_LOADING=LAZY NVIDIA_BUILD_ID=71422337
镜像标签
71422337: com.nvidia.build.id 798008b068e6dbd0088bab08098b0fce963b87b3: com.nvidia.build.ref 12.2.5.6: com.nvidia.cublas.version 9.0: com.nvidia.cuda.version 8.9.5.29: com.nvidia.cudnn.version 11.0.8.103: com.nvidia.cufft.version 10.3.3.141: com.nvidia.curand.version 11.5.2.141: com.nvidia.cusolver.version 12.1.2.141: com.nvidia.cusparse.version 1.7.0.1: com.nvidia.cutensor.version 2.19.3: com.nvidia.nccl.version 12.2.1.4: com.nvidia.npp.version 2023.2.2.3: com.nvidia.nsightcompute.version 2023.3.1.92: com.nvidia.nsightsystems.version 12.2.2.4: com.nvidia.nvjpeg.version 2.1.0a0+32f93b1: com.nvidia.pytorch.version 8.6.1.6+cuda12.0.1.011: com.nvidia.tensorrt.version 23.10: com.nvidia.tensorrtoss.version nvidia_driver: com.nvidia.volumes.needed ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19  docker.io/pppppm/xtuner:v0.1.19

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19  docker.io/pppppm/xtuner:v0.1.19

Shell快速替换命令

sed -i 's#pppppm/xtuner:v0.1.19#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19  docker.io/pppppm/xtuner:v0.1.19'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19  docker.io/pppppm/xtuner:v0.1.19'

镜像构建历史


# 2024-05-13 21:52:08  404.84MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir flash-attn==2.5.8 --no-build-isolation # buildkit
                        
# 2024-05-13 21:51:47  850.13MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir xtuner'[deepspeed]'==0.1.19 # buildkit
                        
# 2024-05-13 17:19:38  172.82MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir opencv-python=='4.7.0.72' # buildkit
                        
# 2023-10-12 12:14:29  0.00B 添加元数据标签
LABEL com.nvidia.build.ref=798008b068e6dbd0088bab08098b0fce963b87b3
                        
# 2023-10-12 12:14:29  0.00B 定义构建参数
ARG NVIDIA_BUILD_REF
                        
# 2023-10-12 12:14:29  0.00B 添加元数据标签
LABEL com.nvidia.build.id=71422337
                        
# 2023-10-12 12:14:29  0.00B 设置环境变量 NVIDIA_BUILD_ID
ENV NVIDIA_BUILD_ID=71422337
                        
# 2023-10-12 12:14:29  0.00B 定义构建参数
ARG NVIDIA_BUILD_ID
                        
# 2023-10-12 12:14:29  720.00B 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-10-12 12:14:29  62.29KB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c ln -sf ${_CUDA_COMPAT_PATH}/lib.real ${_CUDA_COMPAT_PATH}/lib  && echo ${_CUDA_COMPAT_PATH}/lib > /etc/ld.so.conf.d/00-cuda-compat.conf  && ldconfig  && rm -f ${_CUDA_COMPAT_PATH}/lib # buildkit
                        
# 2023-10-12 12:14:29  0.00B 设置环境变量 CUDA_MODULE_LOADING
ENV CUDA_MODULE_LOADING=LAZY
                        
# 2023-10-12 12:14:29  0.00B 设置环境变量 TORCH_CUDNN_V8_API_ENABLED
ENV TORCH_CUDNN_V8_API_ENABLED=1
                        
# 2023-10-12 12:14:29  259.73MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Transformer Engine in iGPU container until Version variable is set"; else     pip install --no-cache-dir --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@release_v${TRANSFORMER_ENGINE_VERSION}; fi # buildkit
                        
# 2023-10-12 12:09:31  368.28MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c env MAX_JOBS=4 pip install flash-attn==2.0.4 # buildkit
                        
# 2023-10-12 11:52:03  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2023-10-12 11:52:03  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-10-12 11:52:03  43.58MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c pip install --no-cache-dir /opt/pytorch/torch_tensorrt/dist/*.whl # buildkit
                        
# 2023-10-12 11:48:54  0.00B 定义构建参数
ARG PYVER
                        
# 2023-10-12 11:48:54  145.50MB 复制新文件或目录到容器中
COPY torch_tensorrt/ /opt/pytorch/torch_tensorrt/ # buildkit
                        
# 2023-10-12 11:48:53  10.39MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip --version && python -c 'import sys; print(sys.platform)'     && pip install --no-cache-dir nvidia-pyindex     && if [ "${L4T}" = "1" ]; then pip install polygraphy; else       pip install --extra-index-url https://urm.nvidia.com/artifactory/api/pypi/sw-tensorrt-pypi/simple --no-cache-dir polygraphy==${POLYGRAPHY_VERSION}; fi     && pip install --extra-index-url http://sqrl/dldata/pip-simple --trusted-host sqrl --no-cache-dir pytorch-quantization==2.1.2 # buildkit
                        
# 2023-10-12 11:48:39  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2023-10-12 11:48:39  6.10MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -x  && URL=$(VERIFY=1 /nvidia/build-scripts/installTRT.sh | sed -n "s/^.*\(http.*\)tar.*$/\1/p")tar  && FILE=$(wget -O - $URL | sed -n 's/^.*href="\(TensorRT[^"]*\)".*$/\1/p' | egrep -v "internal|safety")  && wget $URL/$FILE -O - | tar -xz  && PY=$(python -c 'import sys; print(str(sys.version_info[0])+str(sys.version_info[1]))')  && pip install TensorRT-*/python/tensorrt-*-cp$PY*.whl  && pip install TensorRT-*/graphsurgeon/graphsurgeon-*.whl  && pip install TensorRT-*/uff/uff-*.whl  && mv /usr/src/tensorrt /opt  && ln -s /opt/tensorrt /usr/src/tensorrt  && rm -r TensorRT-*  && UFF_PATH=$(pip show uff | sed -n 's/Location: \(.*\)$/\1/p')/uff  && sed -i 's/from tensorflow import GraphDef/from tensorflow.python import GraphDef/'     $UFF_PATH/converters/tensorflow/conversion_helpers.py  && chmod +x ${UFF_PATH}/bin/convert_to_uff.py  && ln -sf ${UFF_PATH}/bin/convert_to_uff.py /usr/local/bin/convert-to-uff # buildkit
                        
# 2023-10-12 11:47:55  51.00MB 执行命令并创建新的镜像层
RUN /bin/sh -c chmod -R a+w . # buildkit
                        
# 2023-10-12 11:47:55  34.89MB 复制新文件或目录到容器中
COPY tutorials tutorials # buildkit
                        
# 2023-10-12 11:47:55  15.96MB 复制新文件或目录到容器中
COPY examples examples # buildkit
                        
# 2023-10-12 11:47:55  2.07KB 复制新文件或目录到容器中
COPY docker-examples docker-examples # buildkit
                        
# 2023-10-12 11:47:55  2.05KB 复制新文件或目录到容器中
COPY NVREADME.md README.md # buildkit
                        
# 2023-10-12 11:47:55  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2023-10-12 11:47:55  3.13GB 执行命令并创建新的镜像层
RUN /bin/sh -c if [ "${L4T}" = "1" ]; then     echo "Not installing rapids for L4T build." ; else     find /rapids  -name "*-Linux.tar.gz" -exec     tar -C /usr --exclude="*.a" --exclude="bin/xgboost" --strip-components=1 -xvf {} \;  && find /rapids -name "*.whl"     ! -name "Pillow-*"     ! -name "certifi-*"     ! -name "protobuf-*" -exec     pip install --no-cache-dir {} +  && pip install --no-cache-dir networkx==2.6.3  && rm $(pip show xgboost | grep Location | awk '{print $2}')/xgboost/lib/libxgboost.so; fi # buildkit
                        
# 2023-10-12 11:47:05  201.84KB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir --disable-pip-version-check tabulate # buildkit
                        
# 2023-10-12 11:47:03  3.58MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip uninstall -y pillow  && cd /tmp  && git clone https://github.com/uploadcare/pillow-simd  && cd pillow-simd  && git fetch --all --tags --prune  && git checkout tags/9.2.0  && sed -i 's/DEBUG = False/DEBUG = True/' setup.py  && patch -p1 < /opt/pytorch/pil_9.3.0_CVE-2022-45199.patch  && if [[ $TARGETARCH = "amd64" ]] ; then CC="cc -mavx" pip install --no-cache-dir --disable-pip-version-check  . ; fi  && if [[ $TARGETARCH = "arm64" ]] ; then pip install --no-cache-dir --disable-pip-version-check  . ; fi  && rm -rf ../pillow-simd # buildkit
                        
# 2023-10-12 11:46:42  1.12GB 执行命令并创建新的镜像层
RUN /bin/sh -c ( cd vision && CFLAGS="-g0" FORCE_CUDA=1 NVCC_APPEND_FLAGS="--threads 8" pip install --no-cache-dir --no-build-isolation --disable-pip-version-check . )  && ( cd vision && cmake -Bbuild -H. -GNinja -DWITH_CUDA=1 -DCMAKE_PREFIX_PATH=`python -c 'import torch;print(torch.utils.cmake_prefix_path)'` && cmake --build build --target install && rm -rf build )  && ( cd fuser && pip install -r requirements.txt &&  python setup.py install && python setup.py clean)  && ( cd apex && CFLAGS="-g0" NVCC_APPEND_FLAGS="--threads 8" pip install -v --no-build-isolation --no-cache-dir --disable-pip-version-check --config-settings "--build-option=--cpp_ext --cuda_ext --bnp --xentropy --deprecated_fused_adam --deprecated_fused_lamb --fast_multihead_attn --distributed_lamb --fast_layer_norm --transducer --distributed_adam --fmha --fast_bottleneck --nccl_p2p --peer_memory --permutation_search --focal_loss --fused_conv_bias_relu --index_mul_2d --cudnn_gbn --group_norm" . )  && ( cd data && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check --no-deps -v . )  && ( cd text && export TORCHDATA_VERSION="$(python -c 'import torchdata; print(torchdata.__version__)')" && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check --no-deps -v . && unset TORCHDATA_VERSION )  && ( cd pytorch/third_party/onnx && pip uninstall typing -y && CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . ) # buildkit
                        
# 2023-10-12 11:09:58  2.21KB 复制新文件或目录到容器中
COPY singularity/ /.singularity.d/ # buildkit
                        
# 2023-10-12 11:09:58  87.40MB 执行命令并创建新的镜像层
RUN /bin/sh -c export COCOAPI_TAG=$(echo ${COCOAPI_VERSION} | sed 's/^.*+n//')  && pip install --disable-pip-version-check --no-cache-dir git+https://github.com/nvidia/cocoapi.git@${COCOAPI_TAG}#subdirectory=PythonAPI # buildkit
                        
# 2023-10-12 11:09:36  0.00B 设置环境变量 COCOAPI_VERSION
ENV COCOAPI_VERSION=2.0+nv0.7.3
                        
# 2023-10-12 11:09:36  596.55MB 执行命令并创建新的镜像层
RUN /bin/sh -c if [ -z "${DALI_VERSION}" ] ; then   echo "Not Installing DALI for L4T Build." ; else   export DALI_PKG_SUFFIX="cuda${CUDA_VERSION%%.*}0"   && pip install --disable-pip-version-check --no-cache-dir                 --extra-index-url https://developer.download.nvidia.com/compute/redist                 --extra-index-url http://sqrl/dldata/pip-dali${DALI_URL_SUFFIX:-} --trusted-host sqrl         nvidia-dali-${DALI_PKG_SUFFIX}==${DALI_VERSION}; fi # buildkit
                        
# 2023-10-12 11:09:27  260.57MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir /tmp/dist/*.whl # buildkit
                        
# 2023-10-12 11:05:38  4.83KB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir -v -r /opt/pytorch/pytorch/requirements.txt # buildkit
                        
# 2023-10-12 11:05:36  2.95GB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c mkdir -p /tmp/pip/     && cp /opt/transfer/torch*.whl /tmp/pip/.     && pip install /tmp/pip/torch*.whl     && patchelf --set-rpath '/usr/local/lib' /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_global_deps.so # buildkit
                        
# 2023-10-06 02:30:25  0.00B 设置环境变量 USE_EXPERIMENTAL_CUDNN_V8_API
ENV USE_EXPERIMENTAL_CUDNN_V8_API=1
                        
# 2023-10-06 02:30:25  0.00B 设置环境变量 TORCH_ALLOW_TF32_CUBLAS_OVERRIDE
ENV TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
                        
# 2023-10-06 02:30:25  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2023-10-06 02:30:25  0.00B 设置环境变量 PYTORCH_HOME
ENV PYTORCH_HOME=/opt/pytorch/pytorch
                        
# 2023-10-06 02:30:25  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX
                        
# 2023-10-06 02:30:25  0.00B 设置环境变量 UCC_CL_BASIC_TLS
ENV UCC_CL_BASIC_TLS=^sharp
                        
# 2023-10-06 02:30:25  320.74MB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c cd magma-cuda &&     cmake -H. -Bbuild -DUSE_FORTRAN=OFF -DGPU_TARGET="All" -DBUILD_SHARED_LIBS=OFF -DCMAKE_CXX_FLAGS="-fPIC" -DCMAKE_C_FLAGS="-fPIC" -DCUDA_NVCC_FLAGS="-Xfatbin;-compress-all;-DHAVE_CUBLAS;-std=c++11;--threads=0;" -GNinja &&     cmake --build build --target install &&     rm -r ./build # buildkit
                        
# 2023-10-06 02:26:19  53.68MB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c OPENCV_VERSION=4.7.0 &&     cd / &&     wget -q -O - https://github.com/opencv/opencv/archive/${OPENCV_VERSION}.tar.gz | tar -xzf - &&     cd /opencv-${OPENCV_VERSION} &&     cmake -GNinja -Bbuild -H.           -DWITH_CUDA=OFF -DWITH_1394=OFF           -DPYTHON3_PACKAGES_PATH="/usr/local/lib/python${PYVER}/dist-packages"           -DBUILD_opencv_cudalegacy=OFF -DBUILD_opencv_stitching=OFF -DWITH_IPP=OFF -DWITH_PROTOBUF=OFF &&     cmake --build build --target install &&     cd modules/python/package &&     pip install --no-cache-dir --disable-pip-version-check -v . &&     rm -rf /opencv-${OPENCV_VERSION} # buildkit
                        
# 2023-10-06 02:23:39  0.00B 声明容器运行时监听的端口
EXPOSE map[6006/tcp:{}]
                        
# 2023-10-06 02:23:39  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2023-10-06 02:23:39  0.00B 设置环境变量 TENSORBOARD_PORT
ENV TENSORBOARD_PORT=6006
                        
# 2023-10-06 02:23:39  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2023-10-06 02:23:39  427.00B 复制新文件或目录到容器中
COPY jupyter_notebook_config.py /usr/local/etc/jupyter/ # buildkit
                        
# 2023-10-06 02:23:39  161.40MB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --disable-pip-version-check --no-cache-dir git+https://github.com/cliffwoolley/jupyter_tensorboard.git@0.2.0+nv21.03  && mkdir -p $NVM_DIR  && curl -Lo- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.2/install.sh | bash  && source "$NVM_DIR/nvm.sh"  && nvm install 16.20.2 node  && jupyter labextension install jupyterlab_tensorboard  && jupyter serverextension enable jupyterlab  && pip install --no-cache-dir jupytext  && jupyter labextension install jupyterlab-jupytext@1.2.2  && ( cd /usr/local/share/jupyter/lab/staging       && npm prune --production )  && npm cache clean --force  && rm -rf /usr/local/share/.cache  && echo "source $NVM_DIR/nvm.sh" >> /etc/bash.bashrc  && mv /root/.jupyter/jupyter_notebook_config.json /usr/local/etc/jupyter/  && jupyter lab clean # buildkit
                        
# 2023-10-06 02:21:44  0.00B 设置环境变量 NVM_DIR
ENV NVM_DIR=/usr/local/nvm
                        
# 2023-10-06 02:21:44  27.51KB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c PATCHED_FILE=$(python -c "from tensorboard.plugins.core import core_plugin as _; print(_.__file__)") &&     sed -i 's/^\( *"--bind_all",\)$/\1 default=True,/' "$PATCHED_FILE" &&     test $(grep '^ *"--bind_all", default=True,$' "$PATCHED_FILE" | wc -l) -eq 1 # buildkit
                        
# 2023-10-06 02:21:44  178.32MB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c git config --global url."https://github".insteadOf git://github &&     pip install --no-cache-dir notebook==6.4.10 jupyterlab==2.3.2 python-hostlist traitlets==5.9.0 &&     pip install --no-cache-dir tensorboard==2.9.0 # buildkit
                        
# 2023-10-06 02:21:28  0.00B 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c find /usr/local/lib -type f -name "libtbb*" ! -regex '.*/libtbb.*\.so\.[0-9]*' -exec rm {} \; # buildkit
                        
# 2023-10-06 02:21:28  3.21GB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir         numpy==1.22.2         scipy==1.8.1         "PyYAML>=5.4.1"         astunparse         typing_extensions         cffi         spacy         mock         tqdm         librosa==0.9.2         expecttest==0.1.3         hypothesis==5.35.1         xdoctest==1.0.2         pytest         pytest-xdist         pytest-rerunfailures         pytest-shard         pytest-flakefinder         pybind11         Cython         "regex>=2020.1.8"         protobuf==3.20.1 &&     if [[ $TARGETARCH = "amd64" ]] ; then pip install --no-cache-dir mkl==2021.1.1 mkl-include==2021.1.1 mkl-devel==2021.1.1 ; fi # buildkit
                        
# 2023-10-06 02:20:42  0.00B 设置环境变量 PIP_DEFAULT_TIMEOUT
ENV PIP_DEFAULT_TIMEOUT=100
                        
# 2023-10-06 02:20:42  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2023-10-06 02:20:42  0.00B 设置环境变量 PYTHONIOENCODING
ENV PYTHONIOENCODING=utf-8
                        
# 2023-10-06 02:20:42  2.22GB 复制新文件或目录到容器中
COPY . . # buildkit
                        
# 2023-10-04 12:24:01  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2023-10-04 12:24:01  46.04MB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c wget -q -O - https://github.com/xianyi/OpenBLAS/archive/refs/tags/v${OPENBLAS_VERSION}.tar.gz | tar -xzf - &&     cd OpenBLAS-${OPENBLAS_VERSION} &&     time make FC=gfortran USE_OPENMP=1 -j &&     time make PREFIX=/usr/local install &&     cd ../ &&     rm -rf OpenBLAS-${OPENBLAS_VERSION} # buildkit
                        
# 2023-10-06 03:13:11  0.00B 设置环境变量 OPENBLAS_VERSION
ENV OPENBLAS_VERSION=0.3.23
                        
# 2023-10-06 03:13:11  0.00B 设置工作目录为/opt
WORKDIR /opt
                        
# 2023-10-04 12:23:04  63.88MB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir pip setuptools &&     pip install --no-cache-dir cmake # buildkit
                        
# 2023-10-04 12:23:01  20.49MB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c curl -O https://bootstrap.pypa.io/get-pip.py &&     python get-pip.py &&     rm get-pip.py # buildkit
                        
# 2023-10-04 12:22:56  0.00B 设置环境变量 SETUPTOOLS_USE_DISTUTILS
ENV SETUPTOOLS_USE_DISTUTILS=stdlib
                        
# 2023-10-04 12:22:56  0.00B 设置环境变量 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION
ENV PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
                        
# 2023-10-04 12:22:56  198.21MB 执行命令并创建新的镜像层
RUN |5 NVIDIA_PYTORCH_VERSION=23.10 PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c export PYSFX=`echo "$PYVER" | cut -c1-1` &&     export DEBIAN_FRONTEND=noninteractive &&     apt-get update &&     apt-get install -y --no-install-recommends         python$PYVER-dev         python$PYSFX         python$PYSFX-dev         python$PYSFX-distutils         python-is-python$PYSFX         autoconf         automake         libatlas-base-dev         libgoogle-glog-dev         libbz2-dev         libleveldb-dev         liblmdb-dev         libprotobuf-dev         libsnappy-dev         libtool         nasm         protobuf-compiler         pkg-config         unzip         sox         libsndfile1         libpng-dev         libhdf5-103         libhdf5-dev         gfortran         rapidjson-dev         ninja-build         libedit-dev         build-essential         patchelf      && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-10-04 12:22:56  0.00B 定义构建参数
ARG L4T=0
                        
# 2023-10-04 12:22:56  0.00B 定义构建参数
ARG PYVER=3.10
                        
# 2023-10-04 12:22:56  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-10-04 12:22:56  0.00B 添加元数据标签
LABEL com.nvidia.pytorch.version=2.1.0a0+32f93b1
                        
# 2023-10-04 12:22:56  0.00B 设置环境变量 PYTORCH_BUILD_VERSION PYTORCH_VERSION PYTORCH_BUILD_NUMBER NVIDIA_PYTORCH_VERSION
ENV PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1 PYTORCH_VERSION=2.1.0a0+32f93b1 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=23.10
                        
# 2023-10-04 12:22:56  0.00B 定义构建参数
ARG PYTORCH_BUILD_VERSION
                        
# 2023-10-04 12:22:56  0.00B 定义构建参数
ARG NVIDIA_PYTORCH_VERSION
                        
# 2023-10-04 12:22:56  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=PyTorch
                        
# 2023-10-04 10:05:54  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:
                        
# 2023-10-04 10:05:54  918.54MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3 HPCX_VERSION=2.16rc4 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.15.0 OPENMPI_VERSION=4.1.5rc2 TARGETARCH=amd64 /bin/sh -c export DEVEL=1 BASE=0  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUDA.sh  && /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installNCCL.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && if [ -f "/tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch" ]; then patch -p0 < /tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch; fi  && rm -f /tmp/cuda-*.patch # buildkit
                        
# 2023-10-04 10:00:51  1.49KB 复制新文件或目录到容器中
COPY cuda-*.patch /tmp # buildkit
                        
# 2023-10-04 10:00:51  0.00B 设置环境变量 OMPI_MCA_coll_hcoll_enable
ENV OMPI_MCA_coll_hcoll_enable=0
                        
# 2023-10-04 10:00:51  0.00B 设置环境变量 OPAL_PREFIX PATH
ENV OPAL_PREFIX=/opt/hpcx/ompi PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin
                        
# 2023-10-04 10:00:51  224.34MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3 HPCX_VERSION=2.16rc4 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.15.0 OPENMPI_VERSION=4.1.5rc2 TARGETARCH=amd64 /bin/sh -c cd /nvidia  && ( export DEBIAN_FRONTEND=noninteractive        && apt-get update                            && apt-get install -y --no-install-recommends              libibverbs1                                  libibverbs-dev                               librdmacm1                                   librdmacm-dev                                libibumad3                                   libibumad-dev                                ibverbs-utils                                ibverbs-providers                     && rm -rf /var/lib/apt/lists/*               && rm $(dpkg-query -L                                    libibverbs-dev                               librdmacm-dev                                libibumad-dev                            | grep "\(\.so\|\.a\)$")          )                                            && ( cd opt/gdrcopy/                              && dpkg -i libgdrapi_*.deb                   )                                         && ( cp -r opt/hpcx /opt/                                         && cp etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/          && ln -sf /opt/hpcx/ompi /usr/local/mpi                      && ln -sf /opt/hpcx/ucx  /usr/local/ucx                      && sed -i 's/^\(hwloc_base_binding_policy\) = core$/\1 = none/' /opt/hpcx/ompi/etc/openmpi-mca-params.conf         && sed -i 's/^\(btl = self\)$/#\1/'                             /opt/hpcx/ompi/etc/openmpi-mca-params.conf       )                                                         && ldconfig # buildkit
                        
# 2023-10-04 10:00:51  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-10-04 10:00:51  0.00B 设置环境变量 GDRCOPY_VERSION HPCX_VERSION MOFED_VERSION OPENUCX_VERSION OPENMPI_VERSION RDMACORE_VERSION
ENV GDRCOPY_VERSION=2.3 HPCX_VERSION=2.16rc4 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.15.0 OPENMPI_VERSION=4.1.5rc2 RDMACORE_VERSION=39.0
                        
# 2023-10-04 10:00:51  0.00B 定义构建参数
ARG OPENMPI_VERSION
                        
# 2023-10-04 10:00:51  0.00B 定义构建参数
ARG OPENUCX_VERSION
                        
# 2023-10-04 10:00:51  0.00B 定义构建参数
ARG MOFED_VERSION=5.4-rdmacore39.0
                        
# 2023-10-04 10:00:51  0.00B 定义构建参数
ARG RDMACORE_VERSION
                        
# 2023-10-04 10:00:51  0.00B 定义构建参数
ARG HPCX_VERSION
                        
# 2023-10-04 10:00:51  0.00B 定义构建参数
ARG GDRCOPY_VERSION
                        
# 2023-10-04 10:00:44  84.86MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         build-essential         git         libglib2.0-0         less         libnl-route-3-200         libnl-3-dev         libnl-route-3-dev         libnuma-dev         libnuma1         libpmi2-0-dev         nano         numactl         openssh-client         vim         wget  && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-10-04 09:45:08  148.72KB 复制新文件或目录到容器中
COPY NVIDIA_Deep_Learning_Container_License.pdf /workspace/ # buildkit
                        
# 2023-10-04 09:45:08  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-10-04 09:45:08  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-10-04 09:45:08  14.53KB 复制新文件或目录到容器中
COPY entrypoint/ /opt/nvidia/ # buildkit
                        
# 2023-10-04 09:45:08  0.00B 设置环境变量 PATH LD_LIBRARY_PATH NVIDIA_VISIBLE_DEVICES NVIDIA_DRIVER_CAPABILITIES
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
                        
# 2023-10-04 09:45:08  0.00B 定义构建参数
ARG _LIBPATH_SUFFIX
                        
# 2023-10-04 09:45:08  46.00B 执行命令并创建新的镜像层
RUN |21 CUDA_VERSION=12.2.2.009 CUDA_DRIVER_VERSION=535.104.05 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.19.3 CUBLAS_VERSION=12.2.5.6 CUFFT_VERSION=11.0.8.103 CURAND_VERSION=10.3.3.141 CUSPARSE_VERSION=12.1.2.141 CUSOLVER_VERSION=11.5.2.141 CUTENSOR_VERSION=1.7.0.1 NPP_VERSION=12.2.1.4 NVJPEG_VERSION=12.2.2.4 CUDNN_VERSION=8.9.5.29 TRT_VERSION=8.6.1.6+cuda12.0.1.011 TRTOSS_VERSION=23.10 NSIGHT_SYSTEMS_VERSION=2023.3.1.92 NSIGHT_COMPUTE_VERSION=2023.2.2.3 DALI_VERSION=1.30.0 DALI_BUILD=9783408 POLYGRAPHY_VERSION=0.49.0 TRANSFORMER_ENGINE_VERSION=0.12 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf  && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-10-04 09:45:08  13.39KB 复制文件或目录到容器中
ADD docs.tgz / # buildkit
                        
# 2023-10-04 09:45:08  0.00B 设置环境变量 DALI_VERSION DALI_BUILD POLYGRAPHY_VERSION TRANSFORMER_ENGINE_VERSION
ENV DALI_VERSION=1.30.0 DALI_BUILD=9783408 POLYGRAPHY_VERSION=0.49.0 TRANSFORMER_ENGINE_VERSION=0.12
                        
# 2023-10-04 09:45:08  0.00B 定义构建参数
ARG TRANSFORMER_ENGINE_VERSION
                        
# 2023-10-04 09:45:08  0.00B 定义构建参数
ARG POLYGRAPHY_VERSION
                        
# 2023-10-04 09:45:08  0.00B 定义构建参数
ARG DALI_BUILD
                        
# 2023-10-04 09:45:08  0.00B 定义构建参数
ARG DALI_VERSION
                        
# 2023-10-04 09:45:08  0.00B 添加元数据标签
LABEL com.nvidia.nccl.version=2.19.3 com.nvidia.cublas.version=12.2.5.6 com.nvidia.cufft.version=11.0.8.103 com.nvidia.curand.version=10.3.3.141 com.nvidia.cusparse.version=12.1.2.141 com.nvidia.cusolver.version=11.5.2.141 com.nvidia.cutensor.version=1.7.0.1 com.nvidia.npp.version=12.2.1.4 com.nvidia.nvjpeg.version=12.2.2.4 com.nvidia.cudnn.version=8.9.5.29 com.nvidia.tensorrt.version=8.6.1.6+cuda12.0.1.011 com.nvidia.tensorrtoss.version=23.10 com.nvidia.nsightsystems.version=2023.3.1.92 com.nvidia.nsightcompute.version=2023.2.2.3
                        
# 2023-10-04 09:45:08  4.54GB 执行命令并创建新的镜像层
RUN |17 CUDA_VERSION=12.2.2.009 CUDA_DRIVER_VERSION=535.104.05 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.19.3 CUBLAS_VERSION=12.2.5.6 CUFFT_VERSION=11.0.8.103 CURAND_VERSION=10.3.3.141 CUSPARSE_VERSION=12.1.2.141 CUSOLVER_VERSION=11.5.2.141 CUTENSOR_VERSION=1.7.0.1 NPP_VERSION=12.2.1.4 NVJPEG_VERSION=12.2.2.4 CUDNN_VERSION=8.9.5.29 TRT_VERSION=8.6.1.6+cuda12.0.1.011 TRTOSS_VERSION=23.10 NSIGHT_SYSTEMS_VERSION=2023.3.1.92 NSIGHT_COMPUTE_VERSION=2023.2.2.3 /bin/sh -c /nvidia/build-scripts/installNCCL.sh  && /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUTENSOR.sh # buildkit
                        
# 2023-10-04 09:40:57  0.00B 设置环境变量 NCCL_VERSION CUBLAS_VERSION CUFFT_VERSION CURAND_VERSION CUSPARSE_VERSION CUSOLVER_VERSION CUTENSOR_VERSION NPP_VERSION NVJPEG_VERSION CUDNN_VERSION TRT_VERSION TRTOSS_VERSION NSIGHT_SYSTEMS_VERSION NSIGHT_COMPUTE_VERSION
ENV NCCL_VERSION=2.19.3 CUBLAS_VERSION=12.2.5.6 CUFFT_VERSION=11.0.8.103 CURAND_VERSION=10.3.3.141 CUSPARSE_VERSION=12.1.2.141 CUSOLVER_VERSION=11.5.2.141 CUTENSOR_VERSION=1.7.0.1 NPP_VERSION=12.2.1.4 NVJPEG_VERSION=12.2.2.4 CUDNN_VERSION=8.9.5.29 TRT_VERSION=8.6.1.6+cuda12.0.1.011 TRTOSS_VERSION=23.10 NSIGHT_SYSTEMS_VERSION=2023.3.1.92 NSIGHT_COMPUTE_VERSION=2023.2.2.3
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG NSIGHT_COMPUTE_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG NSIGHT_SYSTEMS_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG TRTOSS_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG TRT_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG CUDNN_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG NVJPEG_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG NPP_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG CUTENSOR_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG CUSOLVER_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG CUSPARSE_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG CURAND_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG CUFFT_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG CUBLAS_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG NCCL_VERSION
                        
# 2023-10-04 09:40:57  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver com.nvidia.cuda.version=9.0
                        
# 2023-10-04 09:40:57  0.00B 设置环境变量 _CUDA_COMPAT_PATH ENV BASH_ENV SHELL NVIDIA_REQUIRE_CUDA
ENV _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0
                        
# 2023-10-04 09:40:57  58.45KB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.2.2.009 CUDA_DRIVER_VERSION=535.104.05 JETPACK_HOST_MOUNTS= /bin/sh -c cp -vprd /nvidia/. /  &&  patch -p0 < /etc/startup_scripts.patch  &&  rm -f /etc/startup_scripts.patch # buildkit
                        
# 2023-10-04 09:40:57  423.83MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.2.2.009 CUDA_DRIVER_VERSION=535.104.05 JETPACK_HOST_MOUNTS= /bin/sh -c /nvidia/build-scripts/installCUDA.sh # buildkit
                        
# 2023-10-04 09:40:57  0.00B 设置环境变量 CUDA_VERSION CUDA_DRIVER_VERSION CUDA_CACHE_DISABLE NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS
ENV CUDA_VERSION=12.2.2.009 CUDA_DRIVER_VERSION=535.104.05 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG JETPACK_HOST_MOUNTS
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG CUDA_DRIVER_VERSION
                        
# 2023-10-04 09:40:57  0.00B 定义构建参数
ARG CUDA_VERSION
                        
# 2023-10-04 09:40:43  327.52MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         apt-utils         build-essential         ca-certificates         curl         libncurses5         libncursesw5         patch         wget         rsync         unzip         jq         gnupg         libtcmalloc-minimal4 # buildkit
                        
# 2023-09-25 18:17:08  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-09-25 18:17:07  77.82MB 
/bin/sh -c #(nop) ADD file:194c886b88876c1804cc5f80719669653c16a388b664147b7f22402105f533c4 in / 
                        
# 2023-09-25 18:17:05  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-09-25 18:17:05  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-09-25 18:17:05  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-09-25 18:17:05  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:cedecd2c0f84c9d7ba14762485bb17e203ef2facf3068fd1bd61b651ed74c283",
    "RepoTags": [
        "pppppm/xtuner:v0.1.19",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner:v0.1.19"
    ],
    "RepoDigests": [
        "pppppm/xtuner@sha256:774735f0a36ad7a8a4c28af51f86a919cab9193d18f9ec39ebc7dc73d8703933",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pppppm/xtuner@sha256:774735f0a36ad7a8a4c28af51f86a919cab9193d18f9ec39ebc7dc73d8703933"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-05-13T21:52:08.690634295+08:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "6006/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin",
            "CUDA_VERSION=12.2.2.009",
            "CUDA_DRIVER_VERSION=535.104.05",
            "CUDA_CACHE_DISABLE=1",
            "NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=",
            "_CUDA_COMPAT_PATH=/usr/local/cuda/compat",
            "ENV=/etc/shinit_v2",
            "BASH_ENV=/etc/bash.bashrc",
            "SHELL=/bin/bash",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=9.0",
            "NCCL_VERSION=2.19.3",
            "CUBLAS_VERSION=12.2.5.6",
            "CUFFT_VERSION=11.0.8.103",
            "CURAND_VERSION=10.3.3.141",
            "CUSPARSE_VERSION=12.1.2.141",
            "CUSOLVER_VERSION=11.5.2.141",
            "CUTENSOR_VERSION=1.7.0.1",
            "NPP_VERSION=12.2.1.4",
            "NVJPEG_VERSION=12.2.2.4",
            "CUDNN_VERSION=8.9.5.29",
            "TRT_VERSION=8.6.1.6+cuda12.0.1.011",
            "TRTOSS_VERSION=23.10",
            "NSIGHT_SYSTEMS_VERSION=2023.3.1.92",
            "NSIGHT_COMPUTE_VERSION=2023.2.2.3",
            "DALI_VERSION=1.30.0",
            "DALI_BUILD=9783408",
            "POLYGRAPHY_VERSION=0.49.0",
            "TRANSFORMER_ENGINE_VERSION=0.12",
            "LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility,video",
            "NVIDIA_PRODUCT_NAME=PyTorch",
            "GDRCOPY_VERSION=2.3",
            "HPCX_VERSION=2.16rc4",
            "MOFED_VERSION=5.4-rdmacore39.0",
            "OPENUCX_VERSION=1.15.0",
            "OPENMPI_VERSION=4.1.5rc2",
            "RDMACORE_VERSION=39.0",
            "OPAL_PREFIX=/opt/hpcx/ompi",
            "OMPI_MCA_coll_hcoll_enable=0",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs:",
            "PYTORCH_BUILD_VERSION=2.1.0a0+32f93b1",
            "PYTORCH_VERSION=2.1.0a0+32f93b1",
            "PYTORCH_BUILD_NUMBER=0",
            "NVIDIA_PYTORCH_VERSION=23.10",
            "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python",
            "SETUPTOOLS_USE_DISTUTILS=stdlib",
            "OPENBLAS_VERSION=0.3.23",
            "PYTHONIOENCODING=utf-8",
            "LC_ALL=C.UTF-8",
            "PIP_DEFAULT_TIMEOUT=100",
            "NVM_DIR=/usr/local/nvm",
            "JUPYTER_PORT=8888",
            "TENSORBOARD_PORT=6006",
            "UCC_CL_BASIC_TLS=^sharp",
            "TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX",
            "PYTORCH_HOME=/opt/pytorch/pytorch",
            "CUDA_HOME=/usr/local/cuda",
            "TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1",
            "USE_EXPERIMENTAL_CUDNN_V8_API=1",
            "COCOAPI_VERSION=2.0+nv0.7.3",
            "TORCH_CUDNN_V8_API_ENABLED=1",
            "CUDA_MODULE_LOADING=LAZY",
            "NVIDIA_BUILD_ID=71422337"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.build.id": "71422337",
            "com.nvidia.build.ref": "798008b068e6dbd0088bab08098b0fce963b87b3",
            "com.nvidia.cublas.version": "12.2.5.6",
            "com.nvidia.cuda.version": "9.0",
            "com.nvidia.cudnn.version": "8.9.5.29",
            "com.nvidia.cufft.version": "11.0.8.103",
            "com.nvidia.curand.version": "10.3.3.141",
            "com.nvidia.cusolver.version": "11.5.2.141",
            "com.nvidia.cusparse.version": "12.1.2.141",
            "com.nvidia.cutensor.version": "1.7.0.1",
            "com.nvidia.nccl.version": "2.19.3",
            "com.nvidia.npp.version": "12.2.1.4",
            "com.nvidia.nsightcompute.version": "2023.2.2.3",
            "com.nvidia.nsightsystems.version": "2023.3.1.92",
            "com.nvidia.nvjpeg.version": "12.2.2.4",
            "com.nvidia.pytorch.version": "2.1.0a0+32f93b1",
            "com.nvidia.tensorrt.version": "8.6.1.6+cuda12.0.1.011",
            "com.nvidia.tensorrtoss.version": "23.10",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 23573806687,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/51facc40784e085327c98e4a863364c2c0b417785cb7e8e25f2fc9c449577dce/diff:/var/lib/docker/overlay2/a5cd02906769c92e5bd1993ead14568730685e3244bd1c3b075b9edd6ed2c992/diff:/var/lib/docker/overlay2/2bc19e8cd6294c2086e3a5860b20dfe32fc85fc2f992dd8d2b5ad07b070ede89/diff:/var/lib/docker/overlay2/d4e19f801b1c4bcaaa18949846626ce1cf7d48eeae84299e1d37f5b1a7e18308/diff:/var/lib/docker/overlay2/20554e4974e14907cea83b64c69b9acd7462ca137c123233d1398c563f58b51d/diff:/var/lib/docker/overlay2/c799504c42f52aa518915fdc6ec35e27fa7a9081278cdb5e5bc4e229b6720a99/diff:/var/lib/docker/overlay2/e772072c49d2ceccabc5e52fef89d34798ed389603d47bdfbc574a5b2ef12e21/diff:/var/lib/docker/overlay2/d62203788707c566fd13d805982b9bf16de206bc9cf5d55eb89b419c5944e69b/diff:/var/lib/docker/overlay2/39b4174e5afb2b6a5f105693a3780ec5db9c710167a71402643ea87f316c44e3/diff:/var/lib/docker/overlay2/de9277c3c8e7c5e9e4527201a68090084418a6689ed7e94306bac8721499bb74/diff:/var/lib/docker/overlay2/2c197a22e090bb0b401c769c010e946b287e9b487d767d8b0b58989b2886da4f/diff:/var/lib/docker/overlay2/006de59ca032ba7851c8afa4b01c80fbfc7b2bc9ea0707a6f3288e4dac1ff225/diff:/var/lib/docker/overlay2/3076243b445e2656eefe4c85473dc4aa3fb8fb3637cff4cb0b5b7010f70df86c/diff:/var/lib/docker/overlay2/95288561b8133d456efb66e3259189f334f9ee34f0e480fdca9189f3c901fd2b/diff:/var/lib/docker/overlay2/e6bfa74f4239c7a242a07dbdc4e7c71e10f95f41e71cffc789e833a125b6c665/diff:/var/lib/docker/overlay2/9c3416345d439de6bf453b6b0f450419bd2d01eb77c0e6ee6cf7db3cba912aff/diff:/var/lib/docker/overlay2/217a303605941915e0a3fe5655abe9b7a68ef4fc7de30d5c8bfe13838d36c469/diff:/var/lib/docker/overlay2/b070f9e17b704cedaec23af0ffef217070548aeb241b28c0acd961fe2135d714/diff:/var/lib/docker/overlay2/2588b49c9a6d1880bbb3cb0e71d92177125cdc807a3000c31e1fb2d5485f649b/diff:/var/lib/docker/overlay2/60dfeab312beb4a104ed1bc1a4196141e8c5f8775dcb151c9c831508d4755444/diff:/var/lib/docker/overlay2/3ad07b74a8609598a787eb7940f08b7d29e6f6777bb928dbd466804cd262f81e/diff:/var/lib/docker/overlay2/7d4d12a6528db5fa34bbddb5407174f40a94e92763513d452666052a4b4b2ec0/diff:/var/lib/docker/overlay2/80a03c154c30140e132667f0d58a4c46e6e5266a558bf49faef440e4116dcd4e/diff:/var/lib/docker/overlay2/0c513794d28852e7102971c77e060fbdcc007495e199cee82d2c89073201d407/diff:/var/lib/docker/overlay2/b53d4aa49e87730ac1ff8c95d9c73a7ad3d5a7c550649098407af57e7a4010c7/diff:/var/lib/docker/overlay2/712450a460550f330e659046a4c9c420c1cb1cdc9408d2c65bb901770b681606/diff:/var/lib/docker/overlay2/97873f9d778192d450cd90ff5027ee04e3b0f904859f9fe5944a20b06ef2a56f/diff:/var/lib/docker/overlay2/4db12670303e8283a846de3294c4680fcfc7dcd77afc499d890fd627ef516ecf/diff:/var/lib/docker/overlay2/5fa99c1e79749c2bb2d78d53736c3e143ddd976b5e623669fd3bb2800ee6952b/diff:/var/lib/docker/overlay2/0a46b0ff4bd50aba13e9f0edcaeba3de4a259c9fa38a87e9a818c2f6ee93d41f/diff:/var/lib/docker/overlay2/d414051903c39bc62ff15ab4b7ee9cfd5701bb1cbc500e671858b59aad008f6c/diff:/var/lib/docker/overlay2/2174fbc3b90fd51901fab2f340de615a3216444a6e5152c7b48342e7cd94b882/diff:/var/lib/docker/overlay2/c9735b8c290660c3151bb822cbd3204d2b4e0d3ede73817900dacef00d6f380c/diff:/var/lib/docker/overlay2/093ee6db3125e81013b20643f84e67bcab5b3e7ac39d8906a91d5fee47568d82/diff:/var/lib/docker/overlay2/0e235d150fb025f0634dd49e5dc540d2669a02a2768a16f625382cf469a2c6a6/diff:/var/lib/docker/overlay2/ee10c7509f30088dbb61e90aa06863b71ddff0d6e71236bd0b29397612294644/diff:/var/lib/docker/overlay2/df3ced897fbc345717929fb356b3c12b42add826d1f55f904e02568d61255afd/diff:/var/lib/docker/overlay2/90bc33cb5fbf513066eb474a36c45798c294f664d5fdf8a8e6164c96aff5b477/diff:/var/lib/docker/overlay2/6c089809e06d4b3de62f11d0ab9e8008259b39bb16e3ef595fafbd5d6affc46f/diff:/var/lib/docker/overlay2/cc07bd240ca6a04d97e00d4d682c62a957fd3b7f23296560038c8052e77f1a2a/diff:/var/lib/docker/overlay2/f18bbc7621b5fdc0f092d3574a5cb6f22ab376f1d38ee79b4c73bfcf351e6e3d/diff:/var/lib/docker/overlay2/6b23d5ce2d165f456c4614be619668178af66af6913a9f72a5c682128a8fd879/diff:/var/lib/docker/overlay2/5735136a54ac712a279f1bfeacbe152a2d40f3576cafee7c1c736b27d5e486eb/diff:/var/lib/docker/overlay2/48ee1842d4b4314c875176769bccbd87779d3c04a6ff4bbfeb17b34f4f9570ef/diff:/var/lib/docker/overlay2/d42e2a847439af0351500d437a0b049e8020ac3c8e7f42a8937db001b8853ee5/diff:/var/lib/docker/overlay2/6b6c4c84c2f6758fed86a35f89956247092036edb233b133ff57be1b4bb17d2c/diff:/var/lib/docker/overlay2/32ec2a5de8361726a60577b908993371573e6365687367c205ffcddfaa894b0f/diff:/var/lib/docker/overlay2/85dc3713e5b049dfd4c7805d2ff0889fbbe7ca705b6ee028c56cbd500aece98e/diff:/var/lib/docker/overlay2/9d520cf0002d0ee4099549322f00de8212d912b727b8aaaab3e849b6f5d78383/diff:/var/lib/docker/overlay2/cd814706a94aaf47f5415698fd6695be38bf267c36578d4aebc91c9e013a4971/diff:/var/lib/docker/overlay2/b0aef31db11d3828d869ee1ac46623108e0650e5e184f539073782aaa108e4ff/diff:/var/lib/docker/overlay2/c84a1cb72ae8f64f3f4878e9fed2b2422b7d2ee4c342bd409d8a715e92bd8e93/diff:/var/lib/docker/overlay2/5bbb21ae47100c7b78a69c26f08095bfdab6d80f0c4ea9ab10e0e5d97ce6397e/diff:/var/lib/docker/overlay2/73d5b29226fa879d50fcdc0f8fe034995db2731fd1b9704f70c5b46be133d922/diff",
            "MergedDir": "/var/lib/docker/overlay2/95193ad62d1997bf0b019cca1fd8066cd411c92fb60c2c94e517a476c5792ad2/merged",
            "UpperDir": "/var/lib/docker/overlay2/95193ad62d1997bf0b019cca1fd8066cd411c92fb60c2c94e517a476c5792ad2/diff",
            "WorkDir": "/var/lib/docker/overlay2/95193ad62d1997bf0b019cca1fd8066cd411c92fb60c2c94e517a476c5792ad2/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:01d4e4b4f381ac5a9964a14a650d7c074a2aa6e0789985d843f8eb3070b58f7d",
            "sha256:28dedf274dd82e720c1e5c651c5fdbcafff8f9687d4a3d95af147e0e3caa8bb2",
            "sha256:d12750ac86fb921cdc38acb4d5154a52de2e4e70f42330837f01bc421194ba6c",
            "sha256:f12ed123586ee818842e5bd0db946e04f39d8d679c18b275df913498feb4281c",
            "sha256:13b41d13cbee5b050a1d526c2ee6b2643ad86b4998e69a5348dc43819f3fb8e0",
            "sha256:dddc962cd9c168b2b79181f7c266e35ff0cc87701ab6d9fb676f9bf6561513b0",
            "sha256:5f8dc6c4d9ac310ba9c68b79b12a46409e112490eeae38019187ac4a83ea6199",
            "sha256:f70bf143e96789fb387d63da983c432d2717de7f2df20c90cfe0c66aeedb3041",
            "sha256:f7f51f3bc96eea52cf5019d3cce2900b02797f48e7ce3ac947b74e9662ea9dd6",
            "sha256:0161fdcfae36218edd6eed2c11675216b65bb5d2d0a0aef3b8c51a626ecb60c1",
            "sha256:54788d2d82c90da0d14e3aa9852003bc801d68836f19b9f64d4386b8c14b2349",
            "sha256:6bcd3616240bb782802144d3b62423cf7f40dedf28772113620fa294887b4ec0",
            "sha256:09e624be0b72bb2a021c9d78329d9715881af55036a1cef08dd2f0a2ba5c3410",
            "sha256:c74bdcb9211d5d6f64afa325c6bf7468b457bf8f064fa3f8b55b21607cc859f3",
            "sha256:21d954e6a416ec564cefa136556bcc8e741e5c6c4af825d1f6c999ea0b328f00",
            "sha256:5b174f38560e3ecd84f4b94bf8cc003dec1ff45b0e4c9413c35d66503bfd258e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:2806eb140016b5c0f986a4a3ced4ff16cba198545ac56a13f8876414285c45e1",
            "sha256:d60d383e7163d1179d3a85bc2f5ce3ab53baff78c19e3b4b7787876cd9553440",
            "sha256:ec6270dc409b411770b67b1a5be03e32791927ca3e63394819cc973ff490c240",
            "sha256:1415db51731869bce000ca968badb595cb8198643c3a40b1cd870c607fbd6a46",
            "sha256:68cf19ca728a8f0435b89dcfebda4648b71fe881adc7b3eaa301213265f06161",
            "sha256:27fe47ebfc798292f3981c21d50cb3c67434633876b2c1766c4c1f1ec552a702",
            "sha256:e2e83aa51a9106cea78ea3ec6b221535cf2d0f27ee4bb67f27e145550b59dee2",
            "sha256:2ab813b215c89a908c64837a4c281f2db8ac27628fc83e13d09e9e7aed242949",
            "sha256:faa34acefe1561de24aff89c42a9f92fdd2e5586a5916dbc6b1d3d2cdd7f0422",
            "sha256:3d79c6d56fdfcdf551b7555aa59e29da3e4808a9ae79b8bfe4a620d8b2363749",
            "sha256:6c351f5b1c8dec870099447272d85ddb05cb6e97c495ab668110614a60f4e560",
            "sha256:e6184c0bb5cdb54c07f1da7144c82f450415663661c04f767d4e0cace772f5df",
            "sha256:b2d49ce2bc6bec3d92a49e56323fd03173ef4165999c5eb117ace229e018a469",
            "sha256:f85461e92ddc1499dbebef464ccab92326dbeca3c9d90d6876223966fa46b472",
            "sha256:e4cd3f907933bd4cc80236d4099c960b426c5c3c382c9f38ad3ee6f3181612f5",
            "sha256:bb5484601a829325272b258ec293ad68935739919cbe5a9c1c4b7e4325f0ed8b",
            "sha256:139cd575257e409ee64bdb2125600869caf48c659cd7d02b8636b82a2c012eda",
            "sha256:b7f1dcbdab2fcc4dbf6e6a07250b3944ffbd03591d09e0ccddf4861a9c1a702d",
            "sha256:eb553ef7d25b4dc386d5e8a499df8dd14429cb107fd5946ca8555e691371497d",
            "sha256:155c721b6284ca37e6ce51b8122c951aff2fa21d35379ca3a017b469b83ab9c8",
            "sha256:ed5e1251541be38423dfc127231b7b9c7d77186442d4aeeb0efb1bd936114c44",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:1711928b4f53420b7e5d91d0dedc354eea13fc64572beddc925339fce80c55cf",
            "sha256:4c014f82d47fe7ef9c4bf96ccf842d3fe55b551f4d8d971d9027553fc6db259a",
            "sha256:836e7db4f5ff5aef1c3f8db31a69af2d42cef7c6c30b6af951d48f8d2af9dbaa",
            "sha256:f524f1e212a81161f416857ed9fa11c5b134c8d0d2ab933fb6ba7d49f162bccd",
            "sha256:433de353acb295d85ea21656516e7edd0d061d25d97317e37b307fa4ef85cd87",
            "sha256:bea9a8167b730df6b4224ac1eb15a6476ec39208e0ae16da0d026eed8a4c04f5",
            "sha256:7c6347f52da7635eebfcbd847ed213060260359de7f55b9334605a38f59561ca",
            "sha256:4269ab33beb0e3722f1880b55007c4d9e5696bd69e71373fc120bc4d03241559",
            "sha256:228df752ad7db22f10ff9709a81e7e3a1baae859cfa3da87731ba91fa1198e5d",
            "sha256:94aebe567cd6eca7c4a6bdb0b7f904dfd16aec8257783180cb3b477d0a48d2b5",
            "sha256:7427246c0dd1957efb82ecc60abeac392b157b3fb93c975e7676e31e54cc3507",
            "sha256:fd8ae1be7f409addedaff2d609f3e1a4d90ade33945c4475fba8536115d181eb",
            "sha256:277c8286248292885e8224f6ae3bb70c7947c84415524dfc3acd31025809faa5",
            "sha256:5868266d36044052dc1e8872483f632d8e24e65c602e8e5cc982384694114df6",
            "sha256:f4eca5c0839a45627c14430c828040c00b15acca8a1fb1760018c4aa14c1519a",
            "sha256:4c92dfb662d7b7f3f0add19e14d29710c62115858c5b70aec73d91e680bc1bde"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-10-31T01:37:07.46275073+08:00"
    }
}

更多版本

docker.io/pppppm/xtuner:v0.1.19

linux/amd64 docker.io23.57GB2025-10-31 02:01
15