docker.io/sandai/magi:latest linux/amd64

docker.io/sandai/magi:latest - 国内下载镜像源 浏览次数:71

温馨提示:此镜像为latest tag镜像,本站无法保证此版本为最新镜像

很抱歉,我无法直接访问外部资源,包括Docker Hub,因此无法提供 docker.io/sandai/magi 镜像的描述信息。

要获取该镜像的描述信息,请访问Docker Hub网站,搜索该镜像名称,然后查看其详细信息页面。

源镜像 docker.io/sandai/magi:latest
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest
镜像ID sha256:ac8f481d470bfd652ca2d326f0d0426047c05dd93fcd438a3fe7dfb25022f76d
镜像TAG latest
大小 22.56GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 71 次
贡献者 ma*****e@gmail.com
镜像创建 2025-04-21T13:46:37.636083683+08:00
同步时间 2025-05-15 00:55
更新时间 2025-06-06 16:06
开放端口
6006/tcp 8888/tcp
环境变量
PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin CUDA_VERSION=12.5.1.007 CUDA_DRIVER_VERSION=555.42.06 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS= _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0 NCCL_VERSION=2.22.3 CUBLAS_VERSION=12.5.3.2 CUFFT_VERSION=11.2.3.61 CURAND_VERSION=10.3.6.82 CUSPARSE_VERSION=12.5.1.3 CUSOLVER_VERSION=11.6.3.83 CUTENSOR_VERSION=2.0.2.4 NPP_VERSION=12.3.0.159 NVJPEG_VERSION=12.3.2.81 CUDNN_VERSION=9.2.1.18 TRT_VERSION=10.2.0.19 TRTOSS_VERSION=24.07 NSIGHT_SYSTEMS_VERSION=2024.4.2.133+cuda12.6 NSIGHT_COMPUTE_VERSION=2024.2.1.2 DALI_VERSION=1.39.0 DALI_BUILD=15829601 POLYGRAPHY_VERSION=0.49.12 TRANSFORMER_ENGINE_VERSION=1.8 MODEL_OPT_VERSION=0.13.0 LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video NVIDIA_PRODUCT_NAME=PyTorch GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0 OPAL_PREFIX=/opt/hpcx/ompi OMPI_MCA_coll_hcoll_enable=0 LIBRARY_PATH=/usr/local/cuda/lib64/stubs: PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd PYTORCH_VERSION=2.4.0a0+3bcc3cd PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.07 NVFUSER_BUILD_VERSION=f73ff1b NVFUSER_VERSION=f73ff1b PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python NVPL_LAPACK_MATH_MODE=PEDANTIC PYTHONIOENCODING=utf-8 LC_ALL=C.UTF-8 PIP_DEFAULT_TIMEOUT=100 NVM_DIR=/usr/local/nvm NODE_OPTIONS=--openssl-legacy-provider JUPYTER_PORT=8888 TENSORBOARD_PORT=6006 UCC_CL_BASIC_TLS=^sharp TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX PYTORCH_HOME=/opt/pytorch/pytorch CUDA_HOME=/usr/local/cuda TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1 USE_EXPERIMENTAL_CUDNN_V8_API=1 COCOAPI_VERSION=2.0+nv0.8.0 TORCH_CUDNN_V8_API_ENABLED=1 CUDA_MODULE_LOADING=LAZY NVIDIA_BUILD_ID=100464919 TZ=Asia/Shanghai
镜像标签
100464919: com.nvidia.build.id df5ce920d3adddfc694c4a4e440f2bd72a7c00f0: com.nvidia.build.ref 12.5.3.2: com.nvidia.cublas.version 9.0: com.nvidia.cuda.version 9.2.1.18: com.nvidia.cudnn.version 11.2.3.61: com.nvidia.cufft.version 10.3.6.82: com.nvidia.curand.version 11.6.3.83: com.nvidia.cusolver.version 12.5.1.3: com.nvidia.cusparse.version 2.0.2.4: com.nvidia.cutensor.version 2.22.3: com.nvidia.nccl.version 12.3.0.159: com.nvidia.npp.version 2024.2.1.2: com.nvidia.nsightcompute.version 2024.4.2.133+cuda12.6: com.nvidia.nsightsystems.version 12.3.2.81: com.nvidia.nvjpeg.version 2.4.0a0+3bcc3cd: com.nvidia.pytorch.version 10.2.0.19: com.nvidia.tensorrt.version 24.07: com.nvidia.tensorrtoss.version nvidia_driver: com.nvidia.volumes.needed ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest  docker.io/sandai/magi:latest

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest  docker.io/sandai/magi:latest

Shell快速替换命令

sed -i 's#sandai/magi:latest#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest  docker.io/sandai/magi:latest'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest  docker.io/sandai/magi:latest'

镜像构建历史


# 2025-04-21 13:46:37  72.28MB 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c pip install --no-cache-dir "https://python-artifacts.oss-cn-shanghai.aliyuncs.com/magi_attention-1.0.0-cp310-cp310-linux_x86_64.whl" --no-deps --force-reinstall # buildkit
                        
# 2025-04-21 13:46:31  0.00B 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c pip install --no-cache-dir debugpy # buildkit
                        
# 2025-04-21 13:46:28  738.63MB 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c pip install --no-cache-dir "https://python-artifacts.oss-cn-shanghai.aliyuncs.com/flashinfer-0.2.0.post2%2B48b8305-cp310-cp310-linux_x86_64.whl" --no-deps --force-reinstall # buildkit
                        
# 2025-04-21 13:45:49  4.40MB 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c apt-get install -y zstd # buildkit
                        
# 2025-04-21 13:45:43  187.05MB 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c pip install --no-cache-dir transformers==4.42.3 sentencepiece==0.2.0 accelerate==0.32.1 diffusers==0.29.2 ffmpeg-python imageio[ffmpeg] # buildkit
                        
# 2025-04-21 13:45:17  548.23MB 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c pip install --no-cache-dir redis==5.2.0 loguru==0.7.2 prometheus_client==0.20.0 pydantic_settings==2.6.1 protobuf==5.28.3 psycopg2-binary==2.9.10 pydantic-cli==9.1.0 sqlalchemy==2.0.36 celery==5.4.0 python-dotenv==1.0.1 imageio==2.34.0 gitignore_parser==0.1.11 wandb==0.17.4 ftfy==6.2.0 transformers==4.46.3 torchdiffeq==0.2.4 mosaicml-streaming==0.8.0 gpustat==1.1.1 timm==1.0.7 # buildkit
                        
# 2025-04-21 13:42:37  72.12MB 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c pip install --no-cache-dir numpy==1.26.4 typing_extensions==4.12.0 # buildkit
                        
# 2025-04-21 13:42:27  36.19MB 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c pip install --no-cache-dir natten==0.17.1 # buildkit
                        
# 2025-04-21 13:41:57  41.22MB 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c pip install --no-cache-dir -U openmim && mim install mmcv==1.7.0 # buildkit
                        
# 2025-04-21 13:40:58  1.30MB 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c pip install --no-cache-dir gpustat==1.1.1 loguru==0.7.2 # buildkit
                        
# 2025-04-16 16:33:48  166.00B 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c pip config set global.index-url https://mirrors.aliyun.com/pypi/simple # buildkit
                        
# 2025-04-16 16:33:48  666.76MB 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c DEBIAN_FRONTEND=noninteractive apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y     ffmpeg rsync unzip tmux parallel iputils-ping git vim wget     ca-certificates environment-modules libsubunit0 libpci-dev libpmix-dev openssh-server dnsutils cmake     libgl1-mesa-glx ibverbs-utils libibverbs-dev libibumad3 libibumad-dev librdmacm-dev rdmacm-utils     infiniband-diags ibverbs-utils libgl1-mesa-glx openssh-server # buildkit
                        
# 2025-04-16 16:32:43  47.00B 执行命令并创建新的镜像层
RUN |4 https_proxy= http_proxy= ftp_proxy= no_proxy= /bin/sh -c ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone # buildkit
                        
# 2025-04-16 16:32:43  0.00B 设置环境变量 TZ
ENV TZ=Asia/Shanghai
                        
# 2025-04-16 16:32:43  0.00B 定义构建参数
ARG no_proxy
                        
# 2025-04-16 16:32:43  0.00B 定义构建参数
ARG ftp_proxy
                        
# 2025-04-16 16:32:43  0.00B 定义构建参数
ARG http_proxy
                        
# 2025-04-16 16:32:43  0.00B 定义构建参数
ARG https_proxy
                        
# 2024-07-09 09:36:09  0.00B 添加元数据标签
LABEL com.nvidia.build.ref=df5ce920d3adddfc694c4a4e440f2bd72a7c00f0
                        
# 2024-07-09 09:36:09  0.00B 定义构建参数
ARG NVIDIA_BUILD_REF=df5ce920d3adddfc694c4a4e440f2bd72a7c00f0
                        
# 2024-07-09 09:36:09  0.00B 添加元数据标签
LABEL com.nvidia.build.id=100464919
                        
# 2024-07-09 09:36:09  0.00B 设置环境变量 NVIDIA_BUILD_ID
ENV NVIDIA_BUILD_ID=100464919
                        
# 2024-07-09 09:36:09  0.00B 定义构建参数
ARG NVIDIA_BUILD_ID=100464919
                        
# 2024-07-09 09:36:09  719.00B 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2024-07-09 09:36:09  84.09KB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 PYVER=3.10 /bin/sh -c ln -sf ${_CUDA_COMPAT_PATH}/lib.real ${_CUDA_COMPAT_PATH}/lib  && echo ${_CUDA_COMPAT_PATH}/lib > /etc/ld.so.conf.d/00-cuda-compat.conf  && ldconfig  && rm -f ${_CUDA_COMPAT_PATH}/lib # buildkit
                        
# 2024-07-09 09:36:09  0.00B 设置环境变量 CUDA_MODULE_LOADING
ENV CUDA_MODULE_LOADING=LAZY
                        
# 2024-07-09 09:36:09  0.00B 设置环境变量 TORCH_CUDNN_V8_API_ENABLED
ENV TORCH_CUDNN_V8_API_ENABLED=1
                        
# 2024-07-09 09:36:09  329.55MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 PYVER=3.10 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Transformer Engine in iGPU container until Version variable is set"; else     pip install --no-cache-dir --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@release_v${TRANSFORMER_ENGINE_VERSION}; fi # buildkit
                        
# 2024-07-09 09:32:56  399.84MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 PYVER=3.10 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Flash Attention in iGPU as it is a requirement for Transformer Engine"; else     env MAX_JOBS=4 pip install flash-attn==2.4.2; fi # buildkit
                        
# 2024-07-09 09:07:26  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2024-07-09 09:07:26  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-07-09 09:07:26  45.12MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 PYVER=3.10 /bin/sh -c pip install --no-cache-dir /opt/pytorch/torch_tensorrt/dist/*.whl # buildkit
                        
# 2024-07-09 09:04:35  0.00B 定义构建参数
ARG PYVER=3.10
                        
# 2024-07-09 09:04:35  150.36MB 复制新文件或目录到容器中
COPY torch_tensorrt/ /opt/pytorch/torch_tensorrt/ # buildkit
                        
# 2024-07-09 09:04:34  8.58MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip --version && python -c 'import sys; print(sys.platform)'     && pip install --no-cache-dir nvidia-pyindex     && pip install --extra-index-url https://urm.nvidia.com/artifactory/api/pypi/sw-tensorrt-pypi/simple --no-cache-dir polygraphy==0.49.12     && pip install --extra-index-url https://pypi.nvidia.com "nvidia-modelopt[torch]==${MODEL_OPT_VERSION}" # buildkit
                        
# 2024-07-09 09:04:26  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2024-07-09 09:04:26  6.47MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c set -x  && URL=$(VERIFY=1 /nvidia/build-scripts/installTRT.sh | sed -n "s/^.*\(http.*\)tar.*$/\1/p")tar  && FILE=$(wget -O - $URL | sed -n 's/^.*href="\(TensorRT[^"]*\)".*$/\1/p' | egrep -v "internal|safety")  && wget -q $URL/$FILE -O - | tar -xz  && PY=$(python -c 'import sys; print(str(sys.version_info[0])+str(sys.version_info[1]))')  && pip install TensorRT-*/python/tensorrt-*-cp$PY*.whl  && mv /usr/src/tensorrt /opt  && ln -s /opt/tensorrt /usr/src/tensorrt  && rm -r TensorRT-* # buildkit
                        
# 2024-07-09 09:03:33  51.00MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c chmod -R a+w . # buildkit
                        
# 2024-07-09 09:03:33  34.89MB 复制新文件或目录到容器中
COPY tutorials tutorials # buildkit
                        
# 2024-07-09 09:03:33  15.96MB 复制新文件或目录到容器中
COPY examples examples # buildkit
                        
# 2024-07-09 09:03:33  2.07KB 复制新文件或目录到容器中
COPY docker-examples docker-examples # buildkit
                        
# 2024-07-09 09:03:33  2.05KB 复制新文件或目录到容器中
COPY NVREADME.md README.md # buildkit
                        
# 2024-07-09 09:03:33  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-07-09 09:03:33  2.38GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c if [ "${L4T}" = "1" ]; then     echo "Not installing rapids for L4T build." ; else     find /rapids  -name "*-Linux.tar.gz" -exec     tar -C /usr --exclude="*.a" --exclude="bin/xgboost" --strip-components=1 -xvf {} \;  && find /rapids -name "*.whl"     ! -name "Pillow-*"     ! -name "certifi-*"     ! -name "protobuf-*" -exec     pip install --no-cache-dir {} + ; pip install numpy==1.24.4; fi # buildkit
                        
# 2024-07-09 09:03:08  201.84KB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir --disable-pip-version-check tabulate # buildkit
                        
# 2024-07-09 09:03:07  750.08MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c ( cd vision && export PYTORCH_VERSION=$(python -c "import torch; print(torch.__version__)") && CFLAGS="-g0" FORCE_CUDA=1 NVCC_APPEND_FLAGS="--threads 8" pip install --no-cache-dir --no-build-isolation --disable-pip-version-check . )  && ( cd vision && cmake -Bbuild -H. -GNinja -DWITH_CUDA=1 -DCMAKE_PREFIX_PATH=`python -c 'import torch;print(torch.utils.cmake_prefix_path)'` && cmake --build build --target install && rm -rf build )  && ( cd fuser && pip install -r requirements.txt &&  python setup.py -version-tag=a0+${NVFUSER_VERSION} install && python setup.py clean && cp $(find /usr/local/lib/python3.10/dist-packages/ -name libnvfuser_codegen.so)  /usr/local/lib/python3.10/dist-packages/torch/lib/ )  && ( cd lightning-thunder && python setup.py install && rm -rf build)  && BUILD_OPTIONS="--cpp_ext --cuda_ext --bnp --xentropy --deprecated_fused_adam --deprecated_fused_lamb --fast_multihead_attn --distributed_lamb --fast_layer_norm --transducer --distributed_adam --fmha --permutation_search --focal_loss --fused_conv_bias_relu --index_mul_2d --cudnn_gbn --group_norm --gpu_direct_storage"  && if [ "${L4T}" != "1" ]; then BUILD_OPTIONS="--fast_bottleneck --nccl_p2p --peer_memory --nccl_allocator ${BUILD_OPTIONS}"; fi && ( cd apex && CFLAGS="-g0" NVCC_APPEND_FLAGS="--threads 8" pip install -v --no-build-isolation --no-cache-dir --disable-pip-version-check --config-settings "--build-option=${BUILD_OPTIONS}" . && rm -rf build )  && ( cd lightning-thunder && mkdir tmp && cd tmp && git clone -b v1.5.1 --recursive --single-branch https://github.com/NVIDIA/cudnn-frontend.git cudnn_frontend && cd cudnn_frontend && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . && cd ../../ && rm -rf tmp )  && ( cd pytorch/third_party/onnx && pip uninstall typing -y && CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . ) # buildkit
                        
# 2024-07-09 08:38:31  2.21KB 复制新文件或目录到容器中
COPY singularity/ /.singularity.d/ # buildkit
                        
# 2024-07-09 08:38:31  79.23MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c export COCOAPI_TAG=$(echo ${COCOAPI_VERSION} | sed 's/^.*+n//')  && pip install --disable-pip-version-check --no-cache-dir git+https://github.com/nvidia/cocoapi.git@${COCOAPI_TAG}#subdirectory=PythonAPI # buildkit
                        
# 2024-07-09 08:38:16  0.00B 设置环境变量 COCOAPI_VERSION
ENV COCOAPI_VERSION=2.0+nv0.8.0
                        
# 2024-07-09 08:38:16  652.65MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c if [ -z "${DALI_VERSION}" ] ; then   echo "Not Installing DALI for L4T Build." ; else   export DALI_PKG_SUFFIX="cuda${CUDA_VERSION%%.*}0"   && pip install --disable-pip-version-check --no-cache-dir                 --extra-index-url https://developer.download.nvidia.com/compute/redist                 --extra-index-url http://sqrl/dldata/pip-dali${DALI_URL_SUFFIX:-} --trusted-host sqrl         nvidia-dali-${DALI_PKG_SUFFIX}==${DALI_VERSION}; fi # buildkit
                        
# 2024-07-09 08:38:09  563.46MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir /tmp/dist/*.whl # buildkit
                        
# 2024-07-09 08:38:04  123.87MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c cd pytorch && bash .ci/docker/common/install_cusparselt.sh && pip install --no-cache-dir -v -r /opt/pytorch/pytorch/requirements.txt # buildkit
                        
# 2024-07-09 08:38:02  1.91GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install /opt/transfer/torch*.whl      && patchelf --set-rpath '/usr/local/lib' /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_global_deps.so # buildkit
                        
# 2024-07-09 08:37:44  0.00B 设置环境变量 USE_EXPERIMENTAL_CUDNN_V8_API
ENV USE_EXPERIMENTAL_CUDNN_V8_API=1
                        
# 2024-07-09 08:37:44  0.00B 设置环境变量 TORCH_ALLOW_TF32_CUBLAS_OVERRIDE
ENV TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
                        
# 2024-07-09 08:37:44  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2024-07-09 08:37:44  0.00B 设置环境变量 PYTORCH_HOME
ENV PYTORCH_HOME=/opt/pytorch/pytorch
                        
# 2024-07-09 08:37:44  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX
                        
# 2024-07-09 08:37:44  0.00B 设置环境变量 UCC_CL_BASIC_TLS
ENV UCC_CL_BASIC_TLS=^sharp
                        
# 2024-07-09 08:37:44  53.68MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c OPENCV_VERSION=4.7.0 &&     cd / &&     wget -q -O - https://github.com/opencv/opencv/archive/${OPENCV_VERSION}.tar.gz | tar -xzf - &&     cd /opencv-${OPENCV_VERSION} &&     cmake -GNinja -Bbuild -H.           -DWITH_CUDA=OFF -DWITH_1394=OFF           -DPYTHON3_PACKAGES_PATH="/usr/local/lib/python${PYVER}/dist-packages"           -DBUILD_opencv_cudalegacy=OFF -DBUILD_opencv_stitching=OFF -DWITH_IPP=OFF -DWITH_PROTOBUF=OFF &&     cmake --build build --target install &&     cd modules/python/package &&     pip install --no-cache-dir --disable-pip-version-check -v . &&     rm -rf /opencv-${OPENCV_VERSION} # buildkit
                        
# 2024-07-09 08:35:58  0.00B 声明容器运行时监听的端口
EXPOSE map[6006/tcp:{}]
                        
# 2024-07-09 08:35:58  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2024-07-09 08:35:58  0.00B 设置环境变量 TENSORBOARD_PORT
ENV TENSORBOARD_PORT=6006
                        
# 2024-07-09 08:35:58  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2024-07-09 08:35:58  427.00B 复制新文件或目录到容器中
COPY jupyter_notebook_config.py /usr/local/etc/jupyter/ # buildkit
                        
# 2024-07-09 08:35:58  217.27MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --disable-pip-version-check --no-cache-dir git+https://github.com/cliffwoolley/jupyter_tensorboard.git@0.2.0+nv21.03  && mkdir -p $NVM_DIR  && curl -Lo- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash  && source "$NVM_DIR/nvm.sh"  && nvm install lts/hydrogen node  && jupyter labextension install jupyterlab_tensorboard  && jupyter serverextension enable jupyterlab  && pip install --no-cache-dir jupytext  && jupyter labextension install jupyterlab-jupytext@1.2.2  && ( cd /usr/local/share/jupyter/lab/staging       && npm prune --production )  && npm cache clean --force  && rm -rf /usr/local/share/.cache  && echo "source $NVM_DIR/nvm.sh" >> /etc/bash.bashrc  && mv /root/.jupyter/jupyter_notebook_config.json /usr/local/etc/jupyter/  && jupyter lab clean # buildkit
                        
# 2024-07-09 08:34:41  0.00B 设置环境变量 NODE_OPTIONS
ENV NODE_OPTIONS=--openssl-legacy-provider
                        
# 2024-07-09 08:34:41  0.00B 设置环境变量 NVM_DIR
ENV NVM_DIR=/usr/local/nvm
                        
# 2024-07-09 08:34:41  27.51KB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c PATCHED_FILE=$(python -c "from tensorboard.plugins.core import core_plugin as _; print(_.__file__)") &&     sed -i 's/^\( *"--bind_all",\)$/\1 default=True,/' "$PATCHED_FILE" &&     test $(grep '^ *"--bind_all", default=True,$' "$PATCHED_FILE" | wc -l) -eq 1 # buildkit
                        
# 2024-07-09 08:34:40  165.18MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c git config --global url."https://github".insteadOf git://github &&     pip install --no-cache-dir notebook==6.4.10 jupyterlab==2.3.2 python-hostlist traitlets==5.9.0 &&     pip install --no-cache-dir tensorboard==2.9.0 # buildkit
                        
# 2024-07-09 08:34:26  2.16GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir         numpy==1.24.4         scipy==1.11.3         "PyYAML>=5.4.1"         astunparse         typing_extensions         cffi         spacy         mock         tqdm         librosa==0.10.1         expecttest==0.1.3         hypothesis==5.35.1         xdoctest==1.0.2         pytest==8.1.1         pytest-xdist         pytest-rerunfailures         pytest-shard         pytest-flakefinder         pybind11         Cython         "regex>=2020.1.8"         protobuf==4.24.4 &&     if [[ $TARGETARCH = "amd64" ]] ; then pip install --no-cache-dir mkl==2021.1.1 mkl-include==2021.1.1 mkl-devel==2021.1.1 ;     find /usr/local/lib -maxdepth 1 -type f -regex '.*\/lib\(tbb\|mkl\).*\.so\($\|\.[0-9]*\.[0-9]*\)' -exec rm -v {} + ; fi # buildkit
                        
# 2024-07-09 08:33:52  0.00B 设置环境变量 PIP_DEFAULT_TIMEOUT
ENV PIP_DEFAULT_TIMEOUT=100
                        
# 2024-07-09 08:33:52  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-07-09 08:33:52  0.00B 设置环境变量 PYTHONIOENCODING
ENV PYTHONIOENCODING=utf-8
                        
# 2024-07-09 08:33:52  1.39GB 复制新文件或目录到容器中
COPY . . # buildkit
                        
# 2024-07-09 08:33:46  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2024-07-09 08:33:46  0.00B 设置环境变量 NVPL_LAPACK_MATH_MODE
ENV NVPL_LAPACK_MATH_MODE=PEDANTIC
                        
# 2024-07-09 08:33:46  0.00B 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c if [ $TARGETARCH = "arm64" ]; then cd /opt &&     curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/nvpl_slim_24.04/sbsa/nvpl_slim_24.04.tar" --output nvpl_slim_24.04.tar &&     tar -xf nvpl_slim_24.04.tar &&     cp -r nvpl_slim_24.04/lib/* /usr/local/lib &&     cp -r nvpl_slim_24.04/include/* /usr/local/include &&     rm -rf nvpl_slim_24.04.tar nvpl_slim_24.04 ; fi # buildkit
                        
# 2024-07-09 08:33:46  46.71MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/OpenBLAS/0.3.24-$(uname -m)/OpenBLAS-0.3.24-$(uname -m).tar.gz" --output OpenBLAS.tar.gz &&     tar -xf OpenBLAS.tar.gz -C /usr/local/ &&     rm OpenBLAS.tar.gz # buildkit
                        
# 2024-07-09 08:33:46  70.77MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir pip setuptools==68.2.2 &&     pip install --no-cache-dir cmake # buildkit
                        
# 2024-07-09 08:33:43  18.79MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c curl -O https://bootstrap.pypa.io/get-pip.py &&     python get-pip.py &&     rm get-pip.py # buildkit
                        
# 2024-07-09 08:33:40  0.00B 设置环境变量 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION
ENV PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
                        
# 2024-07-09 08:33:40  198.72MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.07 PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd NVFUSER_BUILD_VERSION=f73ff1b TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c export PYSFX=`echo "$PYVER" | cut -c1-1` &&     export DEBIAN_FRONTEND=noninteractive &&     apt-get update &&     apt-get install -y --no-install-recommends         python$PYVER-dev         python$PYSFX         python$PYSFX-dev         python$PYSFX-distutils         python-is-python$PYSFX         autoconf         automake         libatlas-base-dev         libgoogle-glog-dev         libbz2-dev         libc-ares2         libre2-9         libleveldb-dev         liblmdb-dev         libprotobuf-dev         libsnappy-dev         libtool         nasm         protobuf-compiler         pkg-config         unzip         sox         libsndfile1         libpng-dev         libhdf5-103         libhdf5-dev         gfortran         rapidjson-dev         ninja-build         libedit-dev         build-essential         patchelf      && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-07-09 08:33:40  0.00B 定义构建参数
ARG L4T=0
                        
# 2024-07-09 08:33:40  0.00B 定义构建参数
ARG PYVER=3.10
                        
# 2024-07-09 08:33:40  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
# 2024-07-09 08:33:40  0.00B 添加元数据标签
LABEL com.nvidia.pytorch.version=2.4.0a0+3bcc3cd
                        
# 2024-07-09 08:33:40  0.00B 设置环境变量 NVFUSER_BUILD_VERSION NVFUSER_VERSION
ENV NVFUSER_BUILD_VERSION=f73ff1b NVFUSER_VERSION=f73ff1b
                        
# 2024-07-09 08:33:40  0.00B 设置环境变量 PYTORCH_BUILD_VERSION PYTORCH_VERSION PYTORCH_BUILD_NUMBER NVIDIA_PYTORCH_VERSION
ENV PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd PYTORCH_VERSION=2.4.0a0+3bcc3cd PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.07
                        
# 2024-07-09 08:33:40  0.00B 定义构建参数
ARG NVFUSER_BUILD_VERSION=f73ff1b
                        
# 2024-07-09 08:33:40  0.00B 定义构建参数
ARG PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd
                        
# 2024-07-09 08:33:40  0.00B 定义构建参数
ARG NVIDIA_PYTORCH_VERSION=24.07
                        
# 2024-07-09 08:33:40  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=PyTorch
                        
# 2024-07-09 07:05:17  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:
                        
# 2024-07-09 07:05:17  1.00GB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 TARGETARCH=amd64 /bin/sh -c export DEVEL=1 BASE=0  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUDA.sh  && /nvidia/build-scripts/installLIBS.sh  && if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then /nvidia/build-scripts/installNCCL.sh; fi  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && if [ -f "/tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch" ]; then patch -p0 < /tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch; fi  && rm -f /tmp/cuda-*.patch # buildkit
                        
# 2024-07-09 06:59:56  1.49KB 复制新文件或目录到容器中
COPY cuda-*.patch /tmp # buildkit
                        
# 2024-07-09 06:59:56  0.00B 设置环境变量 OMPI_MCA_coll_hcoll_enable
ENV OMPI_MCA_coll_hcoll_enable=0
                        
# 2024-07-09 06:59:56  0.00B 设置环境变量 OPAL_PREFIX PATH
ENV OPAL_PREFIX=/opt/hpcx/ompi PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin
                        
# 2024-07-09 06:59:56  229.15MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 TARGETARCH=amd64 /bin/sh -c cd /nvidia  && ( export DEBIAN_FRONTEND=noninteractive        && apt-get update                            && apt-get install -y --no-install-recommends              libibverbs1                                  libibverbs-dev                               librdmacm1                                   librdmacm-dev                                libibumad3                                   libibumad-dev                                ibverbs-utils                                ibverbs-providers                     && rm -rf /var/lib/apt/lists/*               && rm $(dpkg-query -L                                    libibverbs-dev                               librdmacm-dev                                libibumad-dev                            | grep "\(\.so\|\.a\)$")          )                                            && ( cd opt/gdrcopy/                              && dpkg -i libgdrapi_*.deb                   )                                         && ( cp -r opt/hpcx /opt/                                         && cp etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/          && ln -sf /opt/hpcx/ompi /usr/local/mpi                      && ln -sf /opt/hpcx/ucx  /usr/local/ucx                      && sed -i 's/^\(hwloc_base_binding_policy\) = core$/\1 = none/' /opt/hpcx/ompi/etc/openmpi-mca-params.conf         && sed -i 's/^\(btl = self\)$/#\1/'                             /opt/hpcx/ompi/etc/openmpi-mca-params.conf       )                                                         && ldconfig # buildkit
                        
# 2024-07-09 06:59:56  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
# 2024-07-09 06:59:56  0.00B 设置环境变量 GDRCOPY_VERSION HPCX_VERSION MOFED_VERSION OPENUCX_VERSION OPENMPI_VERSION RDMACORE_VERSION
ENV GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0
                        
# 2024-07-09 06:59:56  0.00B 定义构建参数
ARG OPENMPI_VERSION=4.1.7
                        
# 2024-07-09 06:59:56  0.00B 定义构建参数
ARG OPENUCX_VERSION=1.17.0
                        
# 2024-07-09 06:59:56  0.00B 定义构建参数
ARG MOFED_VERSION=5.4-rdmacore39.0
                        
# 2024-07-09 06:59:56  0.00B 定义构建参数
ARG RDMACORE_VERSION=39.0
                        
# 2024-07-09 06:59:56  0.00B 定义构建参数
ARG HPCX_VERSION=2.19
                        
# 2024-07-09 06:59:56  0.00B 定义构建参数
ARG GDRCOPY_VERSION=2.3.1-1
                        
# 2024-07-09 06:59:47  84.89MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         build-essential         git         libglib2.0-0         less         libnl-route-3-200         libnl-3-dev         libnl-route-3-dev         libnuma-dev         libnuma1         libpmi2-0-dev         nano         numactl         openssh-client         vim         wget  && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-07-09 06:42:55  148.72KB 复制新文件或目录到容器中
COPY NVIDIA_Deep_Learning_Container_License.pdf /workspace/ # buildkit
                        
# 2024-07-09 06:42:55  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2024-07-09 06:42:55  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2024-07-09 06:42:55  14.85KB 复制新文件或目录到容器中
COPY entrypoint/ /opt/nvidia/ # buildkit
                        
# 2024-07-09 06:42:55  0.00B 设置环境变量 PATH LD_LIBRARY_PATH NVIDIA_VISIBLE_DEVICES NVIDIA_DRIVER_CAPABILITIES
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
                        
# 2024-07-09 06:42:55  0.00B 定义构建参数
ARG _LIBPATH_SUFFIX=
                        
# 2024-07-09 06:42:55  46.00B 执行命令并创建新的镜像层
RUN |22 CUDA_VERSION=12.5.1.007 CUDA_DRIVER_VERSION=555.42.06 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.22.3 CUBLAS_VERSION=12.5.3.2 CUFFT_VERSION=11.2.3.61 CURAND_VERSION=10.3.6.82 CUSPARSE_VERSION=12.5.1.3 CUSOLVER_VERSION=11.6.3.83 CUTENSOR_VERSION=2.0.2.4 NPP_VERSION=12.3.0.159 NVJPEG_VERSION=12.3.2.81 CUDNN_VERSION=9.2.1.18 TRT_VERSION=10.2.0.19 TRTOSS_VERSION=24.07 NSIGHT_SYSTEMS_VERSION=2024.4.2.133+cuda12.6 NSIGHT_COMPUTE_VERSION=2024.2.1.2 DALI_VERSION=1.39.0 DALI_BUILD=15829601 POLYGRAPHY_VERSION=0.49.12 TRANSFORMER_ENGINE_VERSION=1.8 MODEL_OPT_VERSION=0.13.0 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf  && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2024-07-09 06:42:54  13.39KB 复制文件或目录到容器中
ADD docs.tgz / # buildkit
                        
# 2024-07-09 06:42:54  0.00B 设置环境变量 DALI_VERSION DALI_BUILD POLYGRAPHY_VERSION TRANSFORMER_ENGINE_VERSION MODEL_OPT_VERSION
ENV DALI_VERSION=1.39.0 DALI_BUILD=15829601 POLYGRAPHY_VERSION=0.49.12 TRANSFORMER_ENGINE_VERSION=1.8 MODEL_OPT_VERSION=0.13.0
                        
# 2024-07-09 06:42:54  0.00B 定义构建参数
ARG MODEL_OPT_VERSION=0.13.0
                        
# 2024-07-09 06:42:54  0.00B 定义构建参数
ARG TRANSFORMER_ENGINE_VERSION=1.8
                        
# 2024-07-09 06:42:54  0.00B 定义构建参数
ARG POLYGRAPHY_VERSION=0.49.12
                        
# 2024-07-09 06:42:54  0.00B 定义构建参数
ARG DALI_BUILD=15829601
                        
# 2024-07-09 06:42:54  0.00B 定义构建参数
ARG DALI_VERSION=1.39.0
                        
# 2024-07-09 06:42:54  0.00B 添加元数据标签
LABEL com.nvidia.nccl.version=2.22.3 com.nvidia.cublas.version=12.5.3.2 com.nvidia.cufft.version=11.2.3.61 com.nvidia.curand.version=10.3.6.82 com.nvidia.cusparse.version=12.5.1.3 com.nvidia.cusolver.version=11.6.3.83 com.nvidia.cutensor.version=2.0.2.4 com.nvidia.npp.version=12.3.0.159 com.nvidia.nvjpeg.version=12.3.2.81 com.nvidia.cudnn.version=9.2.1.18 com.nvidia.tensorrt.version=10.2.0.19 com.nvidia.tensorrtoss.version=24.07 com.nvidia.nsightsystems.version=2024.4.2.133+cuda12.6 com.nvidia.nsightcompute.version=2024.2.1.2
                        
# 2024-07-09 06:42:54  6.19GB 执行命令并创建新的镜像层
RUN |17 CUDA_VERSION=12.5.1.007 CUDA_DRIVER_VERSION=555.42.06 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.22.3 CUBLAS_VERSION=12.5.3.2 CUFFT_VERSION=11.2.3.61 CURAND_VERSION=10.3.6.82 CUSPARSE_VERSION=12.5.1.3 CUSOLVER_VERSION=11.6.3.83 CUTENSOR_VERSION=2.0.2.4 NPP_VERSION=12.3.0.159 NVJPEG_VERSION=12.3.2.81 CUDNN_VERSION=9.2.1.18 TRT_VERSION=10.2.0.19 TRTOSS_VERSION=24.07 NSIGHT_SYSTEMS_VERSION=2024.4.2.133+cuda12.6 NSIGHT_COMPUTE_VERSION=2024.2.1.2 /bin/sh -c /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && if [ -z "${JETPACK_HOST_MOUNTS}" ]; then       /nvidia/build-scripts/installNCCL.sh;     fi; # buildkit
                        
# 2024-07-09 06:39:18  0.00B 设置环境变量 NCCL_VERSION CUBLAS_VERSION CUFFT_VERSION CURAND_VERSION CUSPARSE_VERSION CUSOLVER_VERSION CUTENSOR_VERSION NPP_VERSION NVJPEG_VERSION CUDNN_VERSION TRT_VERSION TRTOSS_VERSION NSIGHT_SYSTEMS_VERSION NSIGHT_COMPUTE_VERSION
ENV NCCL_VERSION=2.22.3 CUBLAS_VERSION=12.5.3.2 CUFFT_VERSION=11.2.3.61 CURAND_VERSION=10.3.6.82 CUSPARSE_VERSION=12.5.1.3 CUSOLVER_VERSION=11.6.3.83 CUTENSOR_VERSION=2.0.2.4 NPP_VERSION=12.3.0.159 NVJPEG_VERSION=12.3.2.81 CUDNN_VERSION=9.2.1.18 TRT_VERSION=10.2.0.19 TRTOSS_VERSION=24.07 NSIGHT_SYSTEMS_VERSION=2024.4.2.133+cuda12.6 NSIGHT_COMPUTE_VERSION=2024.2.1.2
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG NSIGHT_COMPUTE_VERSION=2024.2.1.2
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG NSIGHT_SYSTEMS_VERSION=2024.4.2.133+cuda12.6
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG TRTOSS_VERSION=24.07
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG TRT_VERSION=10.2.0.19
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG CUDNN_VERSION=9.2.1.18
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG NVJPEG_VERSION=12.3.2.81
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG NPP_VERSION=12.3.0.159
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG CUTENSOR_VERSION=2.0.2.4
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG CUSOLVER_VERSION=11.6.3.83
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG CUSPARSE_VERSION=12.5.1.3
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG CURAND_VERSION=10.3.6.82
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG CUFFT_VERSION=11.2.3.61
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG CUBLAS_VERSION=12.5.3.2
                        
# 2024-07-09 06:39:18  0.00B 定义构建参数
ARG NCCL_VERSION=2.22.3
                        
# 2024-07-09 06:39:18  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver com.nvidia.cuda.version=9.0
                        
# 2024-07-09 06:39:18  0.00B 设置环境变量 _CUDA_COMPAT_PATH ENV BASH_ENV SHELL NVIDIA_REQUIRE_CUDA
ENV _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0
                        
# 2024-07-09 06:39:18  58.91KB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.5.1.007 CUDA_DRIVER_VERSION=555.42.06 JETPACK_HOST_MOUNTS= /bin/sh -c cp -vprd /nvidia/. /  &&  patch -p0 < /etc/startup_scripts.patch  &&  rm -f /etc/startup_scripts.patch # buildkit
                        
# 2024-07-09 06:39:18  463.25MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.5.1.007 CUDA_DRIVER_VERSION=555.42.06 JETPACK_HOST_MOUNTS= /bin/sh -c /nvidia/build-scripts/installCUDA.sh # buildkit
                        
# 2024-07-09 06:39:06  0.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.5.1.007 CUDA_DRIVER_VERSION=555.42.06 JETPACK_HOST_MOUNTS= /bin/sh -c if [ -n "${JETPACK_HOST_MOUNTS}" ]; then        echo "/usr/lib/aarch64-linux-gnu/tegra" > /etc/ld.so.conf.d/nvidia-tegra.conf     && echo "/usr/lib/aarch64-linux-gnu/tegra-egl" >> /etc/ld.so.conf.d/nvidia-tegra.conf;     fi # buildkit
                        
# 2024-07-09 06:39:06  0.00B 设置环境变量 CUDA_VERSION CUDA_DRIVER_VERSION CUDA_CACHE_DISABLE NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS
ENV CUDA_VERSION=12.5.1.007 CUDA_DRIVER_VERSION=555.42.06 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
                        
# 2024-07-09 06:39:06  0.00B 定义构建参数
ARG JETPACK_HOST_MOUNTS=
                        
# 2024-07-09 06:39:06  0.00B 定义构建参数
ARG CUDA_DRIVER_VERSION=555.42.06
                        
# 2024-07-09 06:39:06  0.00B 定义构建参数
ARG CUDA_VERSION=12.5.1.007
                        
# 2024-07-09 06:39:06  322.66MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         apt-utils         build-essential         ca-certificates         curl         libncurses5         libncursesw5         patch         wget         rsync         unzip         jq         gnupg         libtcmalloc-minimal4 # buildkit
                        
# 2024-06-28 04:10:12  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2024-06-28 04:10:12  77.86MB 
/bin/sh -c #(nop) ADD file:d5da92199726e42da09a6f75a778befb607fe3f79e4afaf7ef5188329b26b386 in / 
                        
# 2024-06-28 04:10:10  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2024-06-28 04:10:10  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2024-06-28 04:10:10  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2024-06-28 04:10:10  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:ac8f481d470bfd652ca2d326f0d0426047c05dd93fcd438a3fe7dfb25022f76d",
    "RepoTags": [
        "sandai/magi:latest",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi:latest"
    ],
    "RepoDigests": [
        "sandai/magi@sha256:0dad873c8b65055b12945cf398ec06f65141687b69f91c410a853c34c4ee5155",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/sandai/magi@sha256:0dad873c8b65055b12945cf398ec06f65141687b69f91c410a853c34c4ee5155"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-04-21T13:46:37.636083683+08:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "6006/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin",
            "CUDA_VERSION=12.5.1.007",
            "CUDA_DRIVER_VERSION=555.42.06",
            "CUDA_CACHE_DISABLE=1",
            "NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=",
            "_CUDA_COMPAT_PATH=/usr/local/cuda/compat",
            "ENV=/etc/shinit_v2",
            "BASH_ENV=/etc/bash.bashrc",
            "SHELL=/bin/bash",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=9.0",
            "NCCL_VERSION=2.22.3",
            "CUBLAS_VERSION=12.5.3.2",
            "CUFFT_VERSION=11.2.3.61",
            "CURAND_VERSION=10.3.6.82",
            "CUSPARSE_VERSION=12.5.1.3",
            "CUSOLVER_VERSION=11.6.3.83",
            "CUTENSOR_VERSION=2.0.2.4",
            "NPP_VERSION=12.3.0.159",
            "NVJPEG_VERSION=12.3.2.81",
            "CUDNN_VERSION=9.2.1.18",
            "TRT_VERSION=10.2.0.19",
            "TRTOSS_VERSION=24.07",
            "NSIGHT_SYSTEMS_VERSION=2024.4.2.133+cuda12.6",
            "NSIGHT_COMPUTE_VERSION=2024.2.1.2",
            "DALI_VERSION=1.39.0",
            "DALI_BUILD=15829601",
            "POLYGRAPHY_VERSION=0.49.12",
            "TRANSFORMER_ENGINE_VERSION=1.8",
            "MODEL_OPT_VERSION=0.13.0",
            "LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility,video",
            "NVIDIA_PRODUCT_NAME=PyTorch",
            "GDRCOPY_VERSION=2.3.1-1",
            "HPCX_VERSION=2.19",
            "MOFED_VERSION=5.4-rdmacore39.0",
            "OPENUCX_VERSION=1.17.0",
            "OPENMPI_VERSION=4.1.7",
            "RDMACORE_VERSION=39.0",
            "OPAL_PREFIX=/opt/hpcx/ompi",
            "OMPI_MCA_coll_hcoll_enable=0",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs:",
            "PYTORCH_BUILD_VERSION=2.4.0a0+3bcc3cd",
            "PYTORCH_VERSION=2.4.0a0+3bcc3cd",
            "PYTORCH_BUILD_NUMBER=0",
            "NVIDIA_PYTORCH_VERSION=24.07",
            "NVFUSER_BUILD_VERSION=f73ff1b",
            "NVFUSER_VERSION=f73ff1b",
            "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python",
            "NVPL_LAPACK_MATH_MODE=PEDANTIC",
            "PYTHONIOENCODING=utf-8",
            "LC_ALL=C.UTF-8",
            "PIP_DEFAULT_TIMEOUT=100",
            "NVM_DIR=/usr/local/nvm",
            "NODE_OPTIONS=--openssl-legacy-provider",
            "JUPYTER_PORT=8888",
            "TENSORBOARD_PORT=6006",
            "UCC_CL_BASIC_TLS=^sharp",
            "TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX",
            "PYTORCH_HOME=/opt/pytorch/pytorch",
            "CUDA_HOME=/usr/local/cuda",
            "TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1",
            "USE_EXPERIMENTAL_CUDNN_V8_API=1",
            "COCOAPI_VERSION=2.0+nv0.8.0",
            "TORCH_CUDNN_V8_API_ENABLED=1",
            "CUDA_MODULE_LOADING=LAZY",
            "NVIDIA_BUILD_ID=100464919",
            "TZ=Asia/Shanghai"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.build.id": "100464919",
            "com.nvidia.build.ref": "df5ce920d3adddfc694c4a4e440f2bd72a7c00f0",
            "com.nvidia.cublas.version": "12.5.3.2",
            "com.nvidia.cuda.version": "9.0",
            "com.nvidia.cudnn.version": "9.2.1.18",
            "com.nvidia.cufft.version": "11.2.3.61",
            "com.nvidia.curand.version": "10.3.6.82",
            "com.nvidia.cusolver.version": "11.6.3.83",
            "com.nvidia.cusparse.version": "12.5.1.3",
            "com.nvidia.cutensor.version": "2.0.2.4",
            "com.nvidia.nccl.version": "2.22.3",
            "com.nvidia.npp.version": "12.3.0.159",
            "com.nvidia.nsightcompute.version": "2024.2.1.2",
            "com.nvidia.nsightsystems.version": "2024.4.2.133+cuda12.6",
            "com.nvidia.nvjpeg.version": "12.3.2.81",
            "com.nvidia.pytorch.version": "2.4.0a0+3bcc3cd",
            "com.nvidia.tensorrt.version": "10.2.0.19",
            "com.nvidia.tensorrtoss.version": "24.07",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 22559338023,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/10d460f8af4bae53b119dfcc0dad4dd874e4e0835512afd4634cf43d48682765/diff:/var/lib/docker/overlay2/db308275354e8eb68181735ffdae3226f9eddaf7e5b43063a845e99d36a00a84/diff:/var/lib/docker/overlay2/2eaa52af57673fad95bc4c5e80c0c9196dc4660ad924b98037192011ec72e3d3/diff:/var/lib/docker/overlay2/a1700732fb6422b83651c4008b3a38e70e87a07e27ebd570b980c4135cade2b6/diff:/var/lib/docker/overlay2/42ae10dd4d16efd14a50d883b120ab83db025d105becf5b1f09bc46823193f81/diff:/var/lib/docker/overlay2/9358687f5300c54f5afea3cedebf550bf42628c6a7a38f41e248007e960ad3a5/diff:/var/lib/docker/overlay2/43fe73bf180d3e18e013542d5b0275a35e9ee81295561c532c4bd0fc644501a4/diff:/var/lib/docker/overlay2/29732cc50023e9d41bbc6c6797fae5fc209294a0185f74a03cd117b4e53303db/diff:/var/lib/docker/overlay2/da78d4974caae162575e6aa5ce9945e78f57b220b22f0d2eed9858640cd740b1/diff:/var/lib/docker/overlay2/0d18247794b7fba577278315f0235a08311b754d07ed4deedaabcfdac25ff029/diff:/var/lib/docker/overlay2/787146f5fbb935c09cf40a3ce14126999bb2b68555f14eff57bf0fcf5a99d8c1/diff:/var/lib/docker/overlay2/a5cccea62878efcfea1ab53457caf00c116fb3cdbb2ea989a1ca8280fd34bc2e/diff:/var/lib/docker/overlay2/828054cb923e92c34eb1f42e94df04e95b7a4ed7922cf453f527387c0b26fb52/diff:/var/lib/docker/overlay2/821e00878936cefa258c03d5f6c4c520efd7e1d02c87b980b00d11b2fd0fd52b/diff:/var/lib/docker/overlay2/a3e0af93195a068b5f2d0e63b4acd7e392e4d4760fe119440641ba9afbab10fe/diff:/var/lib/docker/overlay2/45730e8d2fcafe72d9ef6d0c833580fdaf33c6d156d16689e8a6e641381d5774/diff:/var/lib/docker/overlay2/6ea70ab939b848a762b9aef309d05643f717f6186b51fa87ef1d45c30821b755/diff:/var/lib/docker/overlay2/c92afb21809b2a0368327d7b50f0573e06b9eea077f9bcae5e64601d3399130e/diff:/var/lib/docker/overlay2/2e8f236ad9e7bf4cb1158f4ee157e5a3608e8060fe0b69e2656a608ab5b1fff3/diff:/var/lib/docker/overlay2/6fdcf061113654d5edf6d13039a99f0b70e7da37313613eb46f9da8f23957ab4/diff:/var/lib/docker/overlay2/5aef5ac1b609945443b5764b5e4294544e5d3aa4a03992ab7364b92ca73127a0/diff:/var/lib/docker/overlay2/16e05925102521aaf97fe33d42f8d6153dd098468dbf0e67c4bf753eb4ebcb00/diff:/var/lib/docker/overlay2/6384004025d33600645182446dff3f2479d40a314de7b4a5171589ee1ba40f5b/diff:/var/lib/docker/overlay2/93db78f141911f146e14a50b7e755a887673ac48ed0299b3c4af5dd4100a0109/diff:/var/lib/docker/overlay2/82d357fb236a834a2c680c711458a79e405d4cb4511fa0b1117ea00eb9f6b5b3/diff:/var/lib/docker/overlay2/64dfc64420a61bca48145d62b8ca0c6827b5eb6165f928500164509a0a930101/diff:/var/lib/docker/overlay2/98e0049637cc4d633124146fd773e92cb752271b29b1358012102e32b3b4f8bd/diff:/var/lib/docker/overlay2/78663f0463c76806b2617f3d739fea78cea26776ae1f52dbaf263d95a2bdfc86/diff:/var/lib/docker/overlay2/6d32b211157cfb52096f6abeac5cef47a70de4f3fd59c96c931d6fb082eb91fb/diff:/var/lib/docker/overlay2/58bed21ea7e67823081ae3c764fcc3f55108e88ef3fc2a4204ef4ba5675ba074/diff:/var/lib/docker/overlay2/de77935f972a1d1fd1fad652666c5964e2b39f7aef4aaac7b3f21e7d6529a0ec/diff:/var/lib/docker/overlay2/5c4e5b4c5fb1ca836bd3582cb4d184ecbfd95b5b3e153423e72b80460b855fde/diff:/var/lib/docker/overlay2/43f4f2f5ae199d7a395a0b79aafa19de534cc78cc3ac2eeeea7aff1ac551ce4e/diff:/var/lib/docker/overlay2/b51994d6570c0618d88c391e67829fd27d0bfdcd8484783d5525bf5ddde705f4/diff:/var/lib/docker/overlay2/49b6717135f7c25a3bb1ff6f2aea2b3dd1e9a972cdb74f4b688c7fb246404e15/diff:/var/lib/docker/overlay2/973c4e9c7423858416628c5fed7f79857ef8d215c871d442774e1c6926278324/diff:/var/lib/docker/overlay2/f31677cb14374d6a4a7c302014ae2952b12452cb7f468129da21532d55280f7c/diff:/var/lib/docker/overlay2/e8c4fa6a9c5abc505f9fa698d41d0a5208be00008992c824ceae48d24419351c/diff:/var/lib/docker/overlay2/9c4a1381474537beb56b395b4768e34510e41e3cd056d9cfc9ef5aa297f7e3af/diff:/var/lib/docker/overlay2/5174f3cfed0c23d10fcb21ebb33e6550602ac498d63a66ab7e99daba6d650d78/diff:/var/lib/docker/overlay2/52df8eb5fc8fa6134969769c705bfcb65802edce58dc828dbd76b4207a8c0eac/diff:/var/lib/docker/overlay2/8a0694262160f86eb32a54843f6aaf6e07f7bfd3c9e541b2e9946a378219878b/diff:/var/lib/docker/overlay2/0f016e609fc74c5a2635e83d56836000bc9a396806ac5ec1c8c9bd8238c7c768/diff:/var/lib/docker/overlay2/b8af3d5b6ada46bc68b132fdf54b40a060c2c7773d6bc1e33f457e257e024b3c/diff:/var/lib/docker/overlay2/428beb69c398ce416af8e101eb809be2965d816fca4e700d3f553455a58281af/diff:/var/lib/docker/overlay2/5a64e22c6d10e80cf87fc8dc2a2e185659a863eab973583ad13224f2fc887aad/diff:/var/lib/docker/overlay2/2dae6c620d1b63aadfbb9d46eedf5483745b8082d2e0c0a5de3875ec9cd3d14c/diff:/var/lib/docker/overlay2/c06facf40c88547836f448966ba98f935a75e9ebcb529364c39e64c5427392c7/diff:/var/lib/docker/overlay2/15b2ced6960c484a39a785f699cc3272679f12036a6aca2e2cf19a6f2380c243/diff:/var/lib/docker/overlay2/8353c4b4a4fe2b41ebd5a1e3e719a4973300b88bd891e7d5788408eddbb6f2d4/diff:/var/lib/docker/overlay2/af14d8ead4089c544f8e8195bb0432be12ea56a47ea2b52fa6f32faedfd53b31/diff:/var/lib/docker/overlay2/931bc08dd51406abdcec3bc2033feaec8f2ca92caad233624589de6a23537702/diff:/var/lib/docker/overlay2/c1ac2c820d7de29ab5774baac3d1831fc832bf87cab4995d79e40e0bd3fcd810/diff:/var/lib/docker/overlay2/bc931577de895219f646b98b98b79fcd50de69aec808157ea44f6d28c27125dc/diff:/var/lib/docker/overlay2/243f05cfa7771b3333ee1087e36f667f672cb51da9b8bce199e522ccf4a1b0bf/diff:/var/lib/docker/overlay2/709256da2f3a334df09396996927099087fe288ac05156ae27631012e78cbdb5/diff:/var/lib/docker/overlay2/fe1a4cad524d2ef5566da18d92a161012739987162a750cf741f9723a366cfe6/diff:/var/lib/docker/overlay2/5b2c9087aa4c6168b55cda42e8f831367b0f2d3a2667a6ac395af4f16e788a62/diff:/var/lib/docker/overlay2/9e9c08875e1f5043ece7defcf4af3477b708d67d0a0b66b2f9b8a4853744bb83/diff:/var/lib/docker/overlay2/a2efe013cff2d366ac1ef4c5fbfd4183abc9fd82c3d0e462f39292547aa373a5/diff:/var/lib/docker/overlay2/b708f52cb42d2ad825438e21c37bddfd89783079e8825dd7c839a1d55f461de0/diff:/var/lib/docker/overlay2/a87f4e197f50eba5d3c155f8f71198b5efc5a79a132e68b6fdd236bf36dd0a45/diff",
            "MergedDir": "/var/lib/docker/overlay2/6625418e96a12629a3321eca3f9a70b41fd9f5d0851251c36bed87bb7da388f0/merged",
            "UpperDir": "/var/lib/docker/overlay2/6625418e96a12629a3321eca3f9a70b41fd9f5d0851251c36bed87bb7da388f0/diff",
            "WorkDir": "/var/lib/docker/overlay2/6625418e96a12629a3321eca3f9a70b41fd9f5d0851251c36bed87bb7da388f0/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:931b7ff0cb6f494b27d31a4cbec3efe62ac54676add9c7469560302f1541ecaf",
            "sha256:9e38f2aece2538e06216bb312a67209ae076da700b69d2dd1cadd550180a1ab7",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:d60929f708e4311e7c87bd991e93ecefacbda6c667780a981bc8a8724fb45db9",
            "sha256:0aa76a8ab90099b96382ce959a22f1c7e0afff44283ac240340aab82d1561508",
            "sha256:46874e1062bad7f4d1e469fe8c565aa270fc0b7ef27a5295bcc10d1f9eebd91b",
            "sha256:9ccb297dbbdad666c84222d663ffb10e520e09c6294334bfad6bb355eef30787",
            "sha256:58c4c24528ac7673a554eb6df8c6ed1ff83ba1e9eb6dbb0847f77e18d0d76b23",
            "sha256:9d8b31de64a16441c1dca8a620cb486ecb8579c22d1da853720e0859ad28c280",
            "sha256:0bb149496b9759bce2f344606646ade2feb27b47d67e98ae3a4fa5f0b0d6113c",
            "sha256:a8da1ebd02f266e3e2ab1171d76d00e784376aa68b6e136559e4f2f8dd2b18eb",
            "sha256:0c63714af8a6bab5548e027aed1f717f27d06467d900b2213102bdc3fdc09c12",
            "sha256:e35c7e8cfb29eeaec53c8e1387cbf51ae7119a8afa8fa2c21d6eebeab606c467",
            "sha256:4762bc8f7e48f9eb553c90c982ee34689c040caa1ce153488dc07b30876f77db",
            "sha256:19a1e854537839bca20a3fc70fa413d572b57ff34adc4e4b973f578b6cd62b69",
            "sha256:ec15f45e7b795730c823b3a13bc3c5639423e3f93b35ba19f90b0f27f970ced8",
            "sha256:a8d65ca898c61866b11609dea356ef13aac52da47e8816b70fe4bfa26a9936ad",
            "sha256:dbc77c22a8b36df3a03f7d5992e4a8437196d20e2cf53ac44f61e167672f08c1",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:9550589c934d06860d01490c0968183aef5951a71b5dcff778a64c898318e62b",
            "sha256:fd14642f7f9ed8b30cc82c207b507bae2f87e572cca899a867986d648d22c425",
            "sha256:5bc5490c229e14e93a7f90254d8d96a241c2d2255343385378728ca060e7bba6",
            "sha256:193cbd2c34f04c5cd5c14ac0d6e3cf69f9035b3ca11e7f97f495a1bcdd79a878",
            "sha256:9b6b28fbf7fdd2d2114b79cacc656bff4dc2995ad10ce88583c5c8414fb2bacd",
            "sha256:aea7200f5c181658bd4a6e4c5aff8f92055aad36940782cfc1104052498ae4e3",
            "sha256:945ac3167ac00db7ef2c82a16005ae9454915a8c0aed3a90bda6dc17c792b659",
            "sha256:f06eb025a1a8062092c459b91a1ececd2d9646639ac87a6aa2e1a36f38fc8893",
            "sha256:00021f339241fa30047458ffb87a3b6850b192fd1ce073ca50af8db74e382f1b",
            "sha256:be4b90b3c0906c70a45d581a8709e6cbf0be55202f4f76ae0009ebb4609b0b38",
            "sha256:926886c1f9a1003d573dc7694897b04b14d83cd9a1e98e650798a7e32d449e94",
            "sha256:b01849598f1e9a848d746219f19c92cd7d5766a38f7c1fc85c0d966569d377f4",
            "sha256:6823f18a60575069e41d1997aa16fef3e60dbabce8d521b740e22e27fc73279a",
            "sha256:1621f98b1f8a6ea372aa273b4ab2d57369ade373f3e526f10fba2549f42056a1",
            "sha256:f8bb129acf1f72091eb08984100c238376658cbfa54783f422373a4f01200d45",
            "sha256:0a7061610b196714471da5355bfea1ea6349842cda4b2ed9faa0b4ffb7b3fc8d",
            "sha256:1206d866e696fdb4885af096c8319d6e4f0ab71ed729080deb071dedabe68dcf",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:d6defccbb72bb37a03b1614aa3b3e89786597139d835553cbb45a0cfcc366b77",
            "sha256:f14a035ddd8e9e5db4aca7c59e3c6e82b8d75bd3e8aba0f5d24ec7a47fcc9c2d",
            "sha256:844513ad9dd43bbc47c81f6da212b6da664d280120a5c5a8806423d8ea0c7ba5",
            "sha256:8c3a4dca401522dc89884c53d52dcf7bb72626997a06e90e5b4e9628f6bdd71c",
            "sha256:14e1a2c53e628c3660711081fe633315f373ba3ca422e98664725f3f5b2f59aa",
            "sha256:d2c69f808262aaa452f9329a07175387f77abda8a48a105412adbbf57bb36e36",
            "sha256:af1dc0d8000e3134251d978f17947ad8cc23d28a722f608ba26c2b203c683d90",
            "sha256:3bdc3fb3e32738a282b8cfccf965b16c8596f6789afa1bbfcb5477b5765ff08a",
            "sha256:89465bae80387248b31ddd88a77e3a3bf8f64c221b7767f5e1073f97624a6322",
            "sha256:be689d3e43dc7ab75e227ae66b4bfb92cdef2bea3d39295c658fc611cd96067c",
            "sha256:e758a1450e6e61129df89daec11139759c388e5232cfdf7815e710b0ec531d22",
            "sha256:2ad9df3a62bae459224319bf7e2f203f2019deb7cdd71260aa99ad6fecedb771",
            "sha256:da6fd3878932f85138bc148117fc4f8a8b538f93f37bbc3e8a2722e9583d0f57",
            "sha256:74f137fb08bdec39da560481fd2093a6dce686e53535efd6ac3b42995076038f",
            "sha256:eb022bae0894368f6de4878fb69d31e83b062dfe2d9d26ea47798c251eb9bba1",
            "sha256:8337ad7f3444dfad34bd200282328662438580adbdec9d4669453d1daacec59d",
            "sha256:3067210a6748729feaf753e36fb63d6dd8f0bc9d34e3463e67a87e339ddc995a",
            "sha256:1c1266c45f2900ebdb5f70949bd2db6390d8092c21874c7d8884eba306f7af92",
            "sha256:9da160e8fff0e84606c689b95b6867e2f8207b62dfddaba1588d5db96510e5b0",
            "sha256:07d8cf9617b1c13282a72dd5b308b4edfe67b38ffba4bddc126e8489def2c209",
            "sha256:f336fba50337f06385f882c7e752ca72be684fea59bdda500e12ca24f58ddddb",
            "sha256:a50367b542c64a8550ee8424269927e0ff64944d02a2a1181251ff4bdd7fdbb3",
            "sha256:af235d47956bacf7845937a0e464cec8dfadb4e1ed3994695c346ff6cb48de29",
            "sha256:d51bea9b77c8e7aedd438635311959e8c34be4035f3ca72a4c23ecf2a5fb1ae5",
            "sha256:41b4d14800894186def1f3f7ea0c27ff6d6353d237e32b084ed502944630dfee",
            "sha256:4a1237303b1e67e08ecc0ae4920c48e15ae5807728140d35736eb0a666f28813"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-05-15T00:53:24.696144513+08:00"
    }
}

更多版本

docker.io/sandai/magi:latest

linux/amd64 docker.io22.56GB2025-05-15 00:55
70