PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
NVARCH=x86_64
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NV_CUDA_CUDART_VERSION=12.1.55-1
NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
CUDA_VERSION=12.1.0
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NV_CUDA_LIB_VERSION=12.1.0-1
NV_NVTX_VERSION=12.1.66-1
NV_LIBNPP_VERSION=12.0.2.50-1
NV_LIBNPP_PACKAGE=libnpp-12-1=12.0.2.50-1
NV_LIBCUSPARSE_VERSION=12.0.2.55-1
NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
NV_LIBCUBLAS_VERSION=12.1.0.26-1
NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.0.26-1
NV_LIBNCCL_PACKAGE_NAME=libnccl2
NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
NCCL_VERSION=2.17.1-1
NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
NVIDIA_PRODUCT_NAME=CUDA
NVIDIA_CUDA_END_OF_LIFE=1
NV_CUDA_CUDART_DEV_VERSION=12.1.55-1
NV_NVML_DEV_VERSION=12.1.55-1
NV_LIBCUSPARSE_DEV_VERSION=12.0.2.55-1
NV_LIBNPP_DEV_VERSION=12.0.2.50-1
NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.0.2.50-1
NV_LIBCUBLAS_DEV_VERSION=12.1.0.26-1
NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.0.26-1
NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.0-1
NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.0-1
NV_NVPROF_VERSION=12.1.55-1
NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.55-1
NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
LIBRARY_PATH=/usr/local/cuda/lib64/stubs
DEBIAN_FRONTEND=noninteractive
VLLM_USAGE_SOURCE=production-docker-image
镜像构建历史
# 2025-02-02 03:03:05 0.00B 配置容器启动时运行的命令
ENTRYPOINT ["python3" "-m" "vllm.entrypoints.openai.api_server"]
# 2025-02-02 03:03:05 0.00B 设置环境变量 VLLM_USAGE_SOURCE
ENV VLLM_USAGE_SOURCE=production-docker-image
# 2025-02-02 03:03:05 335.03MB 执行命令并创建新的镜像层
RUN /bin/sh -c if [ "$TARGETPLATFORM" = "linux/arm64" ]; then pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; else pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; fi # buildkit
# 2025-02-02 03:02:53 69.19MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c python3 -m pip install -r requirements-build.txt # buildkit
# 2025-02-02 03:02:51 126.00B 复制新文件或目录到容器中
COPY requirements-build.txt requirements-build.txt # buildkit
# 2025-02-02 03:02:51 340.28KB 复制新文件或目录到容器中
COPY examples examples # buildkit
# 2025-02-02 03:02:51 1.31GB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c . /etc/environment && if [ "$TARGETPLATFORM" != "linux/arm64" ]; then python3 -m pip install https://wheels.vllm.ai/flashinfer/524304395bd1d8cd7d07db083859523fcaa246a4/flashinfer_python-0.2.0.post1-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl; fi # buildkit
# 2025-02-02 03:01:52 6.96GB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c python3 -m pip install dist/*.whl --verbose # buildkit
# 2025-02-02 02:32:52 0.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c if [ "$TARGETPLATFORM" = "linux/arm64" ]; then python3 -m pip install --index-url https://download.pytorch.org/whl/nightly/cu124 "torch==2.6.0.dev20241210+cu124" "torchvision==0.22.0.dev20241215"; fi # buildkit
# 2025-02-02 02:32:51 56.86KB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/ # buildkit
# 2025-02-02 02:32:50 822.50MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c echo 'tzdata tzdata/Areas select America' | debconf-set-selections && echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections && apt-get update -y && apt-get install -y ccache software-properties-common git curl wget sudo vim python3-pip && apt-get install -y ffmpeg libsm6 libxext6 libgl1 && add-apt-repository ppa:deadsnakes/ppa && apt-get update -y && apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv libibverbs-dev && update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 && update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} && ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config && curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} && python3 --version && python3 -m pip --version # buildkit
# 2025-02-02 02:31:06 136.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.1.0 PYTHON_VERSION=3.12 TARGETPLATFORM=linux/amd64 /bin/sh -c PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment # buildkit
# 2025-02-02 02:31:05 0.00B 定义构建参数
ARG TARGETPLATFORM
# 2025-02-02 02:31:05 0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
# 2025-02-02 02:31:05 0.00B 设置工作目录为/vllm-workspace
WORKDIR /vllm-workspace
# 2025-02-02 02:31:05 0.00B 定义构建参数
ARG PYTHON_VERSION=3.12
# 2025-02-02 02:31:05 0.00B 定义构建参数
ARG CUDA_VERSION=12.4.1
# 2023-11-10 14:02:16 0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
# 2023-11-10 14:02:16 385.64KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
# 2023-11-10 14:02:04 4.81GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION} cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION} cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION} cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION} cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION} ${NV_NVPROF_DEV_PACKAGE} ${NV_LIBNPP_DEV_PACKAGE} libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION} ${NV_LIBCUBLAS_DEV_PACKAGE} ${NV_LIBNCCL_DEV_PACKAGE} ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 14:02:04 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 14:02:04 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.55-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.55-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.0-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.0-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.0.26-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.0.26-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.0.2.50-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.0.2.50-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.0.2.55-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.55-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.55-1
# 2023-11-10 14:02:04 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.0-1
# 2023-11-10 13:49:20 0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
# 2023-11-10 13:49:20 0.00B 设置环境变量 NVIDIA_CUDA_END_OF_LIFE
ENV NVIDIA_CUDA_END_OF_LIFE=1
# 2023-11-10 13:49:20 0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
# 2023-11-10 13:49:20 2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
# 2023-11-10 13:49:20 3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
# 2023-11-10 13:49:20 261.38KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
# 2023-11-10 13:49:19 1.99GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-libraries-12-1=${NV_CUDA_LIB_VERSION} ${NV_LIBNPP_PACKAGE} cuda-nvtx-12-1=${NV_NVTX_VERSION} libcusparse-12-1=${NV_LIBCUSPARSE_VERSION} ${NV_LIBCUBLAS_PACKAGE} ${NV_LIBNCCL_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:49:19 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:49:19 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
# 2023-11-10 13:49:19 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.0.26-1
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.0.26-1
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.0.2.55-1
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.0.2.50-1
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.0.2.50-1
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.66-1
# 2023-11-10 13:49:19 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.0-1
# 2023-11-10 13:44:29 0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# 2023-11-10 13:44:29 0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
# 2023-11-10 13:44:29 17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
# 2023-11-10 13:44:29 0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
# 2023-11-10 13:44:29 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2023-11-10 13:44:29 46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
# 2023-11-10 13:44:29 149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION} ${NV_CUDA_COMPAT_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:44:18 0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.0
# 2023-11-10 13:44:18 10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends gnupg2 curl ca-certificates && curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb && dpkg -i cuda-keyring_1.0-1_all.deb && apt-get purge --autoremove -y curl && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:44:18 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:44:18 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:44:18 0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
# 2023-11-10 13:44:18 0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.55-1
# 2023-11-10 13:44:18 0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
# 2023-11-10 13:44:18 0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
# 2023-10-05 15:33:32 0.00B
/bin/sh -c #(nop) CMD ["/bin/bash"]
# 2023-10-05 15:33:32 77.82MB
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in /
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) LABEL org.opencontainers.image.version=22.04
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) LABEL org.opencontainers.image.ref.name=ubuntu
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) ARG LAUNCHPAD_BUILD_ARCH
# 2023-10-05 15:33:30 0.00B
/bin/sh -c #(nop) ARG RELEASE
镜像信息
{
"Id": "sha256:c2b02c58ffe21a439f4528cf320edbf4ae2a13fa01fad38a5cec3f1fa1ec7dd8",
"RepoTags": [
"vllm/vllm-openai:v0.7.1",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/vllm/vllm-openai:v0.7.1"
],
"RepoDigests": [
"vllm/vllm-openai@sha256:9cd69b577cf26df32aceb74577ea7f6749618a72e630f654ecb10dbfb23e3de4",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/vllm/vllm-openai@sha256:ee1ab391d14d61f864d97cbd43528316d03be830db5af6b67b5e99b444908ce5"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2025-02-01T19:03:05.133495433Z",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"NVARCH=x86_64",
"NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
"NV_CUDA_CUDART_VERSION=12.1.55-1",
"NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
"CUDA_VERSION=12.1.0",
"LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
"NVIDIA_VISIBLE_DEVICES=all",
"NVIDIA_DRIVER_CAPABILITIES=compute,utility",
"NV_CUDA_LIB_VERSION=12.1.0-1",
"NV_NVTX_VERSION=12.1.66-1",
"NV_LIBNPP_VERSION=12.0.2.50-1",
"NV_LIBNPP_PACKAGE=libnpp-12-1=12.0.2.50-1",
"NV_LIBCUSPARSE_VERSION=12.0.2.55-1",
"NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
"NV_LIBCUBLAS_VERSION=12.1.0.26-1",
"NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.0.26-1",
"NV_LIBNCCL_PACKAGE_NAME=libnccl2",
"NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
"NCCL_VERSION=2.17.1-1",
"NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
"NVIDIA_PRODUCT_NAME=CUDA",
"NVIDIA_CUDA_END_OF_LIFE=1",
"NV_CUDA_CUDART_DEV_VERSION=12.1.55-1",
"NV_NVML_DEV_VERSION=12.1.55-1",
"NV_LIBCUSPARSE_DEV_VERSION=12.0.2.55-1",
"NV_LIBNPP_DEV_VERSION=12.0.2.50-1",
"NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.0.2.50-1",
"NV_LIBCUBLAS_DEV_VERSION=12.1.0.26-1",
"NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
"NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.0.26-1",
"NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.0-1",
"NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.0-1",
"NV_NVPROF_VERSION=12.1.55-1",
"NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.55-1",
"NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
"NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
"NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
"LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
"DEBIAN_FRONTEND=noninteractive",
"VLLM_USAGE_SOURCE=production-docker-image"
],
"Cmd": null,
"Image": "",
"Volumes": null,
"WorkingDir": "/vllm-workspace",
"Entrypoint": [
"python3",
"-m",
"vllm.entrypoints.openai.api_server"
],
"OnBuild": null,
"Labels": {
"maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
"org.opencontainers.image.ref.name": "ubuntu",
"org.opencontainers.image.version": "22.04"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 16525161745,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/d05226564f3f7e12e100f0a8e4bf3dfccf1f4188e28ba663c74b9e7be2fd130d/diff:/var/lib/docker/overlay2/aff4b35696ee95c043d38319c00bdeb2038f55a49871b700834b804b76e72642/diff:/var/lib/docker/overlay2/50f030f4e5023f67f3b84e2227d096e62f20ec8d44505f3369d713918b061c48/diff:/var/lib/docker/overlay2/e936727d992c27c8e7651d8092df3618ab02e07bb4acdccbd5b9db1751e73923/diff:/var/lib/docker/overlay2/134b95678d272994d610fe51001d9484355d71b04278503c514ba227aafbccc5/diff:/var/lib/docker/overlay2/75762f1a3f3892e9f760323e1a352ab01a08e35db7cc3577420c504fa4d6832d/diff:/var/lib/docker/overlay2/7e3517b29dd7b5624108e0de1ee62ea3c1f6e00574e2c6f1a3a8a1efae309137/diff:/var/lib/docker/overlay2/43c60c0ce84c214edf3dfe4863d661307724980a01fe5bf5831a3fc051a4c591/diff:/var/lib/docker/overlay2/003d7267651efdeef93bd73f26f269c97b437c95f9df13b6ec56df57d60866f3/diff:/var/lib/docker/overlay2/c24a1a0f8dabed8b98bab51171b5edab725043d1710c0c461d999e1c1933e06a/diff:/var/lib/docker/overlay2/c8bf28d65554ce9d21dceb12f40572bd10e7707b61fcd7d9de1766c596a2180d/diff:/var/lib/docker/overlay2/0509a5d6f2107b4e52cdac9afc24072f521894621c0339e18f2b19200c88bdbc/diff:/var/lib/docker/overlay2/ba8284a8f087883e05ef9d215c53e1aacb71ca1e5ecd2b6dec2bd25a13a8ad72/diff:/var/lib/docker/overlay2/843a733312976c707a2057f885c6a097d696f06208e8ebf8236071ac10a67c18/diff:/var/lib/docker/overlay2/1b43417fff3f239886491cefc54217f173f9bc3099ffd4b44ba1908cf9ffd7c1/diff:/var/lib/docker/overlay2/37e24e3d3dabbed320e70b8aae8b8dfc753734f85e6c49a4b7b2ef8b922b8ce6/diff:/var/lib/docker/overlay2/86c98ab0ed88b61b06cf59d67d016cbf05a2c7cea2a7a4fe53a6be12a6bb87d7/diff:/var/lib/docker/overlay2/dddcc2c36b2b15125b046f443eaf956385215dd4fe1629756f29c2e1077ee125/diff:/var/lib/docker/overlay2/7c0ec148c160c668fe5b36bcb65f7d5badb55eb5dcdea8490e826c2a41b578a9/diff:/var/lib/docker/overlay2/b213e3c8abc27592f101ffbb1d0f2c437b5effe9b384d0f550f46a4f894f180d/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
"MergedDir": "/var/lib/docker/overlay2/7dd74ad982d2b5b58289753a74f8190d32c68105a75262e8b1189adf4a4909b3/merged",
"UpperDir": "/var/lib/docker/overlay2/7dd74ad982d2b5b58289753a74f8190d32c68105a75262e8b1189adf4a4909b3/diff",
"WorkDir": "/var/lib/docker/overlay2/7dd74ad982d2b5b58289753a74f8190d32c68105a75262e8b1189adf4a4909b3/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
"sha256:7b9433fba79bfc9269aab8277ea9975364db1c1f775a7ee6b14b5dffa045b294",
"sha256:765423415d690bf8ca1510e7147d5b86dba15dcf1a3b1a515f1a85cc5dd439bb",
"sha256:e4b1bddcbe6378dfa58bf1faa040813b74938129eb4bb06cbf083240335c5c54",
"sha256:cd77f58b80cdcfac5fcdef06b2033fedc1115073afae035a14b6692cb5cd6650",
"sha256:8d113b7b997c1bc18469d2373662f02c8bbcf7182f8c5d8e0e1eea082cc234a4",
"sha256:40f0eb1871b906cf31a54649bf4f7657e2a60da6d6a9adfb8598a469b8495e77",
"sha256:6ac15100dff644720d396a534fcd373774b1aefca621211930855e5db5ebae52",
"sha256:600c676771a0a21056d45f5fb4441c538380564d4a7127a41e260d74fc6b0519",
"sha256:57b23d1076fd4d119609493ebbd5b837d9553387d081148c8d908f1245e2bb55",
"sha256:6667c783780703607df00f8f7dafcfd77402d54db003c392f3ea743f9eabe359",
"sha256:903f4137373541b1d86a0ef08700d6b56b8b2617b211d1b84f3b72afb98af454",
"sha256:6cdc7dca9f16a680796bc3bf49c3ff584fb0c517cf258df87a062269ca7f4ba9",
"sha256:3b775ed8fe60fc87f272d57b8f741ae2faa4a54b18e58b9881ca6999dcc2b739",
"sha256:89317008d997abe01248dacd5798750a87c1f761799d6e156c9f81568577f792",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:be6e3234fbf91e4f15a1d0c5c356244b702fce2728fa83975fcc6a7518cea873",
"sha256:8eb2c36ec8dedf60e3072000ee272ac1becaa7a050779bbcd7e690503adaf672",
"sha256:fd2ef269b53bb58a191ae7f8805607d097a3ca4daf299fb32067e85db5dd2870",
"sha256:5e49a4235476d978b784e09aff9bb17c48abb0a676c4cca4591bd20d074686a1",
"sha256:2d962d1d75a61f343134589710ea8bc7f05bf18cccc684d041c6c5b5ebb77a6e",
"sha256:37378c7c1c35ddccc800e9602b386f9f6da385af0ac710ebd37cbe69d937c0c0"
]
},
"Metadata": {
"LastTagTime": "2025-02-08T01:54:18.738880419+08:00"
}
}