docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda linux/amd64

docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda - 国内下载镜像源 浏览次数:13

这是一个Prefect的Docker镜像。Prefect是一个用于构建和运行数据流的平台,它提供了一个易于使用的界面和强大的功能,帮助用户管理和监控他们的数据工作流程。

源镜像 docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda
镜像ID sha256:55e266eadf3540e530044ecb75691c7d867fb920dd70d44bb1dba2e8922a4513
镜像TAG 3.4.20.dev2-python3.11-conda
大小 1.68GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /usr/bin/tini -g -- /opt/prefect/entrypoint.sh
工作目录 /opt/prefect
OS/平台 linux/amd64
浏览量 13 次
贡献者
镜像创建 2025-09-25T08:11:08.829255727Z
同步时间 2025-10-01 12:10
更新时间 2025-10-02 02:21
环境变量
PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LANG=C.UTF-8 LC_ALL=C.UTF-8 UV_COMPILE_BYTECODE=1 UV_LINK_MODE=copy UV_SYSTEM_PYTHON=1
镜像标签
3.11: io.prefect.python-version help@prefect.io: maintainer prefect: org.label-schema.name 1.0: org.label-schema.schema-version https://www.prefect.io/: org.label-schema.url 2025-09-25T08:08:55.727Z: org.opencontainers.image.created Prefect is a workflow orchestration framework for building resilient data pipelines in Python.: org.opencontainers.image.description Apache-2.0: org.opencontainers.image.licenses 11a83d5bc22024732ffc982a591f0ab14aec92e6: org.opencontainers.image.revision https://github.com/PrefectHQ/prefect: org.opencontainers.image.source prefect: org.opencontainers.image.title https://github.com/PrefectHQ/prefect: org.opencontainers.image.url 3.4.20.dev2-python3.11-conda: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda  docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda  docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda

Shell快速替换命令

sed -i 's#prefecthq/prefect:3.4.20.dev2-python3.11-conda#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda  docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda  docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda'

镜像构建历史


# 2025-09-25 16:11:08  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/usr/bin/tini" "-g" "--" "/opt/prefect/entrypoint.sh"]
                        
# 2025-09-25 16:11:08  485.00B 复制新文件或目录到容器中
COPY scripts/entrypoint.sh ./entrypoint.sh # buildkit
                        
# 2025-09-25 16:11:08  55.02KB 执行命令并创建新的镜像层
RUN |2 PREFECT_EXTRAS=[redis,client,otel] EXTRA_PIP_PACKAGES= /bin/bash --login -c prefect version # buildkit
                        
# 2025-09-25 16:11:03  0.00B 执行命令并创建新的镜像层
RUN |2 PREFECT_EXTRAS=[redis,client,otel] EXTRA_PIP_PACKAGES= /bin/bash --login -c [ -z "${EXTRA_PIP_PACKAGES:-""}" ] || uv pip install "${EXTRA_PIP_PACKAGES}" # buildkit
                        
# 2025-09-25 16:11:02  0.00B 定义构建参数
ARG EXTRA_PIP_PACKAGES
                        
# 2025-09-25 16:11:02  1.14KB 执行命令并创建新的镜像层
RUN |1 PREFECT_EXTRAS=[redis,client,otel] /bin/bash --login -c uv pip uninstall setuptools # buildkit
                        
# 2025-09-25 16:11:00  237.31MB 执行命令并创建新的镜像层
RUN |1 PREFECT_EXTRAS=[redis,client,otel] /bin/bash --login -c uv pip install "./dist/prefect.tar.gz${PREFECT_EXTRAS:-""}" &&     rm -rf dist/ # buildkit
                        
# 2025-09-25 16:10:49  0.00B 定义构建参数
ARG PREFECT_EXTRAS=[redis,client,otel]
                        
# 2025-09-25 16:10:49  5.62MB 复制新文件或目录到容器中
COPY /opt/prefect/dist ./dist # buildkit
                        
# 2025-09-25 16:09:54  39.54MB 复制新文件或目录到容器中
COPY /uv /bin/uv # buildkit
                        
# 2025-09-25 16:09:54  260.72MB 执行命令并创建新的镜像层
RUN /bin/bash --login -c apt-get update &&     apt-get install --no-install-recommends -y     tini=0.19.*     build-essential     git>=1:2.47.3     && apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-09-25 16:09:37  0.00B 设置工作目录为/opt/prefect
WORKDIR /opt/prefect
                        
# 2025-09-25 16:09:37  0.00B 添加元数据标签
LABEL maintainer=help@prefect.io io.prefect.python-version=3.11 org.label-schema.schema-version=1.0 org.label-schema.name=prefect org.label-schema.url=https://www.prefect.io/
                        
# 2025-09-25 16:09:37  0.00B 设置环境变量 UV_SYSTEM_PYTHON
ENV UV_SYSTEM_PYTHON=1
                        
# 2025-09-25 16:09:37  0.00B 设置环境变量 UV_LINK_MODE
ENV UV_LINK_MODE=copy
                        
# 2025-09-25 16:09:37  0.00B 设置环境变量 UV_COMPILE_BYTECODE
ENV UV_COMPILE_BYTECODE=1
                        
# 2025-09-25 16:09:37  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2025-09-25 16:09:37  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2025-09-25 16:09:37  0.00B 
SHELL [/bin/bash --login -c]
                        
# 2025-09-25 16:09:37  645.00B 执行命令并创建新的镜像层
RUN |1 PYTHON_VERSION=3.11 /bin/sh -c echo "conda activate prefect" >> ~/.bashrc # buildkit
                        
# 2025-09-25 16:09:36  504.46MB 执行命令并创建新的镜像层
RUN |1 PYTHON_VERSION=3.11 /bin/sh -c conda create     python=${PYTHON_VERSION}     --name prefect # buildkit
                        
# 2025-09-25 16:09:36  0.00B 定义构建参数
ARG PYTHON_VERSION
                        
# 2025-05-05 22:42:58  385.51MB 执行命令并创建新的镜像层
RUN |4 INSTALLER_URL_LINUX64=https://repo.anaconda.com/miniconda/Miniconda3-py313_25.3.1-1-Linux-x86_64.sh SHA256SUM_LINUX64=53a86109463cfd70ba7acab396d416e623012914eee004729e1ecd6fe94e8c69 INSTALLER_URL_AARCH64=https://repo.anaconda.com/miniconda/Miniconda3-py313_25.3.1-1-Linux-aarch64.sh SHA256SUM_AARCH64=4caa0c266ab726b440ccad40a74774167494e001da5de281b74f2d5673e4ace9 /bin/sh -c set -x &&     UNAME_M="$(uname -m)" &&     if [ "${UNAME_M}" = "x86_64" ]; then         INSTALLER_URL="${INSTALLER_URL_LINUX64}";         SHA256SUM="${SHA256SUM_LINUX64}";     elif [ "${UNAME_M}" = "aarch64" ]; then         INSTALLER_URL="${INSTALLER_URL_AARCH64}";         SHA256SUM="${SHA256SUM_AARCH64}";     fi &&     wget "${INSTALLER_URL}" -O miniconda.sh -q &&     echo "${SHA256SUM} miniconda.sh" > shasum &&     sha256sum --check --status shasum &&     mkdir -p /opt &&     bash miniconda.sh -b -p /opt/conda &&     rm miniconda.sh shasum &&     ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh &&     echo ". /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc &&     echo "conda activate" >> ~/.bashrc &&     find /opt/conda/ -follow -type f -name '*.a' -delete &&     find /opt/conda/ -follow -type f -name '*.js.map' -delete &&     /opt/conda/bin/conda clean -afy # buildkit
                        
# 2025-05-05 22:42:46  0.00B 定义构建参数
ARG SHA256SUM_AARCH64=4caa0c266ab726b440ccad40a74774167494e001da5de281b74f2d5673e4ace9
                        
# 2025-05-05 22:42:46  0.00B 定义构建参数
ARG INSTALLER_URL_AARCH64=https://repo.anaconda.com/miniconda/Miniconda3-py313_25.3.1-1-Linux-aarch64.sh
                        
# 2025-05-05 22:42:46  0.00B 定义构建参数
ARG SHA256SUM_LINUX64=53a86109463cfd70ba7acab396d416e623012914eee004729e1ecd6fe94e8c69
                        
# 2025-05-05 22:42:46  0.00B 定义构建参数
ARG INSTALLER_URL_LINUX64=https://repo.anaconda.com/miniconda/Miniconda3-py313_25.3.1-1-Linux-x86_64.sh
                        
# 2025-05-05 22:42:46  0.00B 设置默认要执行的命令
CMD ["/bin/bash"]
                        
# 2025-05-05 22:42:46  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-05-05 22:42:46  176.65MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update -q &&     apt-get install -q -y --no-install-recommends         bzip2         ca-certificates         git         libglib2.0-0         libsm6         libxext6         libxrender1         mercurial         openssh-client         procps         subversion         wget     && apt-get clean     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-05-05 22:42:46  0.00B 设置环境变量 LANG LC_ALL
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
                        
# 2025-05-05 22:42:46  0.00B 添加元数据标签
LABEL maintainer=Anaconda, Inc
                        
# 2025-04-28 08:00:00  74.83MB 
# debian.sh --arch 'amd64' out/ 'bookworm' '@1745798400'
                        
                    

镜像信息

{
    "Id": "sha256:55e266eadf3540e530044ecb75691c7d867fb920dd70d44bb1dba2e8922a4513",
    "RepoTags": [
        "prefecthq/prefect:3.4.20.dev2-python3.11-conda",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda"
    ],
    "RepoDigests": [
        "prefecthq/prefect@sha256:af5cce066cc648ae6ac93b25c3dae9cac86f4261bd518d7e3810d72bfeb63cdf",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/prefecthq/prefect@sha256:ccace663a7004051370b940b0d69105b77ba86559e22c39860c1152307672ed9"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-09-25T08:11:08.829255727Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "LANG=C.UTF-8",
            "LC_ALL=C.UTF-8",
            "UV_COMPILE_BYTECODE=1",
            "UV_LINK_MODE=copy",
            "UV_SYSTEM_PYTHON=1"
        ],
        "Cmd": null,
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/opt/prefect",
        "Entrypoint": [
            "/usr/bin/tini",
            "-g",
            "--",
            "/opt/prefect/entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "io.prefect.python-version": "3.11",
            "maintainer": "help@prefect.io",
            "org.label-schema.name": "prefect",
            "org.label-schema.schema-version": "1.0",
            "org.label-schema.url": "https://www.prefect.io/",
            "org.opencontainers.image.created": "2025-09-25T08:08:55.727Z",
            "org.opencontainers.image.description": "Prefect is a workflow orchestration framework for building resilient data pipelines in Python.",
            "org.opencontainers.image.licenses": "Apache-2.0",
            "org.opencontainers.image.revision": "11a83d5bc22024732ffc982a591f0ab14aec92e6",
            "org.opencontainers.image.source": "https://github.com/PrefectHQ/prefect",
            "org.opencontainers.image.title": "prefect",
            "org.opencontainers.image.url": "https://github.com/PrefectHQ/prefect",
            "org.opencontainers.image.version": "3.4.20.dev2-python3.11-conda"
        },
        "Shell": [
            "/bin/bash",
            "--login",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 1684686027,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/def9d371d8505a69f279a1141d02046a41a9c1913c0d63b30b2d88d1608e5551/diff:/var/lib/docker/overlay2/b48f4f0feafd88f4462e1f50c2c9206f6410ac78936457fd90fd79eb833e6d1e/diff:/var/lib/docker/overlay2/8add33f802357a6d836c745de92ff326935ef77d835ccfef10b06d1fecddaca5/diff:/var/lib/docker/overlay2/5889e6c612b0ac83a1167897d6bfb62a1fa296797e4793321aaba2f9a52367ca/diff:/var/lib/docker/overlay2/11e6c8d390ee0f4e5ec5c143196e29e983c20be922a00e23cca05e6eea0bfd4c/diff:/var/lib/docker/overlay2/bb32a4b6c30e5d44b9b80d4e288ff18390e641b0b711f4ee27a8168ac80d16cb/diff:/var/lib/docker/overlay2/ae1baf7c6841dd8718c9659dd8bef069849dbd3a4f65c07aad689b16c8dc70a8/diff:/var/lib/docker/overlay2/f0eba46c11b7ba2238c6ed800495ef5466f6a1aa05c082eabc4cf3d1483e4ed0/diff:/var/lib/docker/overlay2/285e873ce077eca6a69c3755528de0baf9df1887e98f44df60a2b8e884ef3f02/diff:/var/lib/docker/overlay2/70cd88edf2c09a68eeded7b2bcd0a9b939be93c8081eec32be20432fbdc9d7e9/diff:/var/lib/docker/overlay2/0fbf7fcb18a22b256d7e1380ae56c9fc32e2cd6d86536512c2964c05f6f272f6/diff:/var/lib/docker/overlay2/882411663b800dc9a75eec280c4e3a6bde71e508ac220b6b2ddd29ab33409081/diff:/var/lib/docker/overlay2/cd9cb36f82b4a6a570304a082a3d97b369643777f7f7b25df6d47ffb3b3d36ab/diff",
            "MergedDir": "/var/lib/docker/overlay2/f56ecad3721b25e43808afe954002b3270cb61cf94458f924cc27a9f09e3fe26/merged",
            "UpperDir": "/var/lib/docker/overlay2/f56ecad3721b25e43808afe954002b3270cb61cf94458f924cc27a9f09e3fe26/diff",
            "WorkDir": "/var/lib/docker/overlay2/f56ecad3721b25e43808afe954002b3270cb61cf94458f924cc27a9f09e3fe26/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:6c4c763d22d0c5f9b2c5901dfa667fbbc4713cee6869336b8fd5022185071f1c",
            "sha256:99198bd9bce791377dbb1094b94fb129b1bc39d727645d472b65015d9dc4df7a",
            "sha256:5ce2bff3f7135106a25e76da6cc32bdf2d0b2b75081caf5e3f49bc43b55d8481",
            "sha256:15d2b1bc723d7a3924690b6f6e5f1087d5fa5afa914dfc43459de77f8446b331",
            "sha256:c44d56723e706d813eb804e6e5cbb1cd9b24827f72060ee56384d9dbbd429b3c",
            "sha256:2dc253887875aafae9e021ffb4cf6dc254d9be4f308d6966f0c90819efe49093",
            "sha256:479f0ec251001593add67f8a8b829dbb46bcce747ff07467cf8fb189be3c0594",
            "sha256:8de707ddf2b6f3430cfda33c6f5f481abf579755bb21376f8df121f9962727bb",
            "sha256:0777b43702fd2f5b201fd1d1d933b9df48e8744cc8936e349c803d231b589e08",
            "sha256:adc9bfcde5956c14ab6ed272344a5679080cdd0267260a5d4f4b54282858aa62",
            "sha256:537666cd5b6507ae12f9c0ee9c04b202551f0e88fc38ee0cf97e379123825bcd",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:1c23646dd70b73d987b52a8eb15416ed0507ee9b9a93facaac9a4f34730be9e4",
            "sha256:7da539968e5d73375d3f6e9099accd28381c45ab646fc2b74bcf7492a90a7e26"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-10-01T12:09:14.912951847+08:00"
    }
}

更多版本

docker.io/prefecthq/prefect:3.4.2.dev1-python3.13

linux/amd64 docker.io718.54MB2025-05-10 22:51
183

docker.io/prefecthq/prefect:3.4.20.dev2-python3.11-conda

linux/amd64 docker.io1.68GB2025-10-01 12:10
12