docker.io/quantconnect/lean:latest linux/amd64

docker.io/quantconnect/lean:latest - 国内下载镜像源 浏览次数:38

温馨提示:此镜像为latest tag镜像,本站无法保证此版本为最新镜像

```html

这是一个QuantConnect公司提供的Lean引擎的Docker镜像。Lean引擎是一个用于构建量化交易策略的开源框架,该镜像包含了运行Lean所需的所有依赖项,方便开发者快速部署和运行他们的量化交易策略。

```
源镜像 docker.io/quantconnect/lean:latest
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest
镜像ID sha256:e6046a6e22aaa62fd2cfd80ef6289f4e0e3056093fa788f9d89e593de1a51235
镜像TAG latest
大小 27.10GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 dotnet QuantConnect.Lean.Launcher.dll
工作目录 /Lean/Launcher/bin/Debug
OS/平台 linux/amd64
浏览量 38 次
贡献者 ch***********6@gmail.com
镜像创建 2025-02-14T21:51:04.124610926Z
同步时间 2025-02-16 01:12
更新时间 2025-02-21 20:04
环境变量
PATH=/opt/miniconda3/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin DEBIAN_FRONTEND=teletype LANG=en_US.UTF-8 LANGUAGE=en_US:en LC_ALL=en_US.UTF-8 PYTHONNET_PYDLL=/opt/miniconda3/lib/libpython3.11.so CONDA=Miniconda3-py311_24.9.2-0-Linux-x86_64.sh PIP_DEFAULT_TIMEOUT=120 CUDA_MODULE_LOADING=LAZY XLA_FLAGS=--xla_gpu_cuda_data_dir=/opt/miniconda3/ LD_LIBRARY_PATH=:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cublas/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_cupti/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_nvrtc/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_runtime/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cudnn/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cufft/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/curand/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cusolver/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cusparse/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/nccl/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/nvjitlink/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/nvtx/lib/ PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
镜像标签
16955: lean_version 3.11: python_version 3.11.11: strict_python_version net9.0: target_framework

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest  docker.io/quantconnect/lean:latest

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest  docker.io/quantconnect/lean:latest

Shell快速替换命令

sed -i 's#quantconnect/lean:latest#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest  docker.io/quantconnect/lean:latest'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest  docker.io/quantconnect/lean:latest'

镜像构建历史


# 2025-02-15 05:51:04  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["dotnet" "QuantConnect.Lean.Launcher.dll"]
                        
# 2025-02-15 05:51:04  0.00B 设置工作目录为/Lean/Launcher/bin/Debug
WORKDIR /Lean/Launcher/bin/Debug
                        
# 2025-02-15 05:51:04  37.70MB 复制新文件或目录到容器中
COPY ./Lean/DownloaderDataProvider/bin/Debug/ /Lean/DownloaderDataProvider/bin/Debug/ # buildkit
                        
# 2025-02-15 05:51:04  48.44MB 复制新文件或目录到容器中
COPY ./Lean/Report/bin/Debug/ /Lean/Report/bin/Debug/ # buildkit
                        
# 2025-02-15 05:51:03  24.97MB 复制新文件或目录到容器中
COPY ./Lean/Optimizer.Launcher/bin/Debug/ /Lean/Optimizer.Launcher/bin/Debug/ # buildkit
                        
# 2025-02-15 05:51:03  82.37MB 复制新文件或目录到容器中
COPY ./Lean/Launcher/bin/Debug/ /Lean/Launcher/bin/Debug/ # buildkit
                        
# 2025-02-11 04:27:30  235.65MB 复制新文件或目录到容器中
COPY ./Lean/Data/ /Lean/Data/ # buildkit
                        
# 2025-02-11 04:27:30  52.46MB 复制新文件或目录到容器中
COPY ./DataLibraries /Lean/Launcher/bin/Debug/ # buildkit
                        
# 2025-02-11 04:27:30  200.10MB 执行命令并创建新的镜像层
RUN /bin/sh -c wget https://aka.ms/getvsdbgsh -O - 2>/dev/null | /bin/sh /dev/stdin -v 17.10.20209.7 -l /root/vsdbg # buildkit
                        
# 2025-02-11 04:27:25  100.80MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir ptvsd==4.3.2 debugpy~=1.6.7 pydevd-pycharm~=231.9225.15 # buildkit
                        
# 2025-02-11 04:27:25  0.00B 
MAINTAINER QuantConnect <contact@quantconnect.com>
                        
# 2025-02-11 03:30:17  0.00B 添加元数据标签
LABEL target_framework=net9.0
                        
# 2025-02-11 03:30:17  0.00B 添加元数据标签
LABEL python_version=3.11
                        
# 2025-02-11 03:30:17  0.00B 添加元数据标签
LABEL strict_python_version=3.11.11
                        
# 2025-02-11 03:30:17  451.85MB 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir -p /root/ibgateway &&     wget -q https://cdn.quantconnect.com/interactive/ibgateway-stable-standalone-linux-x64.v10.19.2a.sh &&     chmod 777 ibgateway-stable-standalone-linux-x64.v10.19.2a.sh &&     ./ibgateway-stable-standalone-linux-x64.v10.19.2a.sh -q -dir /root/ibgateway &&     rm ibgateway-stable-standalone-linux-x64.v10.19.2a.sh # buildkit
                        
# 2025-02-11 03:29:53  90.13MB 执行命令并创建新的镜像层
RUN /bin/sh -c wget -q https://cdn.quantconnect.com/fonts/foundation.zip && unzip -q foundation.zip && rm foundation.zip     && mv "lean fonts/"* /usr/share/fonts/truetype/ && rm -rf "lean fonts/" "__MACOSX/" # buildkit
                        
# 2025-02-11 03:29:51  203.45MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt install -y xvfb wkhtmltopdf &&     apt-get clean && apt-get autoclean && apt-get autoremove --purge -y && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-02-11 03:29:41  159.00B 执行命令并创建新的镜像层
RUN /bin/sh -c echo "{\"argv\":[\"python\",\"-m\",\"ipykernel_launcher\",\"-f\",\"{connection_file}\"],\"display_name\":\"Foundation-Py-Default\",\"language\":\"python\",\"metadata\":{\"debugger\":true}}" > /opt/miniconda3/share/jupyter/kernels/python3/kernel.json # buildkit
                        
# 2025-02-11 03:29:41  90.14KB 执行命令并创建新的镜像层
RUN /bin/sh -c wget -q https://cdn.quantconnect.com/chronos-forecasting/chronos-forecasting-main-133761a.zip &&     unzip -q chronos-forecasting-main-133761a.zip && cd chronos-forecasting-main &&     cp -r scripts /opt/miniconda3/lib/python3.11/site-packages/chronos/ &&     cd .. && rm -rf chronos-forecasting-main && rm chronos-forecasting-main-133761a.zip # buildkit
                        
# 2025-02-11 03:29:41  13.93MB 执行命令并创建新的镜像层
RUN /bin/sh -c wget -q https://cdn.quantconnect.com/ta-lib/ta-lib-0.4.0-src.tar.gz &&     tar -zxvf ta-lib-0.4.0-src.tar.gz && cd ta-lib &&     ./configure --prefix=/usr && make && make install &&     cd .. && rm -rf ta-lib && rm ta-lib-0.4.0-src.tar.gz &&     pip install --no-cache-dir TA-Lib==0.5.1 # buildkit
                        
# 2025-02-11 03:28:34  1.60MB 执行命令并创建新的镜像层
RUN /bin/sh -c wget -q https://cdn.quantconnect.com/ssm/ssm-master-646e188.zip &&     unzip -q ssm-master-646e188.zip && cd ssm-master &&     pip install . && cd .. && rm -rf ssm-master && rm ssm-master-646e188.zip # buildkit
                        
# 2025-02-11 03:28:30  1.97MB 执行命令并创建新的镜像层
RUN /bin/sh -c wget -q https://cdn.quantconnect.com/pyrb/pyrb-master-250054e.zip &&     unzip -q pyrb-master-250054e.zip && cd pyrb-master &&     pip install . && cd .. && rm -rf pyrb-master && rm pyrb-master-250054e.zip # buildkit
                        
# 2025-02-11 03:28:28  77.15MB 执行命令并创建新的镜像层
RUN /bin/sh -c python -m nltk.downloader -d /usr/share/nltk_data punkt &&     python -m nltk.downloader -d /usr/share/nltk_data punkt_tab &&     python -m nltk.downloader -d /usr/share/nltk_data vader_lexicon &&     python -m nltk.downloader -d /usr/share/nltk_data stopwords &&     python -m nltk.downloader -d /usr/share/nltk_data wordnet # buildkit
                        
# 2025-02-11 03:28:26  16.47MB 执行命令并创建新的镜像层
RUN /bin/sh -c TORCH=$(python -c "import torch; print(torch.__version__)") &&     CUDA=$(python -c "import torch; print('cu' + torch.version.cuda.replace('.', ''))") &&     pip install --no-cache-dir -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html     torch-scatter==2.1.2 torch-sparse==0.6.18 torch-cluster==1.6.3 torch-spline-conv==1.2.2 torch-geometric==2.6.1 # buildkit
                        
# 2025-02-11 03:21:40  126.01MB 执行命令并创建新的镜像层
RUN /bin/sh -c python -m spacy download en_core_web_md && python -m spacy download en_core_web_sm # buildkit
                        
# 2025-02-11 03:21:35  561.05MB 执行命令并创建新的镜像层
RUN /bin/sh -c conda install -c conda-forge -y ipopt==3.14.16 coincbc==2.10.12 openmpi=5.0.6        && conda clean -y --all # buildkit
                        
# 2025-02-11 03:20:48  3.71MB 执行命令并创建新的镜像层
RUN /bin/sh -c dwave install --all -y # buildkit
                        
# 2025-02-11 03:20:46  885.72MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir nvidia-cudnn-cu12==9.3.0.75 # buildkit
                        
# 2025-02-11 03:20:37  3.89GB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir iisignature==0.24 cupy-cuda12x==13.3.0 mamba-ssm[causal-conv1d]==2.2.4 # buildkit
                        
# 2025-02-11 03:19:39  84.00B 执行命令并创建新的镜像层
RUN /bin/sh -c ln -s /opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12 /opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_runtime/lib/libcudart.so # buildkit
                        
# 2025-02-11 03:19:39  0.00B 设置环境变量 PYTORCH_CUDA_ALLOC_CONF
ENV PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
                        
# 2025-02-11 03:19:39  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cublas/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_cupti/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_nvrtc/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_runtime/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cudnn/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cufft/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/curand/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cusolver/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cusparse/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/nccl/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/nvjitlink/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/nvtx/lib/
                        
# 2025-02-11 03:19:39  0.00B 设置环境变量 XLA_FLAGS
ENV XLA_FLAGS=--xla_gpu_cuda_data_dir=/opt/miniconda3/
                        
# 2025-02-11 03:19:39  0.00B 设置环境变量 CUDA_MODULE_LOADING
ENV CUDA_MODULE_LOADING=LAZY
                        
# 2025-02-11 03:19:39  226.72MB 执行命令并创建新的镜像层
RUN /bin/sh -c conda install -c nvidia -y cuda-compiler=12.3.2 && conda clean -y --all # buildkit
                        
# 2025-02-11 03:19:25  17.25GB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir          cython==3.0.9                       pandas==2.1.4                       scipy==1.11.4                       numpy==1.26.4                       wrapt==1.16.0                       astropy==7.0.0                      beautifulsoup4==4.12.3              dill==0.3.8                         jsonschema==4.23.0                  lxml==5.3.0                         msgpack==1.1.0                      numba==0.59.1                       xarray==2024.11.0                   plotly==5.24.1                      jupyterlab==4.3.2                   ipywidgets==8.1.5                   jupyterlab-widgets==3.0.13          tensorflow==2.18.0                  docutils==0.21.2                    cvxopt==1.3.2                       gensim==4.3.3                       keras==3.7.0                        lightgbm==4.5.0                     nltk==3.9.1                         graphviz==0.20.3                    cmdstanpy==1.2.4                    copulae==0.7.9                      featuretools==1.31.0                PuLP==2.9.0                         pymc==5.19.0                        rauth==0.7.3                        scikit-learn==1.4.2                 scikit-optimize==0.10.2             aesara==2.9.4                       tsfresh==0.20.2                     tslearn==0.6.3                      tweepy==4.14.0                      PyWavelets==1.7.0                   umap-learn==0.5.7                   fastai==2.7.18                      arch==7.2.0                         copulas==0.12.0                     creme==0.6.1                        cufflinks==0.17.3                   gym==0.26.2                         deap==1.4.1                         pykalman==0.9.7                     cvxpy==1.6.0                        pyportfolioopt==1.5.6               pmdarima==2.0.4                     pyro-ppl==1.9.1                     riskparityportfolio==0.6.0          sklearn-json==0.1.0                 statsmodels==0.14.4                 QuantLib==1.36                      xgboost==2.1.3                      dtw-python==1.5.3                   gluonts==0.16.0                     gplearn==0.4.2                      jax==0.4.35                         jaxlib==0.4.35                      keras-rl==0.4.2                     pennylane==0.39.0                   PennyLane-Lightning==0.39.0         pennylane-qiskit==0.36.0            qiskit==1.2.4                       neural-tangents==0.6.5              mplfinance==0.12.10b0               hmmlearn==0.3.3                     catboost==1.2.7                     fastai2==0.0.30                     scikit-tda==1.1.1                   ta==0.11.0                          seaborn==0.13.2                     optuna==4.1.0                       findiff==0.10.2                     sktime==0.26.0                      hyperopt==0.2.7                     bayesian-optimization==2.0.0        pingouin==0.5.5                     quantecon==0.7.2                    matplotlib==3.7.5                   sdeint==0.3.0                       pandas_market_calendars==4.4.2      dgl==2.1.0                          ruptures==1.1.9                     simpy==4.1.1                        scikit-learn-extra==0.3.0           ray==2.40.0                         "ray[tune]"==2.40.0                 "ray[rllib]"==2.40.0                "ray[data]"==2.40.0                 "ray[train]"==2.40.0                fastText==0.9.3                     h2o==3.46.0.6                       prophet==1.1.6                      torch==2.5.1                        torchvision==0.20.1                 ax-platform==0.4.3                  alphalens-reloaded==0.4.5           pyfolio-reloaded==0.9.8             altair==5.5.0                       modin==0.26.1                       persim==0.3.7                       ripser==0.6.10                      pydmd==2024.12.1                    spacy==3.7.5                        pandas-ta==0.3.14b                  pytorch-ignite==0.5.1               tensorly==0.9.0                     mlxtend==0.23.3                     shap==0.46.0                        lime==0.2.0.1                       tensorflow-probability==0.25.0      mpmath==1.3.0                       tensortrade==1.0.3                  polars==1.16.0                      stockstats==0.6.2                   autokeras==2.0.0                    QuantStats==0.0.64                  hurst==0.0.5                        numerapi==2.19.1                    pymdptoolbox==4.0-b3                panel==1.5.4                        hvplot==0.11.1                      line-profiler==4.2.0                py-heat==0.0.6                      py-heat-magic==0.0.2                bokeh==3.6.2                        tensorflow-decision-forests==1.11.0     river==0.21.0                       stumpy==1.13.0                      pyvinecopulib==0.6.5                ijson==3.3.0                        jupyter-resource-usage==1.1.0       injector==0.22.0                    openpyxl==3.1.5                     xlrd==2.0.1                         mljar-supervised==1.1.9             dm-tree==0.1.8                      lz4==4.3.3                          ortools==9.9.3963                   py_vollib==1.0.1                    thundergbm==0.3.17                  yellowbrick==1.5                    livelossplot==0.5.5                 gymnasium==1.0.0                    interpret==0.6.7                    DoubleML==0.9.0                     jupyter-bokeh==4.0.5                imbalanced-learn==0.12.4            openai==1.57.0                      lazypredict==0.2.14a1               darts==0.31.0                       fastparquet==2024.11.0              tables==3.10.1                      dimod==0.12.17                      dwave-samplers==1.3.0               python-statemachine==2.5.0          pymannkendall==1.4.3                Pyomo==6.8.2                        gpflow==2.9.2                       pyarrow==15.0.1                     dwave-ocean-sdk==8.0.1              chardet==5.2.0                      stable-baselines3==2.4.0            Shimmy==2.0.0                       pystan==3.10.0                      FixedEffectModel==0.0.5             transformers==4.46.3                Rbeast==0.1.23                      langchain==0.2.17                   pomegranate==1.1.1                  MAPIE==0.9.1                        mlforecast==0.15.1                  tensorrt==10.7.0                    x-transformers==1.42.24             Werkzeug==3.1.3                     TPOT==0.12.2                        llama-index==0.12.2                 mlflow==2.18.0                      ngboost==0.5.1                      pycaret==3.3.2                      control==0.10.1                     pgmpy==0.1.26                       mgarch==0.3.0                       jupyter-ai==2.28.2                  keras-tcn==3.5.0                    neuralprophet[live]==0.9.0          Riskfolio-Lib==6.1.1                fuzzy-c-means==1.7.2                EMD-signal==1.6.4                   dask[complete]==2024.9.0            nolds==0.6.1                        feature-engine==1.6.2               pytorch-tabnet==4.1.0               opencv-contrib-python-headless==4.10.0.84     POT==0.9.5                          alibi-detect==0.12.0                datasets==2.21.0                    scikeras==0.13.0                    accelerate==0.34.2                  peft==0.13.2                        FlagEmbedding==1.2.11               contourpy==1.3.1                    tensorboardX==2.6.2.2               scikit-image==0.22.0                scs==3.2.7                          thinc==8.2.5                        cesium==0.12.1                      cvxportfolio==1.4.0                 tsfel==0.1.9                        ipympl==0.9.4                       PyQt6==6.7.1                        nixtla==0.6.4                       tigramite==5.2.6.7                  pytorch-forecasting==1.2.0          chronos-forecasting[training]==1.4.1     setuptools==73.0.1                  tinygrad==0.10.0 # buildkit
                        
# 2025-01-14 05:02:42  0.00B 设置环境变量 PIP_DEFAULT_TIMEOUT
ENV PIP_DEFAULT_TIMEOUT=120
                        
# 2025-01-14 05:02:42  320.14MB 执行命令并创建新的镜像层
RUN /bin/sh -c wget https://download.oracle.com/java/17/archive/jdk-17.0.12_linux-x64_bin.deb     && dpkg -i jdk-17.0.12_linux-x64_bin.deb     && update-alternatives --install /usr/bin/java java /usr/lib/jvm/jdk-17.0.12-oracle-x64/bin/java 1     && rm jdk-17.0.12_linux-x64_bin.deb # buildkit
                        
# 2025-01-14 05:02:31  620.80MB 执行命令并创建新的镜像层
RUN /bin/sh -c wget -q https://cdn.quantconnect.com/miniconda/${CONDA} &&     bash ${CONDA} -b -p /opt/miniconda3 && rm -rf ${CONDA} &&     conda config --set solver classic &&     conda config --set auto_update_conda false # buildkit
                        
# 2025-01-14 05:02:22  0.00B 设置环境变量 PATH
ENV PATH=/opt/miniconda3/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-01-14 05:02:22  0.00B 设置环境变量 CONDA
ENV CONDA=Miniconda3-py311_24.9.2-0-Linux-x86_64.sh
                        
# 2025-01-14 05:02:22  0.00B 设置环境变量 PYTHONNET_PYDLL
ENV PYTHONNET_PYDLL=/opt/miniconda3/lib/libpython3.11.so
                        
# 2025-01-14 05:02:22  489.55MB 执行命令并创建新的镜像层
RUN /bin/sh -c add-apt-repository ppa:dotnet/backports && apt-get update && apt-get install -y dotnet-sdk-9.0 &&     apt-get clean && apt-get autoclean && apt-get autoremove --purge -y && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-01-14 05:00:03  860.52MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt-get -y install wget curl unzip    && apt-get install -y git bzip2 zlib1g-dev    xvfb libxrender1 libxtst6 libxi6 libglib2.0-dev libopenmpi-dev libstdc++6 openmpi-bin    pandoc libcurl4-openssl-dev libgtk2.0.0 build-essential    && apt-get clean && apt-get autoclean && apt-get autoremove --purge -y    && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-01-14 05:00:03  0.00B 设置默认要执行的命令
CMD ["/sbin/my_init"]
                        
# 2025-01-14 05:00:03  0.00B 
MAINTAINER QuantConnect <contact@quantconnect.com>
                        
# 2022-09-17 12:41:51  0.00B 设置默认要执行的命令
CMD ["/sbin/my_init"]
                        
# 2022-09-17 12:41:51  0.00B 设置环境变量 DEBIAN_FRONTEND LANG LANGUAGE LC_ALL
ENV DEBIAN_FRONTEND=teletype LANG=en_US.UTF-8 LANGUAGE=en_US:en LC_ALL=en_US.UTF-8
                        
# 2022-09-17 12:41:51  150.71MB 执行命令并创建新的镜像层
RUN |1 QEMU_ARCH= /bin/sh -c /bd_build/prepare.sh && 	/bd_build/system_services.sh && 	/bd_build/utilities.sh && 	/bd_build/cleanup.sh # buildkit
                        
# 2022-09-17 12:39:21  40.41KB 复制新文件或目录到容器中
COPY . /bd_build # buildkit
                        
# 2022-09-17 12:39:21  0.00B 定义构建参数
ARG QEMU_ARCH
                        
# 2022-09-02 07:46:35  0.00B 
/bin/sh -c #(nop)  CMD ["bash"]
                        
# 2022-09-02 07:46:35  77.83MB 
/bin/sh -c #(nop) ADD file:a7268f82a86219801950401c224cabbdd83ef510a7c71396b25f70c2639ae4fa in / 
                        
                    

镜像信息

{
    "Id": "sha256:e6046a6e22aaa62fd2cfd80ef6289f4e0e3056093fa788f9d89e593de1a51235",
    "RepoTags": [
        "quantconnect/lean:latest",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean:latest"
    ],
    "RepoDigests": [
        "quantconnect/lean@sha256:2bd2329a1f4652fe2b176d8d79ed83e71f1b8aa7e84fa1118ee5feea7087365b",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/quantconnect/lean@sha256:847f3391129c81facbd6cd574a42f141468fe92f30337559da20d4bb7ceb78d6"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-02-14T21:51:04.124610926Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "QuantConnect \u003ccontact@quantconnect.com\u003e",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/miniconda3/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "DEBIAN_FRONTEND=teletype",
            "LANG=en_US.UTF-8",
            "LANGUAGE=en_US:en",
            "LC_ALL=en_US.UTF-8",
            "PYTHONNET_PYDLL=/opt/miniconda3/lib/libpython3.11.so",
            "CONDA=Miniconda3-py311_24.9.2-0-Linux-x86_64.sh",
            "PIP_DEFAULT_TIMEOUT=120",
            "CUDA_MODULE_LOADING=LAZY",
            "XLA_FLAGS=--xla_gpu_cuda_data_dir=/opt/miniconda3/",
            "LD_LIBRARY_PATH=:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cublas/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_cupti/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_nvrtc/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cuda_runtime/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cudnn/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cufft/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/curand/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cusolver/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/cusparse/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/nccl/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/nvjitlink/lib/:/opt/miniconda3/lib/python3.11/site-packages/nvidia/nvtx/lib/",
            "PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True"
        ],
        "Cmd": null,
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/Lean/Launcher/bin/Debug",
        "Entrypoint": [
            "dotnet",
            "QuantConnect.Lean.Launcher.dll"
        ],
        "OnBuild": null,
        "Labels": {
            "lean_version": "16955",
            "python_version": "3.11",
            "strict_python_version": "3.11.11",
            "target_framework": "net9.0"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 27101134955,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/a4c070f14436ed1b3203aa8cf979be93eeab6632e36f5c297b8780a153a7245c/diff:/var/lib/docker/overlay2/db45e8f82c0b2e610c38b60667a48cecea4c62830fcf609a9a043740003b54b9/diff:/var/lib/docker/overlay2/339a396b050deb996a44caf041fe0001db4d75e15edc87af6d3eb5e783d44bd1/diff:/var/lib/docker/overlay2/822d7d45b2f0b74377e3d00d40da5d5793284e84690336ad581f3d2385e11fb3/diff:/var/lib/docker/overlay2/04e69897aa1c355309529482e43d77e1a7d701699f68e8960fab49a15a52826a/diff:/var/lib/docker/overlay2/8ac8804a1e20e07a3c056041431e1cd7885a9db225c7f8d09d92dd0dc4b82630/diff:/var/lib/docker/overlay2/15758a583cc73af2319a8228a58cf824071ff25be1caa0f59911992f90fb6e6a/diff:/var/lib/docker/overlay2/fdfbc1b82bb00194ce8203bd2a42b4debc816b17af0e2add66dadad25c58640e/diff:/var/lib/docker/overlay2/f68d743e6295d7821f79ac366b98d7ebc34b722fcfb15d243019da16224346ed/diff:/var/lib/docker/overlay2/faabdaf2509780da7fe0de6a242dc182f675ca86f247a7d1a2140a7fca0cb341/diff:/var/lib/docker/overlay2/4d85e83b6323ca1c47af0cc7f645feea656b50132c57052e0f2b058203f50e8a/diff:/var/lib/docker/overlay2/4e1fb2ad31bf9db137511f9fb4e639edd0269ac27b80894c60f7c004442066d0/diff:/var/lib/docker/overlay2/c2e7ed15f54275ad53caace58159ef0bf3ff610d1ee2882c40322139315bf310/diff:/var/lib/docker/overlay2/58cd2159046605810ce4782a3ba63248c01220af00583a90de7096e892bc6603/diff:/var/lib/docker/overlay2/d6f4a4146ad4042a1fc588de9b5fd48cb8ed11b56ed580ed60c1bd2478bb6ef9/diff:/var/lib/docker/overlay2/7349ec951bc84f8fb79144817315bfcab2fb8a2c75754a9ac6ef975520e1be56/diff:/var/lib/docker/overlay2/91d97fff668ada13dbcaeadd339c96815fd63d981a26473e93907fe5cb2105f4/diff:/var/lib/docker/overlay2/a31be6d63f29316be3b12d5bdc739a8bdedbcb2a6d3d434e5a2cd3728d1a7067/diff:/var/lib/docker/overlay2/25e0520bc285a5b6336dc93f027627dc35fe48d98444f480875e2d8dc1fa1cfa/diff:/var/lib/docker/overlay2/4da07612191a14b959429114747fb7ab4a0cb0261b246ccb0ae5b60ad5e4e7a6/diff:/var/lib/docker/overlay2/c92a4e6df221983e476324e07329301f4b77cd111a2c870b6bed2e199c7c0ee8/diff:/var/lib/docker/overlay2/62539a86442c0725374545587f2c118fc49395c3a16e51431ccc432da9a09490/diff:/var/lib/docker/overlay2/b39ea00f3cbdd355de165bfa55627fd2239412b3809749e4b68780731d30b0d2/diff:/var/lib/docker/overlay2/9a353569c241597dc7fa271c033da963674fd0f7595e4a4d1efdf2854abf77fc/diff:/var/lib/docker/overlay2/e35a06244a0cb578bf45f518b658065713f6dc1c9a8e80223c23fb1c80d05d5d/diff:/var/lib/docker/overlay2/0eb15a5945f6ee379a83ed2d27efa43a3de1029e05c8bbaf08ce9d3b90ce8151/diff:/var/lib/docker/overlay2/8aadf53f5bfcf6b7b5f57f1cd96f1b3c2304a932c53afc79d1dce8fa8824306c/diff:/var/lib/docker/overlay2/918080a30772912107767f2aee95c22883d5b67cd12f3aff9ac4de2e482fda1d/diff:/var/lib/docker/overlay2/78b1c43a533cd8c472c792ade01c5d9e12cfd1eefe9e9f2ac3b9d5bcccd79108/diff:/var/lib/docker/overlay2/73cc074942b9dbc36c6d0e9b5cab96e4b32ecae970ebacaa58839d749c4bd426/diff:/var/lib/docker/overlay2/442eb32fd6abc913234d4314163495201faf6f57bb31f48fa9ab8edeffa83e1c/diff:/var/lib/docker/overlay2/3fc78ce4a9f094bd2733d29f114aacf846afaef6e402e0fba76e66f107ace732/diff:/var/lib/docker/overlay2/0216ebd5094d9f89f96f3f7fc74863944e0db19d0c0044111e581105e2da2d68/diff",
            "MergedDir": "/var/lib/docker/overlay2/42300c89498ef785ade4dbb59fd89e1e25787faf28bf52b9010ccfec9b018f55/merged",
            "UpperDir": "/var/lib/docker/overlay2/42300c89498ef785ade4dbb59fd89e1e25787faf28bf52b9010ccfec9b018f55/diff",
            "WorkDir": "/var/lib/docker/overlay2/42300c89498ef785ade4dbb59fd89e1e25787faf28bf52b9010ccfec9b018f55/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:7f5cbd8cc787c8d628630756bcc7240e6c96b876c2882e6fc980a8b60cdfa274",
            "sha256:31ee2011b35056e3f2d13588f0339c10cc52aa3aa012115a898f3c0f2f2cea12",
            "sha256:bcb7e1bba665108211179067843fd5669a615985876d714fe6b514623f0646f3",
            "sha256:6980031fe26fdb968ae7d65e42de979662cd9a4c4a772e67cae2469c5258669a",
            "sha256:6903af6cfa95ad76ecf2124c66706d336be424036bd89cfa29eb45b7be561be8",
            "sha256:98434d42b38d264bce5d3b4f277af5a3221b471ed9d85eaf0553648383611f7a",
            "sha256:4416c8369bd9eb9b9a0f898d2bc16b4acef56e069603810527982101d0c5f5e4",
            "sha256:a29b90fc7e845afb3f78f4629065aba2db64d9a652e040611c148ffbee599eb4",
            "sha256:9ebe85fa5baf2efe3673215f95d054b22c02b851446beb2f14d2337e2125c361",
            "sha256:d4c1e2062bb0da2b65bad2ccb31702efa71ecb869bf2454dc43060214f0eaf8d",
            "sha256:56129d964ed9f4f9f5ddb48a5ba1a6c788de93442a1b27f5ac3ca5aa0300ae92",
            "sha256:1a3b90c57ca0f8cfa897d061744a873849a8a1a7a01f778773034be8ab2ebbdd",
            "sha256:32b6b63ce02ddfd6615688b0a34eb1936bdd593739f6c563df4c50cf10cbd554",
            "sha256:f97180925eade7d5b1346c1e6f7bbc86f0ff572210b51596a8ae9beb4a1abfda",
            "sha256:5d39ab1486b0d6497b59cdf7ce0abd5bf15cc51ed31a4ed8c79dbaf7ee681ac5",
            "sha256:dc8c223998afb28f38f41fe4ab389aace0700f094d69a0577cac295beadcef1c",
            "sha256:1c91c1cc5cbc27f54a141bde0511a886e6319c7607942ace059cab8bd5abb11d",
            "sha256:1dd773a90263134648cb184a07a2e3a84d79816bdb916405f3867762538fe04e",
            "sha256:c374d3e60477d3022d10f5e459fc6e929a5997bb6685df2dc5eccbe8152a1d8e",
            "sha256:f024dfd885e91f440ddcd3d3204d823dddd03d6478d57bf382760ed5c624839f",
            "sha256:64a3beddad4aba4e87ba194080a17e60b3be7bb5a0a09709ff2c65a1dd597843",
            "sha256:b1d456750d69c77a3f589b5893efd4ad3f262dc9c3475f03a6a467c24afcea7f",
            "sha256:204f36b531e757d8ada09b134dadf9b0942ffef0c0d20c4c76b6a7a23935ce7e",
            "sha256:178c0def212c9d10a5c7d1281db18b5a290d12bb9caae097a7267f3bc05b8a03",
            "sha256:b9136f1a7bd80f66f0d281a23fd8c607f4af1d11525ba7909b159a6dc871e1c4",
            "sha256:33736653641d49b6051aec8ab252b5647330484a8e7974298f97e8ac5cf9ec1e",
            "sha256:2c1857a71cf3a238374f1dce9a591925683c680adf3e023f6e4d505fad5bbfb8",
            "sha256:67eb17a1cd7b4312aa5c9dd459a2fa76ccbc2c7910cd0a6ff9aba3d559d862c8",
            "sha256:af30933a8a65adac8e56dbd3657e5d61f74f9771c3b8498415e776be55d19879",
            "sha256:89eb90eabd6bfd9e6648aa10eb6af8ecceb49bd60de1befc619b4954019613eb",
            "sha256:27371b556e0ad5a2e7b1e41a9c39c1a476f2cced8f911f4998115a2100ae442f",
            "sha256:eb03fb70c16ead814d756eeb18e2c360e9350bacafb388e7cd72254cd1ed231a",
            "sha256:ff2688c5319f902ad63dfe1d87cad42e52679a5a322400c1cede681a9658eca2",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-02-16T00:41:04.217279745+08:00"
    }
}

更多版本

docker.io/quantconnect/lean:latest

linux/amd64 docker.io27.10GB2025-02-16 01:12
37