镜像构建历史
# 2025-03-25 23:30:49 0.00B 配置容器启动时运行的命令
ENTRYPOINT ["jupyter" "notebook" "--allow-root"]
# 2025-03-25 23:30:49 0.00B 声明容器运行时监听的端口
EXPOSE map[6006/tcp:{} 8888/tcp:{}]
# 2025-03-25 23:30:49 733.00B 复制新文件或目录到容器中
COPY run_jupyter.sh /root/ # buildkit
# 2025-03-25 23:30:49 38.49KB 执行命令并创建新的镜像层
RUN |2 llama_cpp_commit=b4936 build_command=cmake /bin/bash -c echo "c.NotebookApp.token = ''">>/root/.jupyter/jupyter_notebook_config.py # buildkit
# 2025-03-25 23:30:49 38.47KB 执行命令并创建新的镜像层
RUN |2 llama_cpp_commit=b4936 build_command=cmake /bin/bash -c echo "c.NotebookApp.password = ''">>/root/.jupyter/jupyter_notebook_config.py # buildkit
# 2025-03-25 23:30:49 38.48KB 执行命令并创建新的镜像层
RUN |2 llama_cpp_commit=b4936 build_command=cmake /bin/bash -c jupyter notebook --generate-config --allow-root && echo "c.NotebookApp.ip = '0.0.0.0'" >> ~/.jupyter/jupyter_notebook_config.py && echo "c.NotebookApp.open_browser = False" >> ~/.jupyter_notebook_config.py # buildkit
# 2025-03-25 23:30:48 0.00B 执行命令并创建新的镜像层
RUN |2 llama_cpp_commit=b4936 build_command=cmake /bin/bash -c mkdir -p ~/.kaggle # buildkit
# 2025-03-25 23:30:47 0.00B 设置工作目录为/code
WORKDIR /code
# 2025-03-25 23:30:47 183.51MB 执行命令并创建新的镜像层
RUN |2 llama_cpp_commit=b4936 build_command=cmake /bin/bash -c pip install --no-cache-dir --upgrade pip notebook pdl ipython-autotime seeme tokenizers # buildkit
# 2025-03-25 23:30:33 1.20GB 执行命令并创建新的镜像层
RUN |2 llama_cpp_commit=b4936 build_command=cmake /bin/bash -c pip install -r requirements.txt # buildkit
# 2025-03-25 23:29:34 0.00B 执行命令并创建新的镜像层
RUN |2 llama_cpp_commit=b4936 build_command=cmake /bin/bash -c ${build_command} # buildkit
# 2025-03-25 23:29:34 0.00B 执行命令并创建新的镜像层
RUN |2 llama_cpp_commit=b4936 build_command=cmake /bin/bash -c rm -rf build; mkdir build; # buildkit
# 2025-03-25 23:29:33 3.52MB 执行命令并创建新的镜像层
RUN |2 llama_cpp_commit=b4936 build_command=cmake /bin/bash -c git checkout ${llama_cpp_commit} # buildkit
# 2025-03-25 23:29:33 0.00B 设置工作目录为/code/llama.cpp
WORKDIR /code/llama.cpp
# 2025-03-25 23:29:33 174.58MB 执行命令并创建新的镜像层
RUN |2 llama_cpp_commit=b4936 build_command=cmake /bin/bash -c git clone https://github.com/ggerganov/llama.cpp # buildkit
# 2025-03-25 23:29:22 0.00B 定义构建参数
ARG build_command=cmake
# 2025-03-25 23:29:22 0.00B 定义构建参数
ARG llama_cpp_commit=b4936
# 2025-03-25 23:29:22 94.83MB 执行命令并创建新的镜像层
RUN /bin/bash -c apt-get update && apt-get install wget git cmake g++ build-essential -y && rm -rf /var/lib/apt/lists/* && apt-get autoremove -y && apt-get autoclean -y && apt-get clean -y # buildkit
# 2025-03-17 22:11:09 0.00B 设置工作目录为/code
WORKDIR /code
# 2025-03-17 22:11:09 0.00B
SHELL [/bin/bash -c]
# 2025-03-17 22:11:09 0.00B 设置环境变量 TZ DEBIAN_FRONTEND
ENV TZ=Europe/Brussels DEBIAN_FRONTEND=noninteractive
# 2025-03-17 22:11:09 0.00B 添加元数据标签
LABEL maintainer=Jan Van de Poel - jan.vandepoel@seeme.ai
# 2024-04-25 00:26:16 0.00B 设置工作目录为/workspace
WORKDIR /workspace
# 2024-04-25 00:26:16 0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=2.3.0
# 2024-04-25 00:26:16 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2024-04-25 00:26:16 0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
# 2024-04-25 00:26:16 0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# 2024-04-25 00:26:16 0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
# 2024-04-25 00:26:16 0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2024-04-25 00:26:16 0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.3.0 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=12.1.1 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends gcc; rm -rf /var/lib/apt/lists/*; fi # buildkit
# 2024-04-25 00:26:15 7.59GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
# 2024-04-25 00:18:37 3.32MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.3.0 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=12.1.1 /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends ca-certificates libjpeg-dev libpng-dev && rm -rf /var/lib/apt/lists/* # buildkit
# 2024-04-25 00:18:37 0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
# 2024-04-25 00:18:37 0.00B 定义构建参数
ARG CUDA_VERSION
# 2024-04-25 00:18:37 0.00B 定义构建参数
ARG TARGETPLATFORM
# 2024-04-25 00:18:37 0.00B 定义构建参数
ARG TRITON_VERSION
# 2024-04-25 00:18:37 0.00B 定义构建参数
ARG PYTORCH_VERSION
# 2023-11-10 13:52:16 2.45GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends ${NV_CUDNN_PACKAGE} ${NV_CUDNN_PACKAGE_DEV} && apt-mark hold ${NV_CUDNN_PACKAGE_NAME} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:52:16 0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.0.131
# 2023-11-10 13:52:16 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:52:16 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:52:16 0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1
# 2023-11-10 13:52:16 0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
# 2023-11-10 13:52:16 0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
# 2023-11-10 13:52:16 0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.0.131
# 2023-11-10 13:25:51 0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
# 2023-11-10 13:25:51 385.69KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
# 2023-11-10 13:25:51 4.79GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION} cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION} cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION} cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION} cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION} ${NV_NVPROF_DEV_PACKAGE} ${NV_LIBNPP_DEV_PACKAGE} libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION} ${NV_LIBCUBLAS_DEV_PACKAGE} ${NV_LIBNCCL_DEV_PACKAGE} ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:25:51 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:25:51 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
# 2023-11-10 13:25:51 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
# 2023-11-10 13:13:35 0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
# 2023-11-10 13:13:35 0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
# 2023-11-10 13:13:35 2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
# 2023-11-10 13:13:35 3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
# 2023-11-10 13:13:35 261.40KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
# 2023-11-10 13:13:35 2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-libraries-12-1=${NV_CUDA_LIB_VERSION} ${NV_LIBNPP_PACKAGE} cuda-nvtx-12-1=${NV_NVTX_VERSION} libcusparse-12-1=${NV_LIBCUSPARSE_VERSION} ${NV_LIBCUBLAS_PACKAGE} ${NV_LIBNCCL_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:13:35 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:13:35 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
# 2023-11-10 13:13:35 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
# 2023-11-10 13:08:12 0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# 2023-11-10 13:08:12 0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
# 2023-11-10 13:08:12 17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
# 2023-11-10 13:08:12 0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
# 2023-11-10 13:08:12 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2023-11-10 13:08:12 46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
# 2023-11-10 13:08:11 149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION} ${NV_CUDA_COMPAT_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:07:58 0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
# 2023-11-10 13:07:58 10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends gnupg2 curl ca-certificates && curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb && dpkg -i cuda-keyring_1.0-1_all.deb && apt-get purge --autoremove -y curl && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:07:58 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:07:58 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:07:58 0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
# 2023-11-10 13:07:58 0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
# 2023-11-10 13:07:58 0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
# 2023-11-10 13:07:58 0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
# 2023-10-05 15:33:32 0.00B
/bin/sh -c #(nop) CMD ["/bin/bash"]
# 2023-10-05 15:33:32 77.82MB
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in /
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) LABEL org.opencontainers.image.version=22.04
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) LABEL org.opencontainers.image.ref.name=ubuntu
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) ARG LAUNCHPAD_BUILD_ARCH
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) ARG RELEASE
镜像信息
{
"Id": "sha256:1d20ad114a626dc2a78d90078c00192db2ac2f371f0f1b7513b24ce62504bcb6",
"RepoTags": [
"seemeai/llama-cpp:b4936-cuda12.1",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/seemeai/llama-cpp:b4936-cuda12.1"
],
"RepoDigests": [
"seemeai/llama-cpp@sha256:879e8e6360a36bd6146926056944b4b7c2d984e0cdbb2fce3d7f5bedc086799e",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/seemeai/llama-cpp@sha256:0f9e64db00af9858bb59f97d142bae0fa37f1a57b765861191c58461c5752a39"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2025-03-25T16:30:49.850825622+01:00",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"ExposedPorts": {
"6006/tcp": {},
"8888/tcp": {}
},
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"NVARCH=x86_64",
"NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
"NV_CUDA_CUDART_VERSION=12.1.105-1",
"NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
"CUDA_VERSION=12.1.1",
"LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
"NVIDIA_VISIBLE_DEVICES=all",
"NVIDIA_DRIVER_CAPABILITIES=compute,utility",
"NV_CUDA_LIB_VERSION=12.1.1-1",
"NV_NVTX_VERSION=12.1.105-1",
"NV_LIBNPP_VERSION=12.1.0.40-1",
"NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
"NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
"NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
"NV_LIBCUBLAS_VERSION=12.1.3.1-1",
"NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
"NV_LIBNCCL_PACKAGE_NAME=libnccl2",
"NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
"NCCL_VERSION=2.17.1-1",
"NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
"NVIDIA_PRODUCT_NAME=CUDA",
"NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
"NV_NVML_DEV_VERSION=12.1.105-1",
"NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
"NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
"NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
"NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
"NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
"NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
"NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
"NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
"NV_NVPROF_VERSION=12.1.105-1",
"NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
"NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
"NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
"NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
"LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
"NV_CUDNN_VERSION=8.9.0.131",
"NV_CUDNN_PACKAGE_NAME=libcudnn8",
"NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1",
"NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1",
"PYTORCH_VERSION=2.3.0",
"TZ=Europe/Brussels",
"DEBIAN_FRONTEND=noninteractive"
],
"Cmd": null,
"Image": "",
"Volumes": null,
"WorkingDir": "/code",
"Entrypoint": [
"jupyter",
"notebook",
"--allow-root"
],
"OnBuild": null,
"Labels": {
"com.nvidia.cudnn.version": "8.9.0.131",
"com.nvidia.volumes.needed": "nvidia_driver",
"maintainer": "Jan Van de Poel - jan.vandepoel@seeme.ai",
"org.opencontainers.image.ref.name": "ubuntu",
"org.opencontainers.image.version": "22.04"
},
"Shell": [
"/bin/bash",
"-c"
]
},
"Architecture": "amd64",
"Os": "linux",
"Size": 18735777436,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/54aed4ea1bb0500cf29e94a243c7da0244e1c69001535f6d5160570819298f79/diff:/var/lib/docker/overlay2/ae6432d640b9f08f9f499ed56abfd0a8ecf8fa3c8c5a640fbca4887db80847a0/diff:/var/lib/docker/overlay2/e8052c015a59620fc68f7e7e9dc01113bc63ce936d0aca20bfa7f8201cb4457d/diff:/var/lib/docker/overlay2/c871142f5693a842996b07ff46cf646049c24e395dc0368250b766c3e3e20123/diff:/var/lib/docker/overlay2/98e629322d9eb10916df02e04204169627c41b15fa9d77dd383d06f7e73d9a09/diff:/var/lib/docker/overlay2/e23dc8b56685f5c91ed36b3867ad74840f7d2f627c147cedcb8e8ad91d83b3ff/diff:/var/lib/docker/overlay2/1f096696d921f35741e80552154596df712ad941cbf611bd186dadba934b52eb/diff:/var/lib/docker/overlay2/f03dd806739299fdbc54c6843f5504342558b06b3fe4b94ac0ebb43bf23f8d82/diff:/var/lib/docker/overlay2/0b1072db9d77f1e2c4a6c3765f9671fa381d85856eb41b8e40eb95af8dcb0885/diff:/var/lib/docker/overlay2/b528f6163baeb0b1c06f0db93e368290cd20593387ce7aeb7b4e3459398a23b8/diff:/var/lib/docker/overlay2/3b63fc13dfe23a51aea0eca4202ff1e05864900b9700e3cffd5c22320d0d4eac/diff:/var/lib/docker/overlay2/6c594f107f47968626f67c3a4cbea25b91559bcedef9b3d33f97307f2a7d4aa4/diff:/var/lib/docker/overlay2/46dd3c5d87f848fe5ed97772b7bf1c7ac9612301e9d3275167ccb97653fb8e7e/diff:/var/lib/docker/overlay2/189a4d4c7c5072a30b1d07ccdbb4975fab9b84de82a80b1a885fe53790eaf068/diff:/var/lib/docker/overlay2/022d7edff4058e89dd539f7f13b343755c418770009fc16effee6d4e85f47b2b/diff:/var/lib/docker/overlay2/51397002117e447a2fb246eba3165e5dea6b1ffa9cdc3d04be062b7efa033b14/diff:/var/lib/docker/overlay2/aee414eb68e31b5b488de26f6c1eb2cac7a54e23f7b5639eff8deddb8c22b672/diff:/var/lib/docker/overlay2/2915b16f4c39200c87cdbb18fe069e79c659576923d3a79779ac1e1d4fc709f9/diff:/var/lib/docker/overlay2/9480acd28cdb8d4f6d2b91f0e2838a6c8efe8d521f8b863989213ced6b32c6ba/diff:/var/lib/docker/overlay2/dd2b423092786e871e042e411a28fc34291049b7896e56649fe2b4021346a73d/diff:/var/lib/docker/overlay2/2216cbb8b6a72642e5e104c8fd27f9007a9fd851c4f8a32d45c95ab96f62f4f0/diff:/var/lib/docker/overlay2/57fa3a556f4f5c967d084a3d35770a0ef0e87179a85bba54edabf325d4744be7/diff:/var/lib/docker/overlay2/ad2cdb483987718e4ea49d86b4a9c7b0886a25f4f865cf61352a6f8f2d79ec7b/diff:/var/lib/docker/overlay2/6770029ce3e574a218578b64b2dd2c85a367b03fd5159424e8312392e420ac27/diff:/var/lib/docker/overlay2/60c0b4e5b71211bdfea684afdb6b49e96a6c863c915c1eba83c48e12786696ea/diff:/var/lib/docker/overlay2/77992f7c61a847fd48ddd8c3e92afb52f79698826aafc3f555180e08a04089f8/diff:/var/lib/docker/overlay2/2831000cb746d86f6730f916de4ac77c80be0de67d3af4ac4891c268c9658eb4/diff:/var/lib/docker/overlay2/ef6ea7b4f0639651cebdca9a643a11b0b2a84e4f5092fade356a62d8c2d37b63/diff:/var/lib/docker/overlay2/32e7b33e9cdc72da39dad4b5c69d5282fda3b0ca970a9c55d0648f1138c39307/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
"MergedDir": "/var/lib/docker/overlay2/1b77316558163e8412e10b8ffa7150aee129a8e5e026b04bdf0afb8ed03b8abb/merged",
"UpperDir": "/var/lib/docker/overlay2/1b77316558163e8412e10b8ffa7150aee129a8e5e026b04bdf0afb8ed03b8abb/diff",
"WorkDir": "/var/lib/docker/overlay2/1b77316558163e8412e10b8ffa7150aee129a8e5e026b04bdf0afb8ed03b8abb/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
"sha256:566cd9dd29d693cf0360da8a73391b843bb6ac8f11b4148acf69c4dc79fa87c5",
"sha256:6ec2b659c9ab00e2b0fc0acd056577e609cc28649650ec7068b81686f6d1a996",
"sha256:8afeff4e91d72f3de9232ffc0803f70236e316c27b23ee003e6d47fbfcb6e1c4",
"sha256:bea30ebbe84377ed36503599c2087cd6bda6f4c96cb59525d238d4a00cf902d3",
"sha256:b15b1df4adac82b2b46124c743a32d5e982cb6b5ee8a3c04949f809abf8962c9",
"sha256:83ecbf43a888c43f43b0cd9ec7cf551770790c7aeab17f9536b8820db2c5d45d",
"sha256:83687aeafbbf74a164a51590ffa36c46e9c41ce4ba3eae9daba1d381c64e5f4b",
"sha256:3416903c2cc4c9f83472b397741f30365f53543862b03ff5727b42b1a2f938cb",
"sha256:24e1e08aaa60ea10f478c1b68d9444b8ea74bff76e2547712984b5136e79018e",
"sha256:7aee75a70a2ff35d4990fab501a025afa498f416cb726ace747ccd7fad6500d4",
"sha256:0f7c883f1a4f4710753cfa1185d8e60584e41f04fe1693bd8c3ee6700b29c7f3",
"sha256:4d85cce124e9365f437420b706b195db3a6e44b1410f25b7774d98426afcef57",
"sha256:79e9266fda4d153b5991329b6bd8150c2261a832f3f6d0a116a8800c2804e0ce",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:ee493f07c2ee32fb92a5adaa65f264353b4c14288ca39f849d97706c3697e93a",
"sha256:5b57473ddab9d7688521bd9fee6334ba6207a9477835b95eb91512f16eff791e",
"sha256:029dd88354d021e7d05c2c86ab9a1eb4d827f081fd12fa18e1941d48de79e132",
"sha256:a43c2a59c66f460ce74a2d1dc9220e96d8c4a599aaffb06dd49d8d1cf424ed0b",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:6bc00b6213a8032f36dfa1e3934c37bc1950c5a85c58d4c214fa06c7523f4208",
"sha256:45a86b31fc6f3047d0cc20bcb1466c1e267ff6befbbd9aa88683493c19ef2f67",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:41220b3e9313440bc11736b1b3004d7c6f77a2e54db330bdbc783c6802babc96",
"sha256:8b31d44d54dd22627f2615c2f7df4abacb720aec0de8bc1470825162d2de53e0",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:9866f96c3da942d3d67ee2d3d4d22b2aaeb030c97560495fbf818830058d5860",
"sha256:d4404d847ee515fd47dbda067778474f06df28dea5c528a4fcd4f84acfbf1926",
"sha256:53bd4a34fdbdd5cb31dcde44398c00ec640a48725ebd94482f66e1dc91d64238",
"sha256:dee15fc4fed78fe27cd3692353602b84a4ce9e49a6b6b420b46d1bced212b65a",
"sha256:149623fea70ff32668198d925c389b14748bea41990ec774333c339889b1490a"
]
},
"Metadata": {
"LastTagTime": "2025-04-14T00:37:15.443949641+08:00"
}
}