docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0 linux/amd64

docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0 - 国内下载镜像源 浏览次数:15

很抱歉,我无法直接访问并获取Docker Hub上镜像的描述信息。 我需要访问互联网才能做到这一点。 因此,我无法提供 docker.io/verlai/verl 镜像的描述。

源镜像 docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0
镜像ID sha256:eafb9b06633db2c75b5b9e4112b6cd566b7f7fb39889d20be18ba440ec617bd0
镜像TAG base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0
大小 35.62GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 15 次
贡献者
镜像创建 2025-07-04T11:27:22.048681476Z
同步时间 2025-08-19 03:29
更新时间 2025-08-19 13:09
开放端口
6006/tcp 8888/tcp
环境变量
PATH=/workspace/deepep-nvshmem/install/bin:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin CUDA_VERSION=12.6.0.022 CUDA_DRIVER_VERSION=560.35.03 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS= _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0 NCCL_VERSION=2.22.3 CUBLAS_VERSION=12.6.0.22 CUFFT_VERSION=11.2.6.28 CURAND_VERSION=10.3.7.37 CUSPARSE_VERSION=12.5.2.23 CUSPARSELT_VERSION=0.6.2.3 CUSOLVER_VERSION=11.6.4.38 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.23 NVJPEG_VERSION=12.3.3.23 CUDNN_VERSION=9.3.0.75 CUDNN_FRONTEND_VERSION=1.5.2 TRT_VERSION=10.3.0.26+cuda12.5.1.007 TRTOSS_VERSION=24.08 NSIGHT_SYSTEMS_VERSION=2024.4.2.133 NSIGHT_COMPUTE_VERSION=2024.3.0.15 DALI_VERSION=1.40.0 DALI_BUILD=16741769 POLYGRAPHY_VERSION=0.49.13 TRANSFORMER_ENGINE_VERSION=1.9 MODEL_OPT_VERSION=0.15.0 LD_LIBRARY_PATH=/workspace/deepep-nvshmem/install/lib:/usr/local/x86_64-linux-gnu:/usr/local/mpi/lib:/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video NVIDIA_PRODUCT_NAME=PyTorch GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0 OPAL_PREFIX=/opt/hpcx/ompi OMPI_MCA_coll_hcoll_enable=0 LIBRARY_PATH=/usr/local/cuda/lib64/stubs: PYTORCH_BUILD_VERSION=2.5.0a0+872d972 PYTORCH_VERSION=2.5.0a0+872d972 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.08 NVFUSER_BUILD_VERSION=1d02b13 NVFUSER_VERSION=1d02b13 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python NVPL_LAPACK_MATH_MODE=PEDANTIC PYTHONIOENCODING=utf-8 LC_ALL=C.UTF-8 PIP_DEFAULT_TIMEOUT=100 JUPYTER_PORT=8888 TENSORBOARD_PORT=6006 UCC_CL_BASIC_TLS=^sharp TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX PYTORCH_HOME=/opt/pytorch/pytorch CUDA_HOME=/usr/local/cuda TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1 USE_EXPERIMENTAL_CUDNN_V8_API=1 COCOAPI_VERSION=2.0+nv0.8.0 TORCH_CUDNN_V8_API_ENABLED=1 CUDA_MODULE_LOADING=LAZY NVIDIA_BUILD_ID=107063150 MAX_JOBS=16 VLLM_WORKER_MULTIPROC_METHOD=spawn DEBIAN_FRONTEND=noninteractive NODE_OPTIONS= PIP_ROOT_USER_ACTION=ignore HF_HUB_ENABLE_HF_TRANSFER=1 CPATH=/usr/local/mpi/include: GDRCOPY_HOME=/workspace/gdrcopy NVSHMEM_DIR=/workspace/deepep-nvshmem/install
镜像标签
107063150: com.nvidia.build.id 25aae698093a80672c33aac448393478894f210e: com.nvidia.build.ref 12.6.0.22: com.nvidia.cublas.version 9.0: com.nvidia.cuda.version 9.3.0.75: com.nvidia.cudnn.version 11.2.6.28: com.nvidia.cufft.version 10.3.7.37: com.nvidia.curand.version 11.6.4.38: com.nvidia.cusolver.version 12.5.2.23: com.nvidia.cusparse.version 0.6.2.3: com.nvidia.cusparselt.version 2.0.2.5: com.nvidia.cutensor.version 2.22.3: com.nvidia.nccl.version 12.3.1.23: com.nvidia.npp.version 2024.3.0.15: com.nvidia.nsightcompute.version 2024.4.2.133: com.nvidia.nsightsystems.version 12.3.3.23: com.nvidia.nvjpeg.version 2.5.0a0+872d972: com.nvidia.pytorch.version 10.3.0.26+cuda12.5.1.007: com.nvidia.tensorrt.version 24.08: com.nvidia.tensorrtoss.version nvidia_driver: com.nvidia.volumes.needed ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0  docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0  docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0

Shell快速替换命令

sed -i 's#verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0  docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0  docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0'

镜像构建历史


# 2025-07-04 19:27:22  67.00B 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c pip config unset global.index-url &&     pip config unset global.extra-index-url # buildkit
                        
# 2025-07-04 19:27:20  216.14MB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c cd DeepEP &&     python setup.py install # buildkit
                        
# 2025-07-04 19:26:28  0.00B 设置环境变量 PATH
ENV PATH=/workspace/deepep-nvshmem/install/bin:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2025-07-04 19:26:28  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/workspace/deepep-nvshmem/install/lib:/usr/local/x86_64-linux-gnu:/usr/local/mpi/lib:/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2025-07-04 19:26:28  0.00B 设置环境变量 NVSHMEM_DIR
ENV NVSHMEM_DIR=/workspace/deepep-nvshmem/install
                        
# 2025-07-04 19:26:28  1.77GB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c cd deepep-nvshmem &&     NVSHMEM_SHMEM_SUPPORT=0     NVSHMEM_UCX_SUPPORT=0     NVSHMEM_USE_NCCL=0     NVSHMEM_MPI_SUPPORT=0     NVSHMEM_IBGDA_SUPPORT=1     NVSHMEM_PMIX_SUPPORT=0     NVSHMEM_TIMEOUT_DEVICE_POLLING=0     NVSHMEM_USE_GDRCOPY=1     cmake -G Ninja -S . -B build/ -DCMAKE_INSTALL_PREFIX=/workspace/deepep-nvshmem/install && cmake --build build/ --target install # buildkit
                        
# 2025-07-04 19:12:33  0.00B 设置环境变量 GDRCOPY_HOME
ENV GDRCOPY_HOME=/workspace/gdrcopy
                        
# 2025-07-04 19:12:33  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/x86_64-linux-gnu:/usr/local/mpi/lib:/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2025-07-04 19:12:33  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/mpi/lib:/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2025-07-04 19:12:33  0.00B 设置环境变量 CPATH
ENV CPATH=/usr/local/mpi/include:
                        
# 2025-07-04 19:12:33  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2025-07-04 19:12:33  4.12MB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c wget https://developer.nvidia.com/downloads/assets/secure/nvshmem/nvshmem_src_3.2.5-1.txz &&     tar -xvf nvshmem_src_3.2.5-1.txz && mv nvshmem_src deepep-nvshmem &&     cd deepep-nvshmem && git apply ../DeepEP/third-party/nvshmem.patch # buildkit
                        
# 2025-07-04 19:12:16  5.21MB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c git clone -b v2.3.1 https://github.com/NVIDIA/gdrcopy.git &&     git clone https://github.com/deepseek-ai/DeepEP.git  &&     cd DeepEP && git checkout a84a248 # buildkit
                        
# 2025-07-04 18:03:38  38.00B 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c ln -s /usr/lib/x86_64-linux-gnu/libmlx5.so.1 /usr/lib/x86_64-linux-gnu/libmlx5.so # buildkit
                        
# 2025-07-01 22:20:24  849.03MB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c pip install --resume-retries 999 --no-cache-dir "tensordict==0.6.2" torchdata "transformers[hf_xet]>=4.51.0" accelerate datasets peft hf-transfer     "numpy<2.0.0" "pyarrow>=19.0.1" pandas cuda-bindings     ray[default] codetiming hydra-core pylatexenc qwen-vl-utils wandb dill pybind11 liger-kernel mathruler blobfile xgrammar     pytest py-spy pyext pre-commit ruff # buildkit
                        
# 2025-07-01 22:19:00  1.11GB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c apt-get install -y ./nsight-systems-2025.3.1_2025.3.1.90-1_amd64.deb &&     rm -rf /usr/local/cuda/bin/nsys &&     ln -s /opt/nvidia/nsight-systems/2025.3.1/target-linux-x64/nsys  /usr/local/cuda/bin/nsys &&     rm -rf /usr/local/cuda/bin/nsys-ui &&     ln -s /opt/nvidia/nsight-systems/2025.3.1/target-linux-x64/nsys-ui /usr/local/cuda/bin/nsys-ui &&     rm nsight-systems-2025.3.1_2025.3.1.90-1_amd64.deb # buildkit
                        
# 2025-07-01 22:17:50  431.29MB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c aria2c --always-resume=true --max-tries=99999 https://developer.nvidia.com/downloads/assets/tools/secure/nsight-systems/2025_3/nsight-systems-2025.3.1_2025.3.1.90-1_amd64.deb &&     apt-get update && apt-get install -y libxcb-cursor0 # buildkit
                        
# 2025-07-01 22:16:34  220.80MB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" --resume-retries 999 git+https://github.com/NVIDIA/apex.git # buildkit
                        
# 2025-07-01 21:41:13  3.82GB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c aria2c --max-tries=9999 https://developer.download.nvidia.com/compute/cudnn/9.8.0/local_installers/cudnn-local-repo-ubuntu2204-9.8.0_1.0-1_amd64.deb &&     dpkg -i cudnn-local-repo-ubuntu2204-9.8.0_1.0-1_amd64.deb &&     cp /var/cudnn-local-repo-ubuntu2204-9.8.0/cudnn-*-keyring.gpg /usr/share/keyrings/ &&     apt-get update &&     apt-get -y install cudnn-cuda-12 &&     rm cudnn-local-repo-ubuntu2204-9.8.0_1.0-1_amd64.deb # buildkit
                        
# 2025-07-01 21:36:51  47.96MB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c pip uninstall -y pynvml nvidia-ml-py &&     pip install --no-cache-dir --upgrade "nvidia-ml-py>=12.560.30" "fastapi[standard]>=0.115.0" "optree>=0.13.0" "pydantic>=2.9" "grpcio>=1.62.1" # buildkit
                        
# 2025-07-01 21:36:29  1.26GB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c ABI_FLAG=$(python -c "import torch; print('TRUE' if torch._C._GLIBCXX_USE_CXX11_ABI else 'FALSE')") &&     URL="https://github.com/Dao-AILab/flash-attention/releases/download/v2.8.0.post2/flash_attn-2.8.0.post2+cu12torch2.7cxx11abi${ABI_FLAG}-cp310-cp310-linux_x86_64.whl" &&     FILE="flash_attn-2.8.0.post2+cu12torch2.7cxx11abi${ABI_FLAG}-cp310-cp310-linux_x86_64.whl" &&     wget -nv "${URL}" &&     pip install --no-cache-dir "${FILE}" # buildkit
                        
# 2025-07-01 21:35:33  5.35GB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c pip install --resume-retries 999 --no-cache-dir torch==2.7.1 torchvision==0.22.1 torchaudio==2.7.1 # buildkit
                        
# 2025-06-18 20:17:53  0.00B 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c pip uninstall -y torch torchvision torchaudio     pytorch-quantization pytorch-triton torch-tensorrt     xgboost transformer_engine flash_attn apex megatron-core grpcio # buildkit
                        
# 2025-06-18 20:16:57  9.80MB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c pip config set global.index-url "${PIP_INDEX}" &&     pip config set global.extra-index-url "${PIP_INDEX}" &&     python -m pip install --upgrade pip # buildkit
                        
# 2025-06-18 20:16:40  70.18MB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c apt-get update &&     apt-get install -y tini aria2 libfreeimage3 libfreeimage-dev zlib1g htop &&     apt-get clean # buildkit
                        
# 2025-06-16 16:58:33  84.01MB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c apt-get update &&     apt-get install -y -o Dpkg::Options::="--force-confdef" systemd &&     apt-get clean # buildkit
                        
# 2025-06-16 16:57:56  2.79KB 执行命令并创建新的镜像层
RUN |2 APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple /bin/sh -c cp /etc/apt/sources.list /etc/apt/sources.list.bak &&     {     echo "deb ${APT_SOURCE} jammy main restricted universe multiverse";     echo "deb ${APT_SOURCE} jammy-updates main restricted universe multiverse";     echo "deb ${APT_SOURCE} jammy-backports main restricted universe multiverse";     echo "deb ${APT_SOURCE} jammy-security main restricted universe multiverse";     } > /etc/apt/sources.list # buildkit
                        
# 2025-06-16 16:57:56  0.00B 定义构建参数
ARG PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
                        
# 2025-06-16 16:57:56  0.00B 定义构建参数
ARG APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/
                        
# 2025-06-16 16:57:56  0.00B 设置环境变量 HF_HUB_ENABLE_HF_TRANSFER
ENV HF_HUB_ENABLE_HF_TRANSFER=1
                        
# 2025-06-16 16:57:56  0.00B 设置环境变量 PIP_ROOT_USER_ACTION
ENV PIP_ROOT_USER_ACTION=ignore
                        
# 2025-06-16 16:57:56  0.00B 设置环境变量 NODE_OPTIONS
ENV NODE_OPTIONS=
                        
# 2025-06-16 16:57:56  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2025-06-16 16:57:56  0.00B 设置环境变量 VLLM_WORKER_MULTIPROC_METHOD
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
                        
# 2025-06-16 16:57:56  0.00B 设置环境变量 MAX_JOBS
ENV MAX_JOBS=16
                        
# 2024-08-19 15:02:13  0.00B 添加元数据标签
LABEL com.nvidia.build.ref=25aae698093a80672c33aac448393478894f210e
                        
# 2024-08-19 15:02:13  0.00B 定义构建参数
ARG NVIDIA_BUILD_REF=25aae698093a80672c33aac448393478894f210e
                        
# 2024-08-19 15:02:13  0.00B 添加元数据标签
LABEL com.nvidia.build.id=107063150
                        
# 2024-08-19 15:02:13  0.00B 设置环境变量 NVIDIA_BUILD_ID
ENV NVIDIA_BUILD_ID=107063150
                        
# 2024-08-19 15:02:13  0.00B 定义构建参数
ARG NVIDIA_BUILD_ID=107063150
                        
# 2024-08-19 15:02:13  719.00B 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2024-08-19 15:02:13  84.48KB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 PYVER=3.10 /bin/sh -c ln -sf ${_CUDA_COMPAT_PATH}/lib.real ${_CUDA_COMPAT_PATH}/lib  && echo ${_CUDA_COMPAT_PATH}/lib > /etc/ld.so.conf.d/00-cuda-compat.conf  && ldconfig  && rm -f ${_CUDA_COMPAT_PATH}/lib # buildkit
                        
# 2024-08-19 15:02:13  0.00B 设置环境变量 CUDA_MODULE_LOADING
ENV CUDA_MODULE_LOADING=LAZY
                        
# 2024-08-19 15:02:13  0.00B 设置环境变量 TORCH_CUDNN_V8_API_ENABLED
ENV TORCH_CUDNN_V8_API_ENABLED=1
                        
# 2024-08-19 15:02:13  334.24MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 PYVER=3.10 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Transformer Engine in iGPU container because Version variable is set"; else     pip install --no-cache-dir --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@release_v${TRANSFORMER_ENGINE_VERSION}; fi # buildkit
                        
# 2024-08-19 14:50:45  401.25MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 PYVER=3.10 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Flash Attention in iGPU as it is a requirement for Transformer Engine"; else     env MAX_JOBS=4 pip install flash-attn==2.4.2; fi # buildkit
                        
# 2024-08-19 14:25:14  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2024-08-19 14:25:14  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-08-19 14:25:14  45.42MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 PYVER=3.10 /bin/sh -c pip install --no-cache-dir /opt/pytorch/torch_tensorrt/dist/*.whl # buildkit
                        
# 2024-08-19 14:22:24  0.00B 定义构建参数
ARG PYVER=3.10
                        
# 2024-08-19 14:22:24  151.65MB 复制新文件或目录到容器中
COPY torch_tensorrt/ /opt/pytorch/torch_tensorrt/ # buildkit
                        
# 2024-08-19 14:22:23  47.88MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip --version && python -c 'import sys; print(sys.platform)'     && pip install --no-cache-dir nvidia-pyindex     && pip install --extra-index-url https://urm.nvidia.com/artifactory/api/pypi/sw-tensorrt-pypi/simple --no-cache-dir polygraphy==0.49.12     && pip install --extra-index-url https://pypi.nvidia.com "nvidia-modelopt[torch]==${MODEL_OPT_VERSION}" # buildkit
                        
# 2024-08-19 14:22:14  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2024-08-19 14:22:14  6.50MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c set -x  && URL=$(VERIFY=1 /nvidia/build-scripts/installTRT.sh | sed -n "s/^.*\(http.*\)tar.*$/\1/p")tar  && FILE=$(wget -O - $URL | sed -n 's/^.*href="\(TensorRT[^"]*\)".*$/\1/p' | egrep -v "internal|safety")  && wget -q $URL/$FILE -O - | tar -xz  && PY=$(python -c 'import sys; print(str(sys.version_info[0])+str(sys.version_info[1]))')  && pip install TensorRT-*/python/tensorrt-*-cp$PY*.whl  && mv /usr/src/tensorrt /opt  && ln -s /opt/tensorrt /usr/src/tensorrt  && rm -r TensorRT-* # buildkit
                        
# 2024-08-19 14:21:19  51.00MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c chmod -R a+w . # buildkit
                        
# 2024-08-19 14:21:19  34.89MB 复制新文件或目录到容器中
COPY tutorials tutorials # buildkit
                        
# 2024-08-19 14:21:19  15.96MB 复制新文件或目录到容器中
COPY examples examples # buildkit
                        
# 2024-08-19 14:21:19  2.07KB 复制新文件或目录到容器中
COPY docker-examples docker-examples # buildkit
                        
# 2024-08-19 14:21:19  2.05KB 复制新文件或目录到容器中
COPY NVREADME.md README.md # buildkit
                        
# 2024-08-19 14:21:19  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-08-19 14:21:19  2.56GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c if [ "${L4T}" = "1" ]; then     echo "Not installing rapids for L4T build." ; else     find /rapids  -name "*-Linux.tar.gz" -exec     tar -C /usr --exclude="*.a" --exclude="bin/xgboost" --strip-components=1 -xvf {} \;  && find /rapids -name "*.whl"     ! -name "tornado-*"     ! -name "Pillow-*"     ! -name "certifi-*"     ! -name "protobuf-*" -exec     pip install --no-cache-dir {} + ; pip install numpy==1.24.4; fi # buildkit
                        
# 2024-08-19 14:20:53  201.84KB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir --disable-pip-version-check tabulate # buildkit
                        
# 2024-08-19 14:20:52  757.18MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c ( cd vision && export PYTORCH_VERSION=$(python -c "import torch; print(torch.__version__)") && CFLAGS="-g0" FORCE_CUDA=1 NVCC_APPEND_FLAGS="--threads 8" pip install --no-cache-dir --no-build-isolation --disable-pip-version-check . )  && ( cd vision && cmake -Bbuild -H. -GNinja -DWITH_CUDA=1 -DCMAKE_PREFIX_PATH=`python -c 'import torch;print(torch.utils.cmake_prefix_path)'` && cmake --build build --target install && rm -rf build )  && ( cd fuser && pip install -r requirements.txt &&  python setup.py -version-tag=a0+${NVFUSER_VERSION} install && python setup.py clean && cp $(find /usr/local/lib/python3.10/dist-packages/ -name libnvfuser_codegen.so)  /usr/local/lib/python3.10/dist-packages/torch/lib/ )  && ( cd lightning-thunder && python setup.py install && rm -rf build)  && BUILD_OPTIONS="--cpp_ext --cuda_ext --bnp --xentropy --deprecated_fused_adam --deprecated_fused_lamb --fast_multihead_attn --distributed_lamb --fast_layer_norm --transducer --distributed_adam --fmha --permutation_search --focal_loss --fused_conv_bias_relu --index_mul_2d --cudnn_gbn --group_norm --gpu_direct_storage"  && if [ "${L4T}" != "1" ]; then BUILD_OPTIONS="--fast_bottleneck --nccl_p2p --peer_memory --nccl_allocator ${BUILD_OPTIONS}"; fi && ( cd apex && CFLAGS="-g0" NVCC_APPEND_FLAGS="--threads 8" pip install -v --no-build-isolation --no-cache-dir --disable-pip-version-check --config-settings "--build-option=${BUILD_OPTIONS}" . && rm -rf build )  && ( cd lightning-thunder && mkdir tmp && cd tmp && git clone -b v${CUDNN_FRONTEND_VERSION} --recursive --single-branch https://github.com/NVIDIA/cudnn-frontend.git cudnn_frontend && cd cudnn_frontend && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . && cd ../../ && rm -rf tmp )  && ( cd pytorch/third_party/onnx && pip uninstall typing -y && CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . ) # buildkit
                        
# 2024-08-19 13:55:55  2.21KB 复制新文件或目录到容器中
COPY singularity/ /.singularity.d/ # buildkit
                        
# 2024-08-19 13:55:55  79.24MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c export COCOAPI_TAG=$(echo ${COCOAPI_VERSION} | sed 's/^.*+n//')  && pip install --disable-pip-version-check --no-cache-dir git+https://github.com/nvidia/cocoapi.git@${COCOAPI_TAG}#subdirectory=PythonAPI # buildkit
                        
# 2024-08-19 13:55:40  0.00B 设置环境变量 COCOAPI_VERSION
ENV COCOAPI_VERSION=2.0+nv0.8.0
                        
# 2024-08-19 13:55:40  660.39MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c if [ -z "${DALI_VERSION}" ] ; then   echo "Not Installing DALI for L4T Build." ; else   export DALI_PKG_SUFFIX="cuda${CUDA_VERSION%%.*}0"   && pip install --disable-pip-version-check --no-cache-dir                 --extra-index-url https://developer.download.nvidia.com/compute/redist                 --extra-index-url http://sqrl/dldata/pip-dali${DALI_URL_SUFFIX:-} --trusted-host sqrl         nvidia-dali-${DALI_PKG_SUFFIX}==${DALI_VERSION}; fi # buildkit
                        
# 2024-08-19 13:55:32  570.57MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir /tmp/dist/*.whl # buildkit
                        
# 2024-08-19 13:55:28  11.45MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c cd pytorch && pip install --no-cache-dir -v -r /opt/pytorch/pytorch/requirements.txt # buildkit
                        
# 2024-08-19 13:55:27  1.90GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install /opt/transfer/torch*.whl      && patchelf --set-rpath '/usr/local/lib' /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_global_deps.so # buildkit
                        
# 2024-08-19 13:55:08  0.00B 设置环境变量 USE_EXPERIMENTAL_CUDNN_V8_API
ENV USE_EXPERIMENTAL_CUDNN_V8_API=1
                        
# 2024-08-19 13:55:08  0.00B 设置环境变量 TORCH_ALLOW_TF32_CUBLAS_OVERRIDE
ENV TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
                        
# 2024-08-19 13:55:08  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2024-08-19 13:55:08  0.00B 设置环境变量 PYTORCH_HOME
ENV PYTORCH_HOME=/opt/pytorch/pytorch
                        
# 2024-08-19 13:55:08  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX
                        
# 2024-08-19 13:55:08  0.00B 设置环境变量 UCC_CL_BASIC_TLS
ENV UCC_CL_BASIC_TLS=^sharp
                        
# 2024-08-19 13:55:08  53.68MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c OPENCV_VERSION=4.7.0 &&     cd / &&     wget -q -O - https://github.com/opencv/opencv/archive/${OPENCV_VERSION}.tar.gz | tar -xzf - &&     cd /opencv-${OPENCV_VERSION} &&     cmake -GNinja -Bbuild -H.           -DWITH_CUDA=OFF -DWITH_1394=OFF           -DPYTHON3_PACKAGES_PATH="/usr/local/lib/python${PYVER}/dist-packages"           -DBUILD_opencv_cudalegacy=OFF -DBUILD_opencv_stitching=OFF -DWITH_IPP=OFF -DWITH_PROTOBUF=OFF &&     cmake --build build --target install &&     cd modules/python/package &&     pip install --no-cache-dir --disable-pip-version-check -v . &&     rm -rf /opencv-${OPENCV_VERSION} # buildkit
                        
# 2024-08-19 13:53:25  0.00B 声明容器运行时监听的端口
EXPOSE map[6006/tcp:{}]
                        
# 2024-08-19 13:53:25  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2024-08-19 13:53:25  0.00B 设置环境变量 TENSORBOARD_PORT
ENV TENSORBOARD_PORT=6006
                        
# 2024-08-19 13:53:25  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2024-08-19 13:53:25  248.00B 复制新文件或目录到容器中
COPY jupyter_config/settings.jupyterlab-settings /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/ # buildkit
                        
# 2024-08-19 13:53:25  236.00B 复制新文件或目录到容器中
COPY jupyter_config/manager.jupyterlab-settings /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/ # buildkit
                        
# 2024-08-19 13:53:25  554.00B 复制新文件或目录到容器中
COPY jupyter_config/jupyter_notebook_config.py /usr/local/etc/jupyter/ # buildkit
                        
# 2024-08-19 13:53:25  17.26MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir jupyterlab-tensorboard-pro jupytext     black isort  && mkdir -p /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/  && jupyter lab clean # buildkit
                        
# 2024-08-19 13:53:23  27.81KB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c PATCHED_FILE=$(python -c "from tensorboard.plugins.core import core_plugin as _; print(_.__file__)") &&     sed -i 's/^\( *"--bind_all",\)$/\1 default=True,/' "$PATCHED_FILE" &&     test $(grep '^ *"--bind_all", default=True,$' "$PATCHED_FILE" | wc -l) -eq 1 # buildkit
                        
# 2024-08-19 13:53:23  184.00MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c git config --global url."https://github".insteadOf git://github &&     pip install --no-cache-dir 'jupyterlab>=4.1.0,<5.0.0a0' notebook tensorboard==2.16.2     jupyterlab_code_formatter python-hostlist # buildkit
                        
# 2024-08-19 13:53:13  2.16GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir         numpy==1.24.4         scipy==1.11.3         "PyYAML>=5.4.1"         astunparse         typing_extensions         cffi         spacy         mock         tqdm         librosa==0.10.1         expecttest==0.1.3         hypothesis==5.35.1         xdoctest==1.0.2         pytest==8.1.1         pytest-xdist         pytest-rerunfailures         pytest-shard         pytest-flakefinder         pybind11         Cython         "regex>=2020.1.8"         protobuf==4.24.4 &&     if [[ $TARGETARCH = "amd64" ]] ; then pip install --no-cache-dir mkl==2021.1.1 mkl-include==2021.1.1 mkl-devel==2021.1.1 ;     find /usr/local/lib -maxdepth 1 -type f -regex '.*\/lib\(tbb\|mkl\).*\.so\($\|\.[0-9]*\.[0-9]*\)' -exec rm -v {} + ; fi # buildkit
                        
# 2024-08-19 13:52:40  0.00B 设置环境变量 PIP_DEFAULT_TIMEOUT
ENV PIP_DEFAULT_TIMEOUT=100
                        
# 2024-08-19 13:52:40  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-08-19 13:52:40  0.00B 设置环境变量 PYTHONIOENCODING
ENV PYTHONIOENCODING=utf-8
                        
# 2024-08-19 13:52:40  1.39GB 复制新文件或目录到容器中
COPY . . # buildkit
                        
# 2024-08-17 15:43:12  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2024-08-19 01:33:25  0.00B 设置环境变量 NVPL_LAPACK_MATH_MODE
ENV NVPL_LAPACK_MATH_MODE=PEDANTIC
                        
# 2024-08-19 01:33:25  0.00B 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c if [ $TARGETARCH = "arm64" ]; then cd /opt &&     curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/nvpl_slim_24.04/sbsa/nvpl_slim_24.04.tar" --output nvpl_slim_24.04.tar &&     tar -xf nvpl_slim_24.04.tar &&     cp -r nvpl_slim_24.04/lib/* /usr/local/lib &&     cp -r nvpl_slim_24.04/include/* /usr/local/include &&     rm -rf nvpl_slim_24.04.tar nvpl_slim_24.04 ; fi # buildkit
                        
# 2024-08-17 15:43:12  46.71MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/OpenBLAS/0.3.24-$(uname -m)/OpenBLAS-0.3.24-$(uname -m).tar.gz" --output OpenBLAS.tar.gz &&     tar -xf OpenBLAS.tar.gz -C /usr/local/ &&     rm OpenBLAS.tar.gz # buildkit
                        
# 2024-08-17 15:43:12  71.45MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir pip 'setuptools<71' &&     pip install --no-cache-dir cmake # buildkit
                        
# 2024-08-17 15:43:08  24.34MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c curl -O https://bootstrap.pypa.io/get-pip.py &&     python get-pip.py &&     rm get-pip.py # buildkit
                        
# 2024-08-17 15:43:03  0.00B 设置环境变量 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION
ENV PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
                        
# 2024-08-17 15:43:03  198.72MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.08 PYTORCH_BUILD_VERSION=2.5.0a0+872d972 NVFUSER_BUILD_VERSION=1d02b13 TARGETARCH=amd64 PYVER=3.10 L4T=0 /bin/sh -c export PYSFX=`echo "$PYVER" | cut -c1-1` &&     export DEBIAN_FRONTEND=noninteractive &&     apt-get update &&     apt-get install -y --no-install-recommends         python$PYVER-dev         python$PYSFX         python$PYSFX-dev         python$PYSFX-distutils         python-is-python$PYSFX         autoconf         automake         libatlas-base-dev         libgoogle-glog-dev         libbz2-dev         libc-ares2         libre2-9         libleveldb-dev         liblmdb-dev         libprotobuf-dev         libsnappy-dev         libtool         nasm         protobuf-compiler         pkg-config         unzip         sox         libsndfile1         libpng-dev         libhdf5-103         libhdf5-dev         gfortran         rapidjson-dev         ninja-build         libedit-dev         build-essential         patchelf      && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-08-17 15:43:03  0.00B 定义构建参数
ARG L4T=0
                        
# 2024-08-17 15:43:03  0.00B 定义构建参数
ARG PYVER=3.10
                        
# 2024-08-17 15:43:03  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
# 2024-08-17 15:43:03  0.00B 添加元数据标签
LABEL com.nvidia.pytorch.version=2.5.0a0+872d972
                        
# 2024-08-17 15:43:03  0.00B 设置环境变量 NVFUSER_BUILD_VERSION NVFUSER_VERSION
ENV NVFUSER_BUILD_VERSION=1d02b13 NVFUSER_VERSION=1d02b13
                        
# 2024-08-17 15:43:03  0.00B 设置环境变量 PYTORCH_BUILD_VERSION PYTORCH_VERSION PYTORCH_BUILD_NUMBER NVIDIA_PYTORCH_VERSION
ENV PYTORCH_BUILD_VERSION=2.5.0a0+872d972 PYTORCH_VERSION=2.5.0a0+872d972 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.08
                        
# 2024-08-17 15:43:03  0.00B 定义构建参数
ARG NVFUSER_BUILD_VERSION=1d02b13
                        
# 2024-08-17 15:43:03  0.00B 定义构建参数
ARG PYTORCH_BUILD_VERSION=2.5.0a0+872d972
                        
# 2024-08-17 15:43:03  0.00B 定义构建参数
ARG NVIDIA_PYTORCH_VERSION=24.08
                        
# 2024-08-17 15:43:03  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=PyTorch
                        
# 2024-08-17 13:26:56  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:
                        
# 2024-08-17 13:26:56  984.03MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 TARGETARCH=amd64 /bin/sh -c export DEVEL=1 BASE=0  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUDA.sh  && /nvidia/build-scripts/installLIBS.sh  && if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then /nvidia/build-scripts/installNCCL.sh; fi  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installCUSPARSELT.sh  && if [ -f "/tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch" ]; then patch -p0 < /tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch; fi  && rm -f /tmp/cuda-*.patch # buildkit
                        
# 2024-08-17 13:20:04  1.49KB 复制新文件或目录到容器中
COPY cuda-*.patch /tmp # buildkit
                        
# 2024-08-17 13:20:04  0.00B 设置环境变量 OMPI_MCA_coll_hcoll_enable
ENV OMPI_MCA_coll_hcoll_enable=0
                        
# 2024-08-17 13:20:04  0.00B 设置环境变量 OPAL_PREFIX PATH
ENV OPAL_PREFIX=/opt/hpcx/ompi PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin
                        
# 2024-08-17 13:20:04  229.15MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 TARGETARCH=amd64 /bin/sh -c cd /nvidia  && ( export DEBIAN_FRONTEND=noninteractive        && apt-get update                            && apt-get install -y --no-install-recommends              libibverbs1                                  libibverbs-dev                               librdmacm1                                   librdmacm-dev                                libibumad3                                   libibumad-dev                                ibverbs-utils                                ibverbs-providers                     && rm -rf /var/lib/apt/lists/*               && rm $(dpkg-query -L                                    libibverbs-dev                               librdmacm-dev                                libibumad-dev                            | grep "\(\.so\|\.a\)$")          )                                            && ( cd opt/gdrcopy/                              && dpkg -i libgdrapi_*.deb                   )                                         && ( cp -r opt/hpcx /opt/                                         && cp etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/          && ln -sf /opt/hpcx/ompi /usr/local/mpi                      && ln -sf /opt/hpcx/ucx  /usr/local/ucx                      && sed -i 's/^\(hwloc_base_binding_policy\) = core$/\1 = none/' /opt/hpcx/ompi/etc/openmpi-mca-params.conf         && sed -i 's/^\(btl = self\)$/#\1/'                             /opt/hpcx/ompi/etc/openmpi-mca-params.conf       )                                                         && ldconfig # buildkit
                        
# 2024-08-17 13:20:04  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
# 2024-08-17 13:20:04  0.00B 设置环境变量 GDRCOPY_VERSION HPCX_VERSION MOFED_VERSION OPENUCX_VERSION OPENMPI_VERSION RDMACORE_VERSION
ENV GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.19 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.17.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0
                        
# 2024-08-17 13:20:04  0.00B 定义构建参数
ARG OPENMPI_VERSION=4.1.7
                        
# 2024-08-17 13:20:04  0.00B 定义构建参数
ARG OPENUCX_VERSION=1.17.0
                        
# 2024-08-17 13:20:04  0.00B 定义构建参数
ARG MOFED_VERSION=5.4-rdmacore39.0
                        
# 2024-08-17 13:20:04  0.00B 定义构建参数
ARG RDMACORE_VERSION=39.0
                        
# 2024-08-17 13:20:04  0.00B 定义构建参数
ARG HPCX_VERSION=2.19
                        
# 2024-08-17 13:20:04  0.00B 定义构建参数
ARG GDRCOPY_VERSION=2.3.1-1
                        
# 2024-08-17 13:19:54  84.90MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         build-essential         git         libglib2.0-0         less         libnl-route-3-200         libnl-3-dev         libnl-route-3-dev         libnuma-dev         libnuma1         libpmi2-0-dev         nano         numactl         openssh-client         vim         wget  && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-08-17 12:59:28  148.72KB 复制新文件或目录到容器中
COPY NVIDIA_Deep_Learning_Container_License.pdf /workspace/ # buildkit
                        
# 2024-08-17 12:59:28  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2024-08-17 12:59:28  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2024-08-17 12:59:28  14.85KB 复制新文件或目录到容器中
COPY entrypoint/ /opt/nvidia/ # buildkit
                        
# 2024-08-17 12:59:28  0.00B 设置环境变量 PATH LD_LIBRARY_PATH NVIDIA_VISIBLE_DEVICES NVIDIA_DRIVER_CAPABILITIES
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
                        
# 2024-08-17 12:59:28  0.00B 定义构建参数
ARG _LIBPATH_SUFFIX=
                        
# 2024-08-17 12:59:28  46.00B 执行命令并创建新的镜像层
RUN |24 CUDA_VERSION=12.6.0.022 CUDA_DRIVER_VERSION=560.35.03 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.22.3 CUBLAS_VERSION=12.6.0.22 CUFFT_VERSION=11.2.6.28 CURAND_VERSION=10.3.7.37 CUSPARSE_VERSION=12.5.2.23 CUSOLVER_VERSION=11.6.4.38 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.23 NVJPEG_VERSION=12.3.3.23 CUDNN_VERSION=9.3.0.75 CUDNN_FRONTEND_VERSION=1.5.2 TRT_VERSION=10.3.0.26+cuda12.5.1.007 TRTOSS_VERSION=24.08 NSIGHT_SYSTEMS_VERSION=2024.4.2.133 NSIGHT_COMPUTE_VERSION=2024.3.0.15 CUSPARSELT_VERSION=0.6.2.3 DALI_VERSION=1.40.0 DALI_BUILD=16741769 POLYGRAPHY_VERSION=0.49.13 TRANSFORMER_ENGINE_VERSION=1.9 MODEL_OPT_VERSION=0.15.0 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf  && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2024-08-17 12:59:27  13.39KB 复制文件或目录到容器中
ADD docs.tgz / # buildkit
                        
# 2024-08-17 12:59:27  0.00B 设置环境变量 DALI_VERSION DALI_BUILD POLYGRAPHY_VERSION TRANSFORMER_ENGINE_VERSION MODEL_OPT_VERSION
ENV DALI_VERSION=1.40.0 DALI_BUILD=16741769 POLYGRAPHY_VERSION=0.49.13 TRANSFORMER_ENGINE_VERSION=1.9 MODEL_OPT_VERSION=0.15.0
                        
# 2024-08-17 12:59:27  0.00B 定义构建参数
ARG MODEL_OPT_VERSION=0.15.0
                        
# 2024-08-17 12:59:27  0.00B 定义构建参数
ARG TRANSFORMER_ENGINE_VERSION=1.9
                        
# 2024-08-17 12:59:27  0.00B 定义构建参数
ARG POLYGRAPHY_VERSION=0.49.13
                        
# 2024-08-17 12:59:27  0.00B 定义构建参数
ARG DALI_BUILD=16741769
                        
# 2024-08-17 12:59:27  0.00B 定义构建参数
ARG DALI_VERSION=1.40.0
                        
# 2024-08-17 12:59:27  0.00B 添加元数据标签
LABEL com.nvidia.nccl.version=2.22.3 com.nvidia.cublas.version=12.6.0.22 com.nvidia.cufft.version=11.2.6.28 com.nvidia.curand.version=10.3.7.37 com.nvidia.cusparse.version=12.5.2.23 com.nvidia.cusparselt.version=0.6.2.3 com.nvidia.cusolver.version=11.6.4.38 com.nvidia.cutensor.version=2.0.2.5 com.nvidia.npp.version=12.3.1.23 com.nvidia.nvjpeg.version=12.3.3.23 com.nvidia.cudnn.version=9.3.0.75 com.nvidia.tensorrt.version=10.3.0.26+cuda12.5.1.007 com.nvidia.tensorrtoss.version=24.08 com.nvidia.nsightsystems.version=2024.4.2.133 com.nvidia.nsightcompute.version=2024.3.0.15
                        
# 2024-08-17 12:59:27  6.43GB 执行命令并创建新的镜像层
RUN |19 CUDA_VERSION=12.6.0.022 CUDA_DRIVER_VERSION=560.35.03 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.22.3 CUBLAS_VERSION=12.6.0.22 CUFFT_VERSION=11.2.6.28 CURAND_VERSION=10.3.7.37 CUSPARSE_VERSION=12.5.2.23 CUSOLVER_VERSION=11.6.4.38 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.23 NVJPEG_VERSION=12.3.3.23 CUDNN_VERSION=9.3.0.75 CUDNN_FRONTEND_VERSION=1.5.2 TRT_VERSION=10.3.0.26+cuda12.5.1.007 TRTOSS_VERSION=24.08 NSIGHT_SYSTEMS_VERSION=2024.4.2.133 NSIGHT_COMPUTE_VERSION=2024.3.0.15 CUSPARSELT_VERSION=0.6.2.3 /bin/sh -c /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installCUSPARSELT.sh  && if [ -z "${JETPACK_HOST_MOUNTS}" ]; then       /nvidia/build-scripts/installNCCL.sh;     fi; # buildkit
                        
# 2024-08-17 12:54:52  0.00B 设置环境变量 NCCL_VERSION CUBLAS_VERSION CUFFT_VERSION CURAND_VERSION CUSPARSE_VERSION CUSPARSELT_VERSION CUSOLVER_VERSION CUTENSOR_VERSION NPP_VERSION NVJPEG_VERSION CUDNN_VERSION CUDNN_FRONTEND_VERSION TRT_VERSION TRTOSS_VERSION NSIGHT_SYSTEMS_VERSION NSIGHT_COMPUTE_VERSION
ENV NCCL_VERSION=2.22.3 CUBLAS_VERSION=12.6.0.22 CUFFT_VERSION=11.2.6.28 CURAND_VERSION=10.3.7.37 CUSPARSE_VERSION=12.5.2.23 CUSPARSELT_VERSION=0.6.2.3 CUSOLVER_VERSION=11.6.4.38 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.23 NVJPEG_VERSION=12.3.3.23 CUDNN_VERSION=9.3.0.75 CUDNN_FRONTEND_VERSION=1.5.2 TRT_VERSION=10.3.0.26+cuda12.5.1.007 TRTOSS_VERSION=24.08 NSIGHT_SYSTEMS_VERSION=2024.4.2.133 NSIGHT_COMPUTE_VERSION=2024.3.0.15
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG CUSPARSELT_VERSION=0.6.2.3
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG NSIGHT_COMPUTE_VERSION=2024.3.0.15
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG NSIGHT_SYSTEMS_VERSION=2024.4.2.133
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG TRTOSS_VERSION=24.08
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG TRT_VERSION=10.3.0.26+cuda12.5.1.007
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG CUDNN_FRONTEND_VERSION=1.5.2
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG CUDNN_VERSION=9.3.0.75
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG NVJPEG_VERSION=12.3.3.23
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG NPP_VERSION=12.3.1.23
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG CUTENSOR_VERSION=2.0.2.5
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG CUSOLVER_VERSION=11.6.4.38
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG CUSPARSE_VERSION=12.5.2.23
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG CURAND_VERSION=10.3.7.37
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG CUFFT_VERSION=11.2.6.28
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG CUBLAS_VERSION=12.6.0.22
                        
# 2024-08-17 12:54:52  0.00B 定义构建参数
ARG NCCL_VERSION=2.22.3
                        
# 2024-08-17 12:54:52  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver com.nvidia.cuda.version=9.0
                        
# 2024-08-17 12:54:52  0.00B 设置环境变量 _CUDA_COMPAT_PATH ENV BASH_ENV SHELL NVIDIA_REQUIRE_CUDA
ENV _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0
                        
# 2024-08-17 12:54:52  58.91KB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.6.0.022 CUDA_DRIVER_VERSION=560.35.03 JETPACK_HOST_MOUNTS= /bin/sh -c cp -vprd /nvidia/. /  &&  patch -p0 < /etc/startup_scripts.patch  &&  rm -f /etc/startup_scripts.patch # buildkit
                        
# 2024-08-17 12:54:52  459.75MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.6.0.022 CUDA_DRIVER_VERSION=560.35.03 JETPACK_HOST_MOUNTS= /bin/sh -c /nvidia/build-scripts/installCUDA.sh # buildkit
                        
# 2024-08-17 12:54:33  0.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.6.0.022 CUDA_DRIVER_VERSION=560.35.03 JETPACK_HOST_MOUNTS= /bin/sh -c if [ -n "${JETPACK_HOST_MOUNTS}" ]; then        echo "/usr/lib/aarch64-linux-gnu/tegra" > /etc/ld.so.conf.d/nvidia-tegra.conf     && echo "/usr/lib/aarch64-linux-gnu/tegra-egl" >> /etc/ld.so.conf.d/nvidia-tegra.conf;     fi # buildkit
                        
# 2024-08-17 12:54:33  0.00B 设置环境变量 CUDA_VERSION CUDA_DRIVER_VERSION CUDA_CACHE_DISABLE NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS
ENV CUDA_VERSION=12.6.0.022 CUDA_DRIVER_VERSION=560.35.03 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
                        
# 2024-08-17 12:54:33  0.00B 定义构建参数
ARG JETPACK_HOST_MOUNTS=
                        
# 2024-08-17 12:54:33  0.00B 定义构建参数
ARG CUDA_DRIVER_VERSION=560.35.03
                        
# 2024-08-17 12:54:33  0.00B 定义构建参数
ARG CUDA_VERSION=12.6.0.022
                        
# 2024-08-17 12:54:33  324.29MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         apt-utils         build-essential         ca-certificates         curl         libncurses5         libncursesw5         patch         wget         rsync         unzip         jq         gnupg         libtcmalloc-minimal4 # buildkit
                        
# 2024-08-13 17:27:24  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2024-08-13 17:27:24  77.86MB 
/bin/sh -c #(nop) ADD file:2f8a54a5efd080fb81efea702b4e3e07d946eec7563fb2281bd28950c10ec462 in / 
                        
# 2024-08-13 17:27:22  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2024-08-13 17:27:22  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2024-08-13 17:27:22  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2024-08-13 17:27:22  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:eafb9b06633db2c75b5b9e4112b6cd566b7f7fb39889d20be18ba440ec617bd0",
    "RepoTags": [
        "verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0"
    ],
    "RepoDigests": [
        "verlai/verl@sha256:5d1b0ef5f61ee6a5899725fc70c8c236467b6406706aebc04f523e3e1fe7d725",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/verlai/verl@sha256:dd321b5d99141f4083e05db435509b0e16969c7c6743f9bcaefa03ba5a220591"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-07-04T11:27:22.048681476Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "6006/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/workspace/deepep-nvshmem/install/bin:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin",
            "CUDA_VERSION=12.6.0.022",
            "CUDA_DRIVER_VERSION=560.35.03",
            "CUDA_CACHE_DISABLE=1",
            "NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=",
            "_CUDA_COMPAT_PATH=/usr/local/cuda/compat",
            "ENV=/etc/shinit_v2",
            "BASH_ENV=/etc/bash.bashrc",
            "SHELL=/bin/bash",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=9.0",
            "NCCL_VERSION=2.22.3",
            "CUBLAS_VERSION=12.6.0.22",
            "CUFFT_VERSION=11.2.6.28",
            "CURAND_VERSION=10.3.7.37",
            "CUSPARSE_VERSION=12.5.2.23",
            "CUSPARSELT_VERSION=0.6.2.3",
            "CUSOLVER_VERSION=11.6.4.38",
            "CUTENSOR_VERSION=2.0.2.5",
            "NPP_VERSION=12.3.1.23",
            "NVJPEG_VERSION=12.3.3.23",
            "CUDNN_VERSION=9.3.0.75",
            "CUDNN_FRONTEND_VERSION=1.5.2",
            "TRT_VERSION=10.3.0.26+cuda12.5.1.007",
            "TRTOSS_VERSION=24.08",
            "NSIGHT_SYSTEMS_VERSION=2024.4.2.133",
            "NSIGHT_COMPUTE_VERSION=2024.3.0.15",
            "DALI_VERSION=1.40.0",
            "DALI_BUILD=16741769",
            "POLYGRAPHY_VERSION=0.49.13",
            "TRANSFORMER_ENGINE_VERSION=1.9",
            "MODEL_OPT_VERSION=0.15.0",
            "LD_LIBRARY_PATH=/workspace/deepep-nvshmem/install/lib:/usr/local/x86_64-linux-gnu:/usr/local/mpi/lib:/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility,video",
            "NVIDIA_PRODUCT_NAME=PyTorch",
            "GDRCOPY_VERSION=2.3.1-1",
            "HPCX_VERSION=2.19",
            "MOFED_VERSION=5.4-rdmacore39.0",
            "OPENUCX_VERSION=1.17.0",
            "OPENMPI_VERSION=4.1.7",
            "RDMACORE_VERSION=39.0",
            "OPAL_PREFIX=/opt/hpcx/ompi",
            "OMPI_MCA_coll_hcoll_enable=0",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs:",
            "PYTORCH_BUILD_VERSION=2.5.0a0+872d972",
            "PYTORCH_VERSION=2.5.0a0+872d972",
            "PYTORCH_BUILD_NUMBER=0",
            "NVIDIA_PYTORCH_VERSION=24.08",
            "NVFUSER_BUILD_VERSION=1d02b13",
            "NVFUSER_VERSION=1d02b13",
            "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python",
            "NVPL_LAPACK_MATH_MODE=PEDANTIC",
            "PYTHONIOENCODING=utf-8",
            "LC_ALL=C.UTF-8",
            "PIP_DEFAULT_TIMEOUT=100",
            "JUPYTER_PORT=8888",
            "TENSORBOARD_PORT=6006",
            "UCC_CL_BASIC_TLS=^sharp",
            "TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX",
            "PYTORCH_HOME=/opt/pytorch/pytorch",
            "CUDA_HOME=/usr/local/cuda",
            "TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1",
            "USE_EXPERIMENTAL_CUDNN_V8_API=1",
            "COCOAPI_VERSION=2.0+nv0.8.0",
            "TORCH_CUDNN_V8_API_ENABLED=1",
            "CUDA_MODULE_LOADING=LAZY",
            "NVIDIA_BUILD_ID=107063150",
            "MAX_JOBS=16",
            "VLLM_WORKER_MULTIPROC_METHOD=spawn",
            "DEBIAN_FRONTEND=noninteractive",
            "NODE_OPTIONS=",
            "PIP_ROOT_USER_ACTION=ignore",
            "HF_HUB_ENABLE_HF_TRANSFER=1",
            "CPATH=/usr/local/mpi/include:",
            "GDRCOPY_HOME=/workspace/gdrcopy",
            "NVSHMEM_DIR=/workspace/deepep-nvshmem/install"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.build.id": "107063150",
            "com.nvidia.build.ref": "25aae698093a80672c33aac448393478894f210e",
            "com.nvidia.cublas.version": "12.6.0.22",
            "com.nvidia.cuda.version": "9.0",
            "com.nvidia.cudnn.version": "9.3.0.75",
            "com.nvidia.cufft.version": "11.2.6.28",
            "com.nvidia.curand.version": "10.3.7.37",
            "com.nvidia.cusolver.version": "11.6.4.38",
            "com.nvidia.cusparse.version": "12.5.2.23",
            "com.nvidia.cusparselt.version": "0.6.2.3",
            "com.nvidia.cutensor.version": "2.0.2.5",
            "com.nvidia.nccl.version": "2.22.3",
            "com.nvidia.npp.version": "12.3.1.23",
            "com.nvidia.nsightcompute.version": "2024.3.0.15",
            "com.nvidia.nsightsystems.version": "2024.4.2.133",
            "com.nvidia.nvjpeg.version": "12.3.3.23",
            "com.nvidia.pytorch.version": "2.5.0a0+872d972",
            "com.nvidia.tensorrt.version": "10.3.0.26+cuda12.5.1.007",
            "com.nvidia.tensorrtoss.version": "24.08",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 35621346517,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/3631de8c483d88b8362eeadeb14541fe164925696236be3fc0082f81e04e726f/diff:/var/lib/docker/overlay2/62cae089e47aa622317772fb479a0225be8fa9392691468ac0102e9b02fde819/diff:/var/lib/docker/overlay2/1eb35d9eeb36cddc8a6dc937388dde4574341e3443f67c8019ebadef9dc6fdfc/diff:/var/lib/docker/overlay2/4ad73c8adec70027ce14481ac9595561e376cef0079153b95b2c59bc1ced6cde/diff:/var/lib/docker/overlay2/0267896e4b77bf3a4f75d2e4a6f1993cbaf594eab3bb002e7bc447472fc6d165/diff:/var/lib/docker/overlay2/55a6a695903fc0fc0cdeac1c7f26c4fa7da03b4929fa3bcfd17bda070fe66f58/diff:/var/lib/docker/overlay2/142db7a74117d452eec32368d0643787f1d1e41bfd219b72122f33973d22abb9/diff:/var/lib/docker/overlay2/d68c58807b60010f7ef24cee0cd4f440fd300c6e0794fff79c20c9da37b9ba06/diff:/var/lib/docker/overlay2/9390117f64314faf75fe41ce657c04da456ead0c7a808d799da236594f064516/diff:/var/lib/docker/overlay2/020e157f3743052dabd01ac8c0ae0fe02f86ac79ebae1ece41eb643e80ab0380/diff:/var/lib/docker/overlay2/0ce1bd419f5e83856635f53aae184205b652103c867106135101fab4792af2f9/diff:/var/lib/docker/overlay2/f3ccfec01da594a309efee9ec0b53f98d98b8a2a0cf506d165c23cdae394140d/diff:/var/lib/docker/overlay2/15a8fc1d03433e48caee139af357177ee819928228097497033154e4d0c1c7e1/diff:/var/lib/docker/overlay2/3239de0634f4def4248aa675c660e44c70a74bf447850134300f6de2536bc49c/diff:/var/lib/docker/overlay2/9be5b79dc00c0ea902ed0d8ae85443f664d50d90c753f680492bcf3ad0ef94d0/diff:/var/lib/docker/overlay2/a27035e77f7d3c01cedc15153bff0a73ed75e67dbe3d6328ff5467f255d1f6cc/diff:/var/lib/docker/overlay2/94d4d298aacf2f029f7b52af1beedb7ce44bb00fe252a17f10bc6faea0e2dc30/diff:/var/lib/docker/overlay2/91a04481a7305de65b174981dba42c15a2bbf4e14edd56ab687b8e3c92ab3c5a/diff:/var/lib/docker/overlay2/cb4005a6e3a19cae5a547be2381e193bff63ecda4442687f06762fe4d43631aa/diff:/var/lib/docker/overlay2/485577d7341c2558c8f08c1b9a011f64b512ace5759e37951765ecba8c7e5b11/diff:/var/lib/docker/overlay2/d958b6cc470948c5a99492f6d2816e420af5784abd5b39a8c222ac3fb0c4e4c5/diff:/var/lib/docker/overlay2/dec6d380e74ab5e1d61b146566666d2bd74278c03dc9bd8b2d920756349746e1/diff:/var/lib/docker/overlay2/88e4c4162aaf3067b792885eb38b21f5ad61f29d19fe61ca28dc9adf676bb9c4/diff:/var/lib/docker/overlay2/a675f90f20f4ac5cdd23aeaaf96b8655f83916e489b5b16a1265fa2dbcd46684/diff:/var/lib/docker/overlay2/d2b87d45988c359a1e9e3370052171a494ce477bba4491dc6d7a48146db0ffe2/diff:/var/lib/docker/overlay2/e4b2199391cbe4d1b0780c052a5e9b3beea6db22accba2d56cce2cf44dcfe216/diff:/var/lib/docker/overlay2/2f17c553fc15e9ff77c7871d1cc858fead8804c8f8386d4fb27743b65ac8ba79/diff:/var/lib/docker/overlay2/9ba50477712f5e0030ff3170ee170e74f8e0803887506a66146769c354527ff0/diff:/var/lib/docker/overlay2/4286dc89980f4f7a9b0c7b66e7b440722df1124a7ba01e494b8da838f1e41b13/diff:/var/lib/docker/overlay2/0d59910f1364b878c2818f609352a547f757e60c17e433474b2daf3b7da7885e/diff:/var/lib/docker/overlay2/33c678d4cb7680e69090a3ef05adb9c9abea31dc2ad8393a82c0ff00b35beb23/diff:/var/lib/docker/overlay2/a1f843efb290887e7cfe0589c5da3cadbfa3b4bb50b7174912a7ef871e9f6acf/diff:/var/lib/docker/overlay2/5f7ca8336de03c9c3ace732c243c2677a765a4110ea5dea9c1f792c7332465fb/diff:/var/lib/docker/overlay2/81fe87c0f45f19b6ca4089d7ab7826c1e904d4c8767ac7017b5fb672a485e47f/diff:/var/lib/docker/overlay2/dac47a1d41e8926107ca646587ee99085731f283dc0559fd9a4df601d84c17fa/diff:/var/lib/docker/overlay2/ee40f16e8abc4b98f1cb0f37b6200988ccb341c28b6c9ac6ede9d6ab2f64537d/diff:/var/lib/docker/overlay2/e8f7545dffd69238d5451dca302daaf93ce3a244e2356d8835c8066133f776fd/diff:/var/lib/docker/overlay2/1581bbef880068024de90d25359d095252a8add3a3d569271d04b7e2c11523dd/diff:/var/lib/docker/overlay2/f8dd9859bcfd9e4a29d9a2a50f723927233fe3be2ddfd6e88e195ef413140884/diff:/var/lib/docker/overlay2/77ac20aa8e7ddbecb5bad8fd10636795fba3573fe07a244a788cb9ba07641923/diff:/var/lib/docker/overlay2/e5a8e1872e2e023d0970efdc234181601d402ccf8c56b34963af7ee594e544d8/diff:/var/lib/docker/overlay2/a069840a5c02c3b0acfe38f0305d3dd89413b94c59e4510af4ab0e6f2e862be2/diff:/var/lib/docker/overlay2/119ed700a34059e9618355038df165d1bfe67d1d0431bfdc58159e4bbf4c346d/diff:/var/lib/docker/overlay2/a73abe429ec3282499c865adb2a4528e70b30cdc2aeb55d0160a5ec2ae79b61d/diff:/var/lib/docker/overlay2/6e37e9c46c780b56bcdfbb3f74acf277bf5b4bb001bbea4abc5ea07c8afe1bf0/diff:/var/lib/docker/overlay2/be30c028d913badacb06c1cb721c1b1b8acb9f160921434c766c4db9b4a57ad6/diff:/var/lib/docker/overlay2/63cb33008dd80a09ac7655ce041c16534b4656aba4e96cd4c618bd1335ce2427/diff:/var/lib/docker/overlay2/b456ced9b2028c07fe58a1fb459bd1acddce2b103c76457bca6343045ba361b1/diff:/var/lib/docker/overlay2/10fb0bfd8edc3083ad1a4e8f3e0a36fe44140b49d9a6554c75b1fe8297d0d4e7/diff:/var/lib/docker/overlay2/98591a5a8ae795fc3c6493c980039f36bdafc883ec86ad1009a157f6e19de884/diff:/var/lib/docker/overlay2/75175a8592640efc30918bdbb2aff36507da14a5d86adac4c50f9a3c2ba453a4/diff:/var/lib/docker/overlay2/41e22dacb5613318b480c8b7fd6f0865af83902d6b8324ecac6f86b9b740aaba/diff:/var/lib/docker/overlay2/57252d02d230cbd4ff2de44561aac40c6642a3ded7ab9b1db6900d1702312b1b/diff:/var/lib/docker/overlay2/eb0f1924a16c57c87ab121afcd58c1d40dc4188070966230f0421fa7c79ec7ec/diff:/var/lib/docker/overlay2/39ae0f41efbd7256470b6e54e5b672a281b3c40f2204e99e98c480159c494580/diff:/var/lib/docker/overlay2/372ee483692d602f0186dea07f87bddd608b80aea1b66acf56682ebf1b3db95d/diff:/var/lib/docker/overlay2/138b589d3aa1a5cd37a544b8d8e1cffc8dd4c4acff0ca873fb9e2111528929c7/diff:/var/lib/docker/overlay2/4eadd799bb6a1e5f865daf2118a263ce6baa39a9c2adc3ca3a75cc92fa9b2388/diff:/var/lib/docker/overlay2/893d6762088c1ebb5199e4fd70ee03698753d1f85602b83bbeae9976a1f830ea/diff:/var/lib/docker/overlay2/4d37fae34876d05fb28b88d75e4ad9b6868da4e08ba2c71d8156565a525dc534/diff:/var/lib/docker/overlay2/71b1893afa5439c43fc0f5922cc1579582747405db3cbe2ba81ffbb7d0016885/diff:/var/lib/docker/overlay2/6be68fa439546bfc20da1c1cc885a308498ea32f9e157cfcf97d8c83206f9c58/diff:/var/lib/docker/overlay2/8ad297df60acb54c10ea29ca59e544ed68348e6e0ac37353af709c7de56b5ba8/diff:/var/lib/docker/overlay2/70007b1621e5c9dd49e38c46818b736dadbc662c341ea914d6e365f065f378d8/diff:/var/lib/docker/overlay2/f101d9e72754e58d8c7946f013646db69b1af446e832fdc4c01f365c567b8684/diff:/var/lib/docker/overlay2/76d100a3386932328f4ddd8c237cac3ef644b05ccdeb5a85e186f2cb57bacca5/diff:/var/lib/docker/overlay2/52bb6715da5f7d17d8e0ec42db693f6b5ff4ec146c49b97a59e894dd9bb61cf6/diff:/var/lib/docker/overlay2/101659a4f5a6d7e60e13f3bbfe3ebd3bafe9f1be32531c83ed40ab677439d00e/diff:/var/lib/docker/overlay2/317c90ba3301cdd27eb2014ca4a06cd85952344163eff5cf630df479d142b3b7/diff:/var/lib/docker/overlay2/e2f05b0aeedb6d5f409ea90fbc046efa55dda91714c5851edb57a3ba3d9db3d4/diff",
            "MergedDir": "/var/lib/docker/overlay2/1a6de7d831b35e479453748df757d1e6efaa980cd2610c8964df79678cc77658/merged",
            "UpperDir": "/var/lib/docker/overlay2/1a6de7d831b35e479453748df757d1e6efaa980cd2610c8964df79678cc77658/diff",
            "WorkDir": "/var/lib/docker/overlay2/1a6de7d831b35e479453748df757d1e6efaa980cd2610c8964df79678cc77658/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:1b9b7346fee7abbc7f5538eaa23548bd05a45abe8daf6794024be0c8ad7d60bb",
            "sha256:1bd3bb08af54530ad1d47c9f0db8b7b8be6790e6a7aea13d9c322820c487c511",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:879ac05aa76122e56bb451892ee18ec29dfd626f78c21484e2bc3b3622c5a30e",
            "sha256:7435756d72dc34667bce3fa4b80e77763467402c0438a8eb5fdd3f241d0502ef",
            "sha256:b824e16efa1bcb9593abdb5a9348f56bc18c10d41f063ffad231e6de72fb21a8",
            "sha256:3511ce1c6f374943a09401bbc7b544becbb0a8833031dd5e4dca4e8f1f537d0d",
            "sha256:ef4d96a71723a74bd4353d7043c201d28dc5f4c5f2b4eea7f71cbd9290d8e202",
            "sha256:9018758162cf4ec63022251b1810d562fb93d2b50b5550520abb74babc6b3638",
            "sha256:8cc9291fdd4ed9d77ab9a7b18740182ef19bae8c5cf1a4f4b9c0e4c7d45fa5ff",
            "sha256:dba6edd06f1aaaf721af3e85ca4981003ec8d90eeb59e733bffd8118567e10b2",
            "sha256:6cb39396104e9be2e00cc77fec11c643c62d2dae2b835e4f293362061d602b3d",
            "sha256:928353029b08fa39456bbf3ca0f117e901e84ed5c8dcaeadab507af760b83c2f",
            "sha256:c058c8b73bf5c92a7cec56b9385b0df30bb193f3a9fc8460e25564263683ab7c",
            "sha256:900a96d1989d732746407f5d083130191acaa4d72c1801c0dc66675ee7baeefd",
            "sha256:ae21e49070b5812f9bc5e0c6c53b8247fadc74a97833e00196618af4fbaaab03",
            "sha256:0d3e7ea332d107e41ee985d2c51c58343d06b6c5c9d2fe7b7b7a4df0ebb8f6a6",
            "sha256:a3ffc7890a6dcdd6011ec027a5aa715fa990613a254cfa4e2d7c1dd5ba8df7f9",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:87c37a4c47c4e8aa7a2d945a4f9f231e102d6f410e4c0fe3d214bfa3aaf41833",
            "sha256:78aa4e158ed4e67afe2224c0f615cf6a5938b455ec723d268330ee312dc22898",
            "sha256:9b16b1e4ce03de1113a9e493d14a0f20accbfb6fae3cdcf89df61a63a9233dd2",
            "sha256:60014d549d53d70a3c45dc4c75612d236d1222c59145a94d8aafb6d6e69415f2",
            "sha256:ef241421ab9edad17c6edcace8d90c7d2f985638d786a450e3714faa64dddb86",
            "sha256:34b9cb54a305a72c48cb3fbd03b79123869d97f4a79e59b1e7459825b1de8520",
            "sha256:51ec2d797e3d66d226526b374e8d0cf547401f83c637d826acadc08fc04c43ed",
            "sha256:d405992af4e78a3510cf31165239d156e0974579d65af3f159b5f3e1ac505f25",
            "sha256:b9faf3f2af46175be0fb557448a50b5dbf4d6e77b89074a0cd53ba42b99aacf9",
            "sha256:513ebcdc812102619d682b42aa28c6fa09a474fbfa1e21e57f6c73c467207c2e",
            "sha256:a15c0f321901ce3e107280560e2be3073d6304d3cfa65b1f8173f35615e80443",
            "sha256:fa06a10da7aaa50d6fb5ae674ae47a9b04787d319a2c0f11360d2789995039ab",
            "sha256:eec0ab78ce90cffb640c03e072d68cfdd3887c4dc27127e231b98fb036acc76a",
            "sha256:cc6385a0d6b280be987cbcc73f31f50c64be08e5d6f022aea065432d5218c487",
            "sha256:08a431204a2d56110c9d1c8b53dfe11dd4e5db1dbe10d43795a94b2633ff812d",
            "sha256:b08343167958ad32493295a230023d041713231a1586f4da197b94347fcd4ea9",
            "sha256:bfc994dfe072d7c90162a7a83fe0a9127cce572fa73552a9530f09213053e898",
            "sha256:522f6b74ad9c44bcaa17a4a72ac9dccb3b802700ef6d38ad69e6cc9b6aeecd28",
            "sha256:44f6bf9587f871fa41ac703c470c01ad7c1a6e3e48463a64f482e3e8b0e7161a",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:d1211ecd6946f20f139c672f98301995913daf76ba0dd9a68176b090746856b2",
            "sha256:724d42326300453deb3524d5bbb2b3ddf5dc99d0eb0b4f1f91bcb880d948c7d4",
            "sha256:ef3e0a8445062224f0fc9c47094445756f411c8e1ca1ed1bf5c70ef6b4aa8420",
            "sha256:85fbea35378e2e09e06f84a8498ec25da88cbfba9b17103063546d9f04526fa0",
            "sha256:4c441877886f6e058f8d605d11ec278ce3b2bf3808e67d6714a79765929c77d2",
            "sha256:50667af9335b219e6b910d42a0620f5fe9710f7b6d817dd3a4a45065f1e90019",
            "sha256:bc993627a116ab0b4363a07ccd6aac702d40f2fb6091d2f89d2c5f72c7692114",
            "sha256:db150399a9175ec69fe12d8310e25288f89857b1cc71664432441496e21d6679",
            "sha256:12264a81d35b827d4527a663127f54d6ad251d88aeac762c9e28341ffc8cd67f",
            "sha256:654131fc5778ddfd03611f7d1ae77397db23ff643841fb6262274c6ae57e4acb",
            "sha256:e486f2b32877c386ddb7aa432c7e2fe208996bb3616962e395505a2d5dc84964",
            "sha256:ed86b0c8600863e89bd423e9ea1e92d60dc3006b0b3e2a60bff12ef1b99bbe46",
            "sha256:43c8be47e72fe23a193faee6acbbbbc3fc76eee8c239053192604ba527b5d1b8",
            "sha256:bf6b85b857f30f3047c713b6b31ca36e1d26769d5944b68e4b3504c22ad7dc0f",
            "sha256:397d079cd8228097dd749e20ef3d0eeaa790faefa80ba9000fbe56f9356b80d3",
            "sha256:ec637893b61791bb4d37f7604c79eee242583ef7079feb2823b2108e7fb3260a",
            "sha256:17cf88a966f34dc80ee42003fc679865f4e28f379c65e4315b4baa9578223c76",
            "sha256:d757f59113609fa289516ac2780eb1fe49bf9e918813f00b14ec3e9f03e82927",
            "sha256:ebdf8ef57bfb2dbc309d9c071832776c8019ce4ef5121700797a6de97a7f6a30",
            "sha256:a07368fb8d450d9bd10b75c4d72fa55ac084d107fec1a10ae74620734921ae3d",
            "sha256:714dc0032c1980936dff7993d7d21dd36fa795da2ff81b1cf454768c2b7df80b",
            "sha256:596507957a7850b1b46deb9c5661b3892613886d1d6d16ff507009fa03207e5e",
            "sha256:eaf55866a37caf7d44f8a58092f8fc8e1789ec3ecc6fc640952b8d226c5b6256",
            "sha256:e7d64b6850869bc4af9235b02be10bde9fbbb9cd1bd23e7e02e388501b05f5d1",
            "sha256:8f54807344f73ac9aa59113a808c1b24606a0c5cd81cae85de9fa6f770908b14",
            "sha256:9c606ec847130b484ce622c20cfe7d4ededd93af46017c26498ee7db7404f931",
            "sha256:574923f139c8488eccc14457ede476760305436c24aedd5abc8f77a58085f254",
            "sha256:b058b1732f5da2dfca244a740c8e16177eb3ff2492b780f7c99981b3c8a62755",
            "sha256:ec6d086347da19d832c89ade0e845c488d909e5e0e869d679f9240ba9995eed7",
            "sha256:7574a445e720e2c85f5b1e7da8165e2bed3d8b0584ab8cbd606c0bc7277dbbc2",
            "sha256:ec4bbb3766d7b0da3fe69d3793a0bf5f8db6ed1722af662a44a8b1569a3b2649",
            "sha256:ff3f230577d080b3c7eb05422bf842bc8a0f1332c381d04bf79bd65e8fdf3cb5"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-08-19T03:10:07.743853831+08:00"
    }
}

更多版本

docker.io/verlai/verl:base-cu124-cudnn9.1-torch2.6-fa2.7.4-te2.3

linux/amd64 docker.io46.15GB2025-08-19 02:52
12

docker.io/verlai/verl:base-verl0.5-cu126-cudnn9.8-torch2.7.1-fa2.8.0

linux/amd64 docker.io35.62GB2025-08-19 03:29
14