docker.io/qwenllm/qwen-omni:2.5-cu121 linux/amd64

docker.io/qwenllm/qwen-omni:2.5-cu121 - 国内下载镜像源 浏览次数:164
```html

这是一个包含Qwen-Omni大型语言模型的Docker镜像。 Qwen-Omni是一个强大的开源大型语言模型,该镜像方便用户快速部署和使用该模型。

```
源镜像 docker.io/qwenllm/qwen-omni:2.5-cu121
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121
镜像ID sha256:414c77582be7cf0d0159f69909591582193d3755d7925a2db7e67b964e6ba9ae
镜像TAG 2.5-cu121
大小 23.50GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /data/shared/Qwen/
OS/平台 linux/amd64
浏览量 164 次
贡献者 10*****0@qq.com
镜像创建 2025-03-29T01:40:48.907951194+08:00
同步时间 2025-03-31 00:29
更新时间 2025-04-04 21:50
开放端口
80/tcp
环境变量
PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.55-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.0-1 NV_NVTX_VERSION=12.1.66-1 NV_LIBNPP_VERSION=12.0.2.50-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.0.2.50-1 NV_LIBCUSPARSE_VERSION=12.0.2.55-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.0.26-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.0.26-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NVIDIA_CUDA_END_OF_LIFE=1 NV_CUDA_CUDART_DEV_VERSION=12.1.55-1 NV_NVML_DEV_VERSION=12.1.55-1 NV_LIBCUSPARSE_DEV_VERSION=12.0.2.55-1 NV_LIBNPP_DEV_VERSION=12.0.2.50-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.0.2.50-1 NV_LIBCUBLAS_DEV_VERSION=12.1.0.26-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.0.26-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.0-1 NV_NVPROF_VERSION=12.1.55-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.55-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.9.0.131 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1 MAX_JOBS=32 NVCC_THREADS=2 TORCH_CUDA_ARCH_LIST=7.0 7.5 8.0 8.6 8.9 9.0+PTX VLLM_FA_CMAKE_GPU_ARCHES=80-real;90-real CCACHE_DIR=/root/.cache/ccache
镜像标签
8.9.0.131: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121  docker.io/qwenllm/qwen-omni:2.5-cu121

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121  docker.io/qwenllm/qwen-omni:2.5-cu121

Shell快速替换命令

sed -i 's#qwenllm/qwen-omni:2.5-cu121#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121  docker.io/qwenllm/qwen-omni:2.5-cu121'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121  docker.io/qwenllm/qwen-omni:2.5-cu121'

镜像构建历史


# 2025-03-29 01:40:48  0.00B 声明容器运行时监听的端口
EXPOSE map[80/tcp:{}]
                        
# 2025-03-29 01:40:48  18.05KB 复制新文件或目录到容器中
COPY ../web_demo.py ./ # buildkit
                        
# 2025-03-29 01:40:48  0.00B 执行命令并创建新的镜像层
RUN |2 BUNDLE_FLASH_ATTENTION=true BUNDLE_VLLM=true /bin/sh -c rm -rvf /root/.cache/pip # buildkit
                        
# 2025-03-29 01:40:48  2.99MB 执行命令并创建新的镜像层
RUN |2 BUNDLE_FLASH_ATTENTION=true BUNDLE_VLLM=true /bin/sh -c pip3 install     gradio==5.23.1     gradio_client==1.8.0     librosa==0.11.0     ffmpeg==1.4     ffmpeg-python==0.2.0     soundfile==0.13.1     av # buildkit
                        
# 2025-03-29 00:00:19  3.25GB 执行命令并创建新的镜像层
RUN |2 BUNDLE_FLASH_ATTENTION=true BUNDLE_VLLM=true /bin/sh -c if [ "$BUNDLE_VLLM" = "true" ]; then     mkdir -p /data/shared/code         && cd /data/shared/code         && git clone -b qwen2_omni_public_v1 https://github.com/fyabc/vllm.git         && cd vllm         && git checkout d40f54fc2f1524458669048cb40a8d0286f5d1d2         && python3 use_existing_torch.py         && pip3 install setuptools_scm         && pip3 install -r requirements/cuda.txt         && pip3 install . --no-build-isolation        && cd /data/shared/Qwen         && rm -rf /data/shared/code/vllm;     fi # buildkit
                        
# 2025-03-28 23:47:12  0.00B 定义构建参数
ARG BUNDLE_VLLM=true
                        
# 2025-03-28 23:47:12  615.21MB 执行命令并创建新的镜像层
RUN |1 BUNDLE_FLASH_ATTENTION=true /bin/sh -c if [ "$BUNDLE_FLASH_ATTENTION" = "true" ]; then         mkdir -p /data/shared/code         && pip install ninja         && cd /data/shared/code         && git clone https://github.com/Dao-AILab/flash-attention.git         && cd flash-attention         && python setup.py install         && cd /data/shared/Qwen         && rm -rf /data/shared/code/flash-attention;     fi # buildkit
                        
# 2025-03-28 23:29:41  0.00B 设置环境变量 CCACHE_DIR
ENV CCACHE_DIR=/root/.cache/ccache
                        
# 2025-03-28 23:29:41  0.00B 设置环境变量 VLLM_FA_CMAKE_GPU_ARCHES
ENV VLLM_FA_CMAKE_GPU_ARCHES=80-real;90-real
                        
# 2025-03-28 23:29:41  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=7.0 7.5 8.0 8.6 8.9 9.0+PTX
                        
# 2025-03-28 23:29:41  0.00B 设置环境变量 NVCC_THREADS
ENV NVCC_THREADS=2
                        
# 2025-03-28 23:29:41  0.00B 设置环境变量 MAX_JOBS
ENV MAX_JOBS=32
                        
# 2025-03-28 23:29:41  0.00B 定义构建参数
ARG BUNDLE_FLASH_ATTENTION=true
                        
# 2025-03-28 23:29:41  1.01GB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install git+https://github.com/huggingface/transformers@f742a644ca32e65758c3adb36225aef1731bd2a8      && pip3 install accelerate qwen-omni-utils modelscope_studio # buildkit
                        
# 2025-03-24 00:49:50  5.72GB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 xformers==0.0.29.post2 # buildkit
                        
# 2025-03-24 00:48:29  12.68MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install networkx==3.1 # buildkit
                        
# 2025-03-24 00:48:28  0.00B 设置工作目录为/data/shared/Qwen/
WORKDIR /data/shared/Qwen/
                        
# 2025-03-24 00:48:28  0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir -p /data/shared/Qwen # buildkit
                        
# 2025-03-24 00:48:28  0.00B 设置工作目录为/
WORKDIR /
                        
# 2025-03-24 00:48:28  126.00B 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c git lfs install # buildkit
                        
# 2025-03-24 00:48:27  16.00B 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c ln -s /usr/bin/python3 /usr/bin/python # buildkit
                        
# 2025-03-24 00:48:27  135.03MB 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c wget https://github.com/Kitware/CMake/releases/download/v3.26.1/cmake-3.26.1-Linux-x86_64.sh     -q -O /tmp/cmake-install.sh     && chmod u+x /tmp/cmake-install.sh     && mkdir /opt/cmake-3.26.1     && /tmp/cmake-install.sh --skip-license --prefix=/opt/cmake-3.26.1     && rm /tmp/cmake-install.sh     && ln -s /opt/cmake-3.26.1/bin/* /usr/local/bin # buildkit
                        
# 2025-03-24 00:48:22  3.26GB 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c apt update -y && apt upgrade -y && apt install -y --no-install-recommends  \
    git \
    git-lfs \
    python3 \
    python3-pip \
    python3-dev \
    wget \
    vim \
    libsndfile1 \
    ccache \
    software-properties-common \
    ffmpeg \
&& rm -rf /var/lib/apt/lists/*
 # buildkit
                        
# 2025-03-24 00:48:22  0.00B 定义构建参数
ARG DEBIAN_FRONTEND=noninteractive
                        
# 2023-11-10 14:28:19  2.45GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:28:19  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.0.131
                        
# 2023-11-10 14:28:19  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:28:19  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:28:19  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 14:28:19  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 14:28:19  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 14:28:19  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.0.131
                        
# 2023-11-10 14:02:16  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 14:02:16  385.64KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:02:04  4.81GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:02:04  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:02:04  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.55-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.55-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.0-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.0-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.0.26-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.0.26-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.0.2.50-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.0.2.50-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.0.2.55-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.55-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.55-1
                        
# 2023-11-10 14:02:04  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.0-1
                        
# 2023-11-10 13:49:20  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 13:49:20  0.00B 设置环境变量 NVIDIA_CUDA_END_OF_LIFE
ENV NVIDIA_CUDA_END_OF_LIFE=1
                        
# 2023-11-10 13:49:20  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 13:49:20  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 13:49:20  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 13:49:20  261.38KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:49:19  1.99GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:49:19  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:49:19  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.0.26-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.0.26-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.0.2.55-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.0.2.50-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.0.2.50-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.66-1
                        
# 2023-11-10 13:49:19  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.0-1
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:44:29  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:44:29  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:44:29  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.0
                        
# 2023-11-10 13:44:18  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:44:18  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:44:18  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.55-1
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:414c77582be7cf0d0159f69909591582193d3755d7925a2db7e67b964e6ba9ae",
    "RepoTags": [
        "qwenllm/qwen-omni:2.5-cu121",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni:2.5-cu121"
    ],
    "RepoDigests": [
        "qwenllm/qwen-omni@sha256:f9dfa2e72f2849342b67d63f924c5d36270a151097bf71fe06efed8c1ee67c66",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/qwenllm/qwen-omni@sha256:ca5740a6139bb14591662859f7f7855b81f72b9ce32e441edd4c4b30f28d8d6d"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-03-29T01:40:48.907951194+08:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "80/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.55-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.0-1",
            "NV_NVTX_VERSION=12.1.66-1",
            "NV_LIBNPP_VERSION=12.0.2.50-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.0.2.50-1",
            "NV_LIBCUSPARSE_VERSION=12.0.2.55-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.0.26-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.0.26-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NVIDIA_CUDA_END_OF_LIFE=1",
            "NV_CUDA_CUDART_DEV_VERSION=12.1.55-1",
            "NV_NVML_DEV_VERSION=12.1.55-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.0.2.55-1",
            "NV_LIBNPP_DEV_VERSION=12.0.2.50-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.0.2.50-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.1.0.26-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.0.26-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.0-1",
            "NV_NVPROF_VERSION=12.1.55-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.55-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.9.0.131",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1",
            "MAX_JOBS=32",
            "NVCC_THREADS=2",
            "TORCH_CUDA_ARCH_LIST=7.0 7.5 8.0 8.6 8.9 9.0+PTX",
            "VLLM_FA_CMAKE_GPU_ARCHES=80-real;90-real",
            "CCACHE_DIR=/root/.cache/ccache"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/data/shared/Qwen/",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.0.131",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 23496986894,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/58e1fe35e259f89af24107472e3032f49bbf378759e534dd4d091c316f509f73/diff:/var/lib/docker/overlay2/49434bbc3e17b5629ec8b4c281b7891a169309e6672833b3509daaae6503c7d4/diff:/var/lib/docker/overlay2/078cd890f16e2de277ed6c60654fdbd76c277a747a7f33ff2e06c458a96f63c6/diff:/var/lib/docker/overlay2/3929f0c74046d842c9abc471eb62914e273939475b11e006227dd6b3a54c5685/diff:/var/lib/docker/overlay2/f4c81c5be547f9568ce0042a66a819f2b42ba7f957a930246c910c1dfdbd5d77/diff:/var/lib/docker/overlay2/5780622710fd4c06c740c5c523221d4dedb630efc398e0ff4d7538f5f423b1c9/diff:/var/lib/docker/overlay2/d97ec0d04d51ea68b0f1b6501c73275711f835b12623c91b634c57d9dac48851/diff:/var/lib/docker/overlay2/d68d9be4bafef5beb4b0c1019c68445c2274953ade4b5c3fd68ffd4575a22523/diff:/var/lib/docker/overlay2/316feaf4f4d2612242c72277f3ef2ca0732ff26c64769eff0b43b1b8632dd01a/diff:/var/lib/docker/overlay2/5b67abcd478dddb15614a3a3bf92bab7330dd1b8bf8cc49192765bd0d8dd9f4f/diff:/var/lib/docker/overlay2/3947abd62e3410f8350fd83c463e1e1776052d53afc9d7f238b189e5b180a14e/diff:/var/lib/docker/overlay2/7c899e392f58560f75b9eb7bf075ea881a30fc983bdf44628a42611291f38e67/diff:/var/lib/docker/overlay2/94dc4e410e3d2214d96b38a782d08b22ce1179bd22275ed85654e7b7bab45a62/diff:/var/lib/docker/overlay2/cc4a26aa0bd4faa56ecf67fd67b7cbce9c68baf555d980bcc423918ca63c1f1d/diff:/var/lib/docker/overlay2/7828f594ecd38c4c4c4042e06cfbebb98150ec176520db3f9f8a08702142ad4c/diff:/var/lib/docker/overlay2/57dc4ff08f0a9ff8adcd6b4022c958b7e93280d66595f1250b82f5b8c5ef0356/diff:/var/lib/docker/overlay2/ad9909645812c361e364bef3d3d61ae213a9a0041fe70d565729395c475803b8/diff:/var/lib/docker/overlay2/3c6d5ea9f0137b810f2c5e9b2257e63f58baacba2c75b4c4722277357320216b/diff:/var/lib/docker/overlay2/2a4834c047db7ca33b0935fcf59cac785026edf2e275d07c484267f9dc406a9a/diff:/var/lib/docker/overlay2/6b5a2a88bc3906ccf1dd2ff2b3a48162e98f477f8153c2a3f46a4803c2a30c64/diff:/var/lib/docker/overlay2/86c98ab0ed88b61b06cf59d67d016cbf05a2c7cea2a7a4fe53a6be12a6bb87d7/diff:/var/lib/docker/overlay2/dddcc2c36b2b15125b046f443eaf956385215dd4fe1629756f29c2e1077ee125/diff:/var/lib/docker/overlay2/7c0ec148c160c668fe5b36bcb65f7d5badb55eb5dcdea8490e826c2a41b578a9/diff:/var/lib/docker/overlay2/b213e3c8abc27592f101ffbb1d0f2c437b5effe9b384d0f550f46a4f894f180d/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/27f510c1e7e4a072b5bf6a6b508ad84bad0737169c30e4059d7f8181a109f30a/merged",
            "UpperDir": "/var/lib/docker/overlay2/27f510c1e7e4a072b5bf6a6b508ad84bad0737169c30e4059d7f8181a109f30a/diff",
            "WorkDir": "/var/lib/docker/overlay2/27f510c1e7e4a072b5bf6a6b508ad84bad0737169c30e4059d7f8181a109f30a/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:7b9433fba79bfc9269aab8277ea9975364db1c1f775a7ee6b14b5dffa045b294",
            "sha256:765423415d690bf8ca1510e7147d5b86dba15dcf1a3b1a515f1a85cc5dd439bb",
            "sha256:e4b1bddcbe6378dfa58bf1faa040813b74938129eb4bb06cbf083240335c5c54",
            "sha256:cd77f58b80cdcfac5fcdef06b2033fedc1115073afae035a14b6692cb5cd6650",
            "sha256:8d113b7b997c1bc18469d2373662f02c8bbcf7182f8c5d8e0e1eea082cc234a4",
            "sha256:40f0eb1871b906cf31a54649bf4f7657e2a60da6d6a9adfb8598a469b8495e77",
            "sha256:6ac15100dff644720d396a534fcd373774b1aefca621211930855e5db5ebae52",
            "sha256:600c676771a0a21056d45f5fb4441c538380564d4a7127a41e260d74fc6b0519",
            "sha256:57b23d1076fd4d119609493ebbd5b837d9553387d081148c8d908f1245e2bb55",
            "sha256:6667c783780703607df00f8f7dafcfd77402d54db003c392f3ea743f9eabe359",
            "sha256:8f9b3bf612fd6c74b7fc633bddfd6986991d5b18a4fd3e79994e8d82abfc089d",
            "sha256:58808bcd7aa6a3179d52a0e23fd5b89c7afd8144862a8c886bd0d7b3cf22bc05",
            "sha256:ecef452232fd951e5203aef47b2f8c10bfb3b9c80f882ba70c54882b1d4f6ccb",
            "sha256:5cadf8773c0509cd8a309ae880be517384dcd7d19c5660482c4345efaf8a3ac4",
            "sha256:11730321807d066126086f4ed2a40e7de103bcde49e1a3e7f55218fd8ecc08b7",
            "sha256:9b0f9deae5c42a1eb7d196e78a197f8cdff370461a63029d7b1899d0f5c9dc52",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:47f3419f91eb45b7adb01251612bc779b516f17407e5f3a3e5bf796bcc8b22b0",
            "sha256:011f8f6a32de616a5da2927cd92922ee90dd02d43485fee1fbd2549da7daea7d",
            "sha256:19fbffde20037dc012a9171b3c7e7563b40ab8cfe54a94356f2ae3ad06219ffd",
            "sha256:df3ee6c8f736b061808ef4ff9cdbf99ae782e609f391e22502a9167781a61d76",
            "sha256:e95d5d4a878acbae818b7e2fc1ddfb19a9ee0a8af7d9e8d6aa68532a3d8fb532",
            "sha256:61ed1480d156cb47920a651e67dfcc2fff03212e79574b59b305a6255bc53900",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:056feda7d449551b03674811a2437b34ba3f0abf2e10f9dfe7fcac6710a01166"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-03-31T00:15:16.569594291+08:00"
    }
}

更多版本

docker.io/qwenllm/qwen-omni:2.5-cu121

linux/amd64 docker.io23.50GB2025-03-31 00:29
163