docker.io/tabulario/spark-iceberg:3.5.5_1.8.1 linux/amd64

docker.io/tabulario/spark-iceberg:3.5.5_1.8.1 - 国内下载镜像源 浏览次数:11

这是一个包含 Apache Spark 和 Iceberg 数据湖的 Docker 镜像。它预先配置好了 Spark 和 Iceberg,方便用户快速构建和运行基于 Iceberg 的数据湖应用。

源镜像 docker.io/tabulario/spark-iceberg:3.5.5_1.8.1
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1
镜像ID sha256:8769c02b859992a5a53d769f406f3056e1b24429e5cb13203dc83a5bcda3243c
镜像TAG 3.5.5_1.8.1
大小 3.96GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD notebook
启动入口 ./entrypoint.sh
工作目录 /opt/spark
OS/平台 linux/amd64
浏览量 11 次
贡献者
镜像创建 2025-03-11T08:48:16.098059874Z
同步时间 2025-07-02 10:20
更新时间 2025-07-03 02:15
环境变量
PATH=/opt/spark/sbin:/opt/spark/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LANG=C.UTF-8 GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D PYTHON_VERSION=3.10.16 PYTHON_SHA256=bfb249609990220491a1b92850a07135ed0831e41738cf681d63cf01b2a8fbd1 SPARK_HOME=/opt/spark PYTHONPATH=/opt/spark/python:/opt/spark/python/lib/py4j-0.10.9.7-src.zip: SPARK_VERSION=3.5.5 SPARK_MAJOR_VERSION=3.5 ICEBERG_VERSION=1.8.1 IJAVA_CLASSPATH=/opt/spark/jars/*

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1  docker.io/tabulario/spark-iceberg:3.5.5_1.8.1

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1  docker.io/tabulario/spark-iceberg:3.5.5_1.8.1

Shell快速替换命令

sed -i 's#tabulario/spark-iceberg:3.5.5_1.8.1#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1  docker.io/tabulario/spark-iceberg:3.5.5_1.8.1'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1  docker.io/tabulario/spark-iceberg:3.5.5_1.8.1'

镜像构建历史


# 2025-03-11 16:48:16  0.00B 设置默认要执行的命令
CMD ["notebook"]
                        
# 2025-03-11 16:48:16  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["./entrypoint.sh"]
                        
# 2025-03-11 16:48:16  1.07KB 复制新文件或目录到容器中
COPY entrypoint.sh . # buildkit
                        
# 2025-03-11 16:48:16  951.00B 复制新文件或目录到容器中
COPY .pyiceberg.yaml /root/.pyiceberg.yaml # buildkit
                        
# 2025-03-11 16:48:16  23.77KB 执行命令并创建新的镜像层
RUN /bin/sh -c chmod u+x /opt/spark/sbin/* &&     chmod u+x /opt/spark/bin/* # buildkit
                        
# 2025-03-11 16:48:15  0.00B 设置环境变量 PATH
ENV PATH=/opt/spark/sbin:/opt/spark/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-03-11 16:48:15  1.66KB 复制新文件或目录到容器中
COPY spark-defaults.conf /opt/spark/conf # buildkit
                        
# 2025-03-11 16:48:15  371.00B 复制新文件或目录到容器中
COPY ipython/startup/README /root/.ipython/profile_default/startup # buildkit
                        
# 2025-03-11 16:48:15  2.44KB 复制新文件或目录到容器中
COPY ipython/startup/00-prettytables.py /root/.ipython/profile_default/startup # buildkit
                        
# 2025-03-11 16:48:15  0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir -p /root/.ipython/profile_default/startup # buildkit
                        
# 2025-03-11 16:48:15  236.00B 执行命令并创建新的镜像层
RUN /bin/sh -c echo '#! /bin/sh' >> /bin/pyspark-notebook  && echo 'export PYSPARK_DRIVER_PYTHON=jupyter-notebook' >> /bin/pyspark-notebook  && echo "export PYSPARK_DRIVER_PYTHON_OPTS=\"--notebook-dir=/home/iceberg/notebooks --ip='*' --NotebookApp.token='' --NotebookApp.password='' --port=8888 --no-browser --allow-root\"" >> /bin/pyspark-notebook  && echo "pyspark" >> /bin/pyspark-notebook  && chmod u+x /bin/pyspark-notebook # buildkit
                        
# 2025-03-11 16:48:15  236.00B 执行命令并创建新的镜像层
RUN /bin/sh -c echo '#! /bin/sh' >> /bin/notebook  && echo 'export PYSPARK_DRIVER_PYTHON=jupyter-notebook' >> /bin/notebook  && echo "export PYSPARK_DRIVER_PYTHON_OPTS=\"--notebook-dir=/home/iceberg/notebooks --ip='*' --NotebookApp.token='' --NotebookApp.password='' --port=8888 --no-browser --allow-root\"" >> /bin/notebook  && echo "pyspark" >> /bin/notebook  && chmod u+x /bin/notebook # buildkit
                        
# 2025-03-11 16:48:15  100.22KB 复制新文件或目录到容器中
COPY notebooks/ /home/iceberg/notebooks # buildkit
                        
# 2025-03-11 16:48:15  0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir -p /home/iceberg/localwarehouse /home/iceberg/notebooks /home/iceberg/warehouse /home/iceberg/spark-events /home/iceberg # buildkit
                        
# 2025-03-11 16:48:15  601.39MB 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir -p /home/iceberg/data  && curl https://data.cityofnewyork.us/resource/tg4x-b46p.json > /home/iceberg/data/nyc_film_permits.json  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2022-04.parquet -o /home/iceberg/data/yellow_tripdata_2022-04.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2022-03.parquet -o /home/iceberg/data/yellow_tripdata_2022-03.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2022-02.parquet -o /home/iceberg/data/yellow_tripdata_2022-02.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2022-01.parquet -o /home/iceberg/data/yellow_tripdata_2022-01.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-12.parquet -o /home/iceberg/data/yellow_tripdata_2021-12.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-11.parquet -o /home/iceberg/data/yellow_tripdata_2021-11.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-10.parquet -o /home/iceberg/data/yellow_tripdata_2021-10.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-09.parquet -o /home/iceberg/data/yellow_tripdata_2021-09.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-08.parquet -o /home/iceberg/data/yellow_tripdata_2021-08.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-07.parquet -o /home/iceberg/data/yellow_tripdata_2021-07.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-06.parquet -o /home/iceberg/data/yellow_tripdata_2021-06.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-05.parquet -o /home/iceberg/data/yellow_tripdata_2021-05.parquet  && curl https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-04.parquet -o /home/iceberg/data/yellow_tripdata_2021-04.parquet # buildkit
                        
# 2025-03-11 16:48:01  0.00B 设置环境变量 IJAVA_CLASSPATH
ENV IJAVA_CLASSPATH=/opt/spark/jars/*
                        
# 2025-03-11 16:48:01  236.47MB 执行命令并创建新的镜像层
RUN /bin/sh -c curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"  && unzip awscliv2.zip  && sudo ./aws/install  && rm awscliv2.zip  && rm -rf aws/ # buildkit
                        
# 2025-03-11 16:47:56  18.44MB 执行命令并创建新的镜像层
RUN /bin/sh -c curl -s https://repo1.maven.org/maven2/org/apache/iceberg/iceberg-azure-bundle/${ICEBERG_VERSION}/iceberg-azure-bundle-${ICEBERG_VERSION}.jar -Lo /opt/spark/jars/iceberg-azure-bundle-${ICEBERG_VERSION}.jar # buildkit
                        
# 2025-03-11 16:47:55  46.17MB 执行命令并创建新的镜像层
RUN /bin/sh -c curl -s https://repo1.maven.org/maven2/org/apache/iceberg/iceberg-gcp-bundle/${ICEBERG_VERSION}/iceberg-gcp-bundle-${ICEBERG_VERSION}.jar -Lo /opt/spark/jars/iceberg-gcp-bundle-${ICEBERG_VERSION}.jar # buildkit
                        
# 2025-03-11 16:47:55  51.22MB 执行命令并创建新的镜像层
RUN /bin/sh -c curl -s https://repo1.maven.org/maven2/org/apache/iceberg/iceberg-aws-bundle/${ICEBERG_VERSION}/iceberg-aws-bundle-${ICEBERG_VERSION}.jar -Lo /opt/spark/jars/iceberg-aws-bundle-${ICEBERG_VERSION}.jar # buildkit
                        
# 2025-03-11 16:47:55  45.17MB 执行命令并创建新的镜像层
RUN /bin/sh -c curl https://repo1.maven.org/maven2/org/apache/iceberg/iceberg-spark-runtime-${SPARK_MAJOR_VERSION}_2.12/${ICEBERG_VERSION}/iceberg-spark-runtime-${SPARK_MAJOR_VERSION}_2.12-${ICEBERG_VERSION}.jar -Lo /opt/spark/jars/iceberg-spark-runtime-${SPARK_MAJOR_VERSION}_2.12-${ICEBERG_VERSION}.jar # buildkit
                        
# 2025-03-11 16:47:54  444.24MB 执行命令并创建新的镜像层
RUN /bin/sh -c mkdir -p ${SPARK_HOME}  && curl https://dlcdn.apache.org/spark/spark-${SPARK_VERSION}/spark-${SPARK_VERSION}-bin-hadoop3.tgz -o spark-${SPARK_VERSION}-bin-hadoop3.tgz  && tar xvzf spark-${SPARK_VERSION}-bin-hadoop3.tgz --directory /opt/spark --strip-components 1  && rm -rf spark-${SPARK_VERSION}-bin-hadoop3.tgz # buildkit
                        
# 2025-03-11 16:47:38  0.00B 设置环境变量 ICEBERG_VERSION
ENV ICEBERG_VERSION=1.8.1
                        
# 2025-03-11 16:47:38  0.00B 设置环境变量 SPARK_MAJOR_VERSION
ENV SPARK_MAJOR_VERSION=3.5
                        
# 2025-03-11 16:47:38  0.00B 设置环境变量 SPARK_VERSION
ENV SPARK_VERSION=3.5.5
                        
# 2025-03-11 16:47:38  0.00B 设置工作目录为/opt/spark
WORKDIR /opt/spark
                        
# 2025-03-11 16:47:38  0.00B 设置环境变量 PYTHONPATH
ENV PYTHONPATH=/opt/spark/python:/opt/spark/python/lib/py4j-0.10.9.7-src.zip:
                        
# 2025-03-11 16:47:38  0.00B 设置环境变量 SPARK_HOME
ENV SPARK_HOME=/opt/spark
                        
# 2025-03-11 16:47:38  7.50MB 执行命令并创建新的镜像层
RUN /bin/sh -c curl https://github.com/SpencerPark/IJava/releases/download/v1.3.0/ijava-1.3.0.zip -Lo ijava-1.3.0.zip   && unzip ijava-1.3.0.zip   && python3 install.py --sys-prefix   && rm ijava-1.3.0.zip # buildkit
                        
# 2025-03-11 16:47:37  947.75KB 执行命令并创建新的镜像层
RUN /bin/sh -c python3 -m spylon_kernel install # buildkit
                        
# 2025-03-11 16:47:35  1.05GB 执行命令并创建新的镜像层
RUN /bin/sh -c pip3 install -r requirements.txt # buildkit
                        
# 2025-03-11 16:46:47  146.00B 复制新文件或目录到容器中
COPY requirements.txt . # buildkit
                        
# 2025-03-11 16:46:47  549.03MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update &&     apt-get install -y --no-install-recommends       sudo       curl       vim       unzip       openjdk-17-jdk       build-essential       software-properties-common       ssh &&     apt-get clean &&     rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-12-05 00:49:14  0.00B 设置默认要执行的命令
CMD ["python3"]
                        
# 2024-12-05 00:49:14  36.00B 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 	for src in idle3 pip3 pydoc3 python3 python3-config; do 		dst="$(echo "$src" | tr -d 3)"; 		[ -s "/usr/local/bin/$src" ]; 		[ ! -e "/usr/local/bin/$dst" ]; 		ln -svT "$src" "/usr/local/bin/$dst"; 	done # buildkit
                        
# 2024-12-05 00:49:14  62.77MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 		wget -O python.tar.xz "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"; 	echo "$PYTHON_SHA256 *python.tar.xz" | sha256sum -c -; 	wget -O python.tar.xz.asc "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"; 	GNUPGHOME="$(mktemp -d)"; export GNUPGHOME; 	gpg --batch --keyserver hkps://keys.openpgp.org --recv-keys "$GPG_KEY"; 	gpg --batch --verify python.tar.xz.asc python.tar.xz; 	gpgconf --kill all; 	rm -rf "$GNUPGHOME" python.tar.xz.asc; 	mkdir -p /usr/src/python; 	tar --extract --directory /usr/src/python --strip-components=1 --file python.tar.xz; 	rm python.tar.xz; 		cd /usr/src/python; 	gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"; 	./configure 		--build="$gnuArch" 		--enable-loadable-sqlite-extensions 		--enable-optimizations 		--enable-option-checking=fatal 		--enable-shared 		--with-lto 		--with-ensurepip 	; 	nproc="$(nproc)"; 	EXTRA_CFLAGS="$(dpkg-buildflags --get CFLAGS)"; 	LDFLAGS="$(dpkg-buildflags --get LDFLAGS)"; 	make -j "$nproc" 		"EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" 		"LDFLAGS=${LDFLAGS:-}" 	; 	rm python; 	make -j "$nproc" 		"EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" 		"LDFLAGS=${LDFLAGS:--Wl},-rpath='\$\$ORIGIN/../lib'" 		python 	; 	make install; 		bin="$(readlink -ve /usr/local/bin/python3)"; 	dir="$(dirname "$bin")"; 	mkdir -p "/usr/share/gdb/auto-load/$dir"; 	cp -vL Tools/gdb/libpython.py "/usr/share/gdb/auto-load/$bin-gdb.py"; 		cd /; 	rm -rf /usr/src/python; 		find /usr/local -depth 		\( 			\( -type d -a \( -name test -o -name tests -o -name idle_test \) \) 			-o \( -type f -a \( -name '*.pyc' -o -name '*.pyo' -o -name 'libpython*.a' \) \) 		\) -exec rm -rf '{}' + 	; 		ldconfig; 		export PYTHONDONTWRITEBYTECODE=1; 	python3 --version; 		pip3 install 		--disable-pip-version-check 		--no-cache-dir 		--no-compile 		'setuptools==65.5.1' 		wheel 	; 	pip3 --version # buildkit
                        
# 2024-12-05 00:49:14  0.00B 设置环境变量 PYTHON_SHA256
ENV PYTHON_SHA256=bfb249609990220491a1b92850a07135ed0831e41738cf681d63cf01b2a8fbd1
                        
# 2024-12-05 00:49:14  0.00B 设置环境变量 PYTHON_VERSION
ENV PYTHON_VERSION=3.10.16
                        
# 2024-12-05 00:49:14  0.00B 设置环境变量 GPG_KEY
ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D
                        
# 2024-12-05 00:49:14  17.59MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 	apt-get update; 	apt-get install -y --no-install-recommends 		libbluetooth-dev 		tk-dev 		uuid-dev 	; 	rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-12-05 00:49:14  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2024-12-05 00:49:14  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-01-09 09:14:25  529.17MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -ex; 	apt-get update; 	apt-get install -y --no-install-recommends 		autoconf 		automake 		bzip2 		default-libmysqlclient-dev 		dpkg-dev 		file 		g++ 		gcc 		imagemagick 		libbz2-dev 		libc6-dev 		libcurl4-openssl-dev 		libdb-dev 		libevent-dev 		libffi-dev 		libgdbm-dev 		libglib2.0-dev 		libgmp-dev 		libjpeg-dev 		libkrb5-dev 		liblzma-dev 		libmagickcore-dev 		libmagickwand-dev 		libmaxminddb-dev 		libncurses5-dev 		libncursesw5-dev 		libpng-dev 		libpq-dev 		libreadline-dev 		libsqlite3-dev 		libssl-dev 		libtool 		libwebp-dev 		libxml2-dev 		libxslt-dev 		libyaml-dev 		make 		patch 		unzip 		xz-utils 		zlib1g-dev 	; 	rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-01-09 09:14:25  152.24MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 	apt-get update; 	apt-get install -y --no-install-recommends 		git 		mercurial 		openssh-client 		subversion 				procps 	; 	rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-04-29 05:58:08  27.83MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 	apt-get update; 	apt-get install -y --no-install-recommends 		ca-certificates 		curl 		gnupg 		netbase 		wget 	; 	rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-04-29 05:58:08  124.29MB 
# debian.sh --arch 'amd64' out/ 'bullseye' '@1740355200'
                        
                    

镜像信息

{
    "Id": "sha256:8769c02b859992a5a53d769f406f3056e1b24429e5cb13203dc83a5bcda3243c",
    "RepoTags": [
        "tabulario/spark-iceberg:3.5.5_1.8.1",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg:3.5.5_1.8.1"
    ],
    "RepoDigests": [
        "tabulario/spark-iceberg@sha256:790a72e744e0d09f161e1b4c7c2f79625cc598cf0476da4703e62f1f4e023460",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/tabulario/spark-iceberg@sha256:0fde16e89b0e9071b02eb66a71ebb9280600d09956e9be7677a31ad100888244"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-03-11T08:48:16.098059874Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/spark/sbin:/opt/spark/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "LANG=C.UTF-8",
            "GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D",
            "PYTHON_VERSION=3.10.16",
            "PYTHON_SHA256=bfb249609990220491a1b92850a07135ed0831e41738cf681d63cf01b2a8fbd1",
            "SPARK_HOME=/opt/spark",
            "PYTHONPATH=/opt/spark/python:/opt/spark/python/lib/py4j-0.10.9.7-src.zip:",
            "SPARK_VERSION=3.5.5",
            "SPARK_MAJOR_VERSION=3.5",
            "ICEBERG_VERSION=1.8.1",
            "IJAVA_CLASSPATH=/opt/spark/jars/*"
        ],
        "Cmd": [
            "notebook"
        ],
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/opt/spark",
        "Entrypoint": [
            "./entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": null
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 3961845541,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/93b1aa71b709067137d197a3f673275af6f080c79b09746d5d7ff7e8a76b1771/diff:/var/lib/docker/overlay2/7a817d6870d5daf36f759b3b673155fd12ccb7fdf72cc6dab2a3fd19f536b416/diff:/var/lib/docker/overlay2/793bea494da26ec1a63b95806ddc1a244c8a87c81ff53a4604b85318ec535184/diff:/var/lib/docker/overlay2/404d787f96bcab9830ed8add8c167cb8c096bf834dd4825909b042559d6a08aa/diff:/var/lib/docker/overlay2/d13cbc834c477f38d9e0af2e43cb54f65976ea8510d2b0b6cb7a7f46c55b9183/diff:/var/lib/docker/overlay2/0c3cf1d9759f41d4377e76de13d597d00a52700d98231c339dfb5ca74e0c04f8/diff:/var/lib/docker/overlay2/ba443cf8414b057e8bf79f739c95155424e62bea27185e47af096a756f7abcfb/diff:/var/lib/docker/overlay2/c166648f065522d8d50da17cab0c6dc9e85b1530ab2b613a893ef87d0a03737d/diff:/var/lib/docker/overlay2/f4840dda70ab685adf6d38b5cdcdf6b9a01d16843cb86887c1e9021111a68d8a/diff:/var/lib/docker/overlay2/4a50a05b92df0ee0165bdf25550a73c450f1ce49557e700ce8ebe61725ce6115/diff:/var/lib/docker/overlay2/1f5c1b41f2c275e58d24b3d03165f2d3f4a5d16c2b5de80735cbdfdebc4a6cc1/diff:/var/lib/docker/overlay2/b23529c9e1b1adda535f55a981ad50cd938a61838017e6d67334525ccd144ab1/diff:/var/lib/docker/overlay2/63387fb56c239cb77acbd58de3aee4489ccb0f57505ec34f7d133e7c30442260/diff:/var/lib/docker/overlay2/0d563918813505bcab98d8d8898c82cf2a2bd88536d9debea17f833d029ce761/diff:/var/lib/docker/overlay2/6bbc238fc83589cb3e34b47755dbe32e2d70c4dd1f0e721876e4c1888dd96b5e/diff:/var/lib/docker/overlay2/2453ca60bcce9295016d9439387021fc1db82bf0856d0f0bc2f8f475c09e6d00/diff:/var/lib/docker/overlay2/8fbbd65659dfa5fba8d6b5a013c0ef4c5ff8e509ea0e8c60b0320a8bf639dbc8/diff:/var/lib/docker/overlay2/d9f83b15a5e8c72235bec4a5b88b7b508aa814ca29a275c096e1b158c709cd67/diff:/var/lib/docker/overlay2/ba688cac11cce64e4433d7510a9799072c7d77fe04373f6801b5ad981822fa65/diff:/var/lib/docker/overlay2/3974fe8f61b290e174fffcc14f1869724b05cd203b279c42b5ea3808bd2db399/diff:/var/lib/docker/overlay2/3d6a6202e38576b7398a3ec127c97b5f212e32d8246c58915aec93763c5b4bbd/diff:/var/lib/docker/overlay2/1356f61ca004f6978b04f6be117d35ded43066fccbc6ea72b303eaf8ba8bd8ab/diff:/var/lib/docker/overlay2/4280e9df2d95884142f8560db701317be3804545d37b8a1ca6ed87daef0cbfd6/diff:/var/lib/docker/overlay2/d4641f15b2ddbca6050125e1a9723aa56a1b586604a03493cc390ea7025d2f1c/diff:/var/lib/docker/overlay2/10a907c1c820649d19f342e117d695da16d226ad15fd08ab9cb20d0e5f8346be/diff:/var/lib/docker/overlay2/d75eb1c88272b0ea8a7905e381e58ead5226f0ddddb88e1d873d43638bcd1ecc/diff:/var/lib/docker/overlay2/5b3b3f8a08f259b9a3ba96764cf66772d8f9f38a62ff584d350af819891a907c/diff:/var/lib/docker/overlay2/c715d74a32868dbd814954a8332c16440eb0402acf1c99e795193fcd7f84891a/diff:/var/lib/docker/overlay2/18a9c0488b15c38c411fc657ba5a1b03ee80724b3224d3238dc08882bdb71be0/diff:/var/lib/docker/overlay2/8df2f38b22013d3958166372c394d803cd48e73ffd06abf789ba82118b7fefaa/diff",
            "MergedDir": "/var/lib/docker/overlay2/93c65bf69d76e90066a2e14105d31a4843761110b2bca369c879617b52b0c528/merged",
            "UpperDir": "/var/lib/docker/overlay2/93c65bf69d76e90066a2e14105d31a4843761110b2bca369c879617b52b0c528/diff",
            "WorkDir": "/var/lib/docker/overlay2/93c65bf69d76e90066a2e14105d31a4843761110b2bca369c879617b52b0c528/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:ddb64f5a9e888c493467d08ccedb18895c2bf2bb6513e3876ae3cb8887635a0d",
            "sha256:79e559c16281d1a4bf69677b039853d53e60ce99043bc4ce072d6c745208f47a",
            "sha256:110e7edfab1245b04dd3bb92c7892bf476b4c0c515e777400f9ab26be34e9891",
            "sha256:56e48371eb4d7ce9fe3797f83094ea7543b5d1971a1c529f5368c38e50a0ca25",
            "sha256:b0479ede331e8eb9c326ef2811ed0a9e14aae7f432603707c214db609b9c1934",
            "sha256:c3c7d9f337404d41247b98cf1625af0c179a1c048f13a9095cb00f5d66d5efc3",
            "sha256:54163388e560be8a401cb04738a0e1e09d7b34ff3e80d8c785a3ef7f30db8b35",
            "sha256:ae193b956d6c36a6d9b81add148edf74a945a18bf51cf565c260791ae711e29d",
            "sha256:219d097e5c79ac72b90ec964e74ceadf3b68a55f1744804b6d607c21beb9ebf9",
            "sha256:3a7d001578b7688ed98b9999f55ef6a49231f2a9ff339611a1849c7b3219a517",
            "sha256:a9dc61eafbb5fdf8962bb9db6f3592d0983ca02bfa9eed17d6a41b707da7e92d",
            "sha256:a090d599141877e35056512b47ff2dd3283864619961293f8f751ff785b4fc03",
            "sha256:550f06d5ced1eb6e0dda13b72f00f92851e4c598ca7510f8ffd4bd4a6b8e13bf",
            "sha256:467b644a716c09744c5cf88ab3a84d1eb4af27ad89bcf5f88f7492996f210b60",
            "sha256:1bcc95f8e642b90f0ea22470aa04df3b3c0afc39d433851528f2e101717ac410",
            "sha256:1c1ba2657826a996a3b0d1d84d09954110ebcc99d2976ae578b413d8fddd9351",
            "sha256:af2debe12e7f114b5e00da384650c307c095ddc99b8c228e3ec9231d1bc5daf0",
            "sha256:0b4b259d5c3e61eb51b9a4a96ca20eb70f13b2f09a9baf82842ef642b457694d",
            "sha256:0b07a43001188b9971d8cfa64f08f95fc214e7aa54337480c5a1f28484bc2601",
            "sha256:48e3e07a5fb6336d5f478cfa6659401e95bd7b62e79ea5dd795a2e5928d8d070",
            "sha256:0b5a2a2f4461035395a61fe7c43d8ae2b25ced91f5370b7591a7f06be48556c8",
            "sha256:8a4d01877a21ea12238e935561df5c9e63ac4f0d84765f4e2bb3e50cd95ad642",
            "sha256:be8b4b810bb2940e758c91c30e8c5c7c568d21272eab08942020742ef2997764",
            "sha256:f9a792e9175f59c62f5ea774e1cc7fa2aa1e88afd2ead521fb6911d418d2fdc8",
            "sha256:49ebdd9a200f6e9f78b8920a4023dc6aece061e16ca59ad30104b89de491a509",
            "sha256:da363dc2f3fb74548e11f23c12e3f0096636372703801566c08fa1a953235b91",
            "sha256:15f3c90abb1ce3811936358c723972509400ec4f027897960c97f6e6103a961a",
            "sha256:e407f4344f245f22ae6a0ceeeec7fedc452788fc89b1f459e1e864bfc4e467e3",
            "sha256:5a66a9b05509a43a9e4f48fc22173896e24bfc14b514318b5c52a61159b41f81",
            "sha256:63b0acdab62f731ca5a0093f52a39d2cdc41ff6bd873a5eb80f5210734408a21",
            "sha256:7d5b430dcaaa22705a6727a899a7ccf5505497e24ff190a4c1db67275879a28f"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-07-02T10:16:22.307816821+08:00"
    }
}

更多版本

docker.io/tabulario/spark-iceberg:3.5.5_1.8.1

linux/amd64 docker.io3.96GB2025-07-02 10:20
10