gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest linux/amd64

gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest - 国内下载镜像源 浏览次数:31

温馨提示:此镜像为latest tag镜像,本站无法保证此版本为最新镜像

```html

这是一个基于Google Container Registry (gcr.io) 的Docker镜像,名称为gcr.io/deeplearning-platform-release/tf2-gpu.2-6。它预装了 TensorFlow 2.6 版本,并支持GPU加速。

该镜像专为深度学习任务设计,提供了一个方便快捷的运行环境,开发者可以直接利用镜像中的TensorFlow和相关依赖库进行模型训练和推理,无需自行安装和配置。

```
源镜像 gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest
镜像ID sha256:05538d5a721189fab55be45db7957b4b2fb844772c38a56abf467bc18651674c
镜像TAG latest
大小 19.02GB
镜像源 gcr.io
CMD /run_jupyter.sh
启动入口 /entrypoint.sh
工作目录
OS/平台 linux/amd64
浏览量 31 次
贡献者 30******9@qq.com
镜像创建 2023-09-26T05:11:47.670045472Z
同步时间 2025-03-20 16:56
更新时间 2025-04-03 20:54
开放端口
8080/tcp
目录挂载
/home/jupyter
环境变量
PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.3 brand=tesla,driver>=418,driver<419 driver>=450 NV_CUDA_CUDART_VERSION=11.3.109-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-3 CUDA_VERSION=11.3.1 LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib:/usr/local/lib/x86_64-linux-gnu:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib:/usr/local/lib/x86_64-linux-gnu:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.3.1-1 NV_NVTX_VERSION=11.3.109-1 NV_LIBNPP_VERSION=11.3.3.95-1 NV_LIBNPP_PACKAGE=libnpp-11-3=11.3.3.95-1 NV_LIBCUSPARSE_VERSION=11.6.0.109-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-3 NV_LIBCUBLAS_VERSION=11.5.1.109-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-3=11.5.1.109-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.9.9-1 NCCL_VERSION=2.9.9-1 NV_LIBNCCL_PACKAGE=libnccl2=2.9.9-1+cuda11.3 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=11.3.109-1 NV_NVML_DEV_VERSION=11.3.58-1 NV_LIBCUSPARSE_DEV_VERSION=11.6.0.109-1 NV_LIBNPP_DEV_VERSION=11.3.3.95-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-3=11.3.3.95-1 NV_LIBCUBLAS_DEV_VERSION=11.5.1.109-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-3 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-3=11.5.1.109-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=11.3.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-3=11.3.0-1 NV_NVPROF_VERSION=11.3.111-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-3=11.3.111-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.9.9-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.9.9-1+cuda11.3 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.2.0.53 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.2.0.53-1+cuda11.3 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.2.0.53-1+cuda11.3 GCSFUSE_METADATA_IMAGE_TYPE=DLC LC_ALL=C.UTF-8 LANG=C.UTF-8 ANACONDA_PYTHON_VERSION=3.7 DL_ANACONDA_HOME=/opt/conda SHELL=/bin/bash CONTAINER_NAME=tf2-gpu/2-6+cu113 NODE_OPTIONS=--max-old-space-size=4096 ENABLE_MULTI_ENV=false
镜像标签
Container: TensorFlow 2-6: com.google.environment 8.2.0.53: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 20.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest  gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest  gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest

Shell快速替换命令

sed -i 's#gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest  gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest  gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest'

镜像构建历史


# 2023-09-26 13:11:47  151.54MB 执行命令并创建新的镜像层
RUN |7 VERSION=2-6 CONTAINER_NAME=tf2-gpu/2-6+cu113 DEBIAN_FRONTEND=noninteractive ENABLE_MULTI_ENV=false RELEASE=20230925-1800-rc0 PY_VERSION_TAG=py37 LICENSE_GCS_PATH=tf2-gpu/2-6+cu113-py37 /bin/sh -c cd /opt/google/licenses &&     chmod +x query_licenses.sh &&     ./query_licenses.sh "${RELEASE}" "${LICENSE_GCS_PATH}" # buildkit
                        
# 2023-09-26 13:10:22  0.00B 定义构建参数
ARG LICENSE_GCS_PATH=tf2-gpu/2-6+cu113-py37
                        
# 2023-09-26 13:10:22  0.00B 定义构建参数
ARG PY_VERSION_TAG
                        
# 2023-09-26 13:10:22  0.00B 定义构建参数
ARG RELEASE
                        
# 2023-09-26 13:10:22  47.52MB 执行命令并创建新的镜像层
RUN |4 VERSION=2-6 CONTAINER_NAME=tf2-gpu/2-6+cu113 DEBIAN_FRONTEND=noninteractive ENABLE_MULTI_ENV=false /bin/sh -c BAZEL_VERSION="3.7.2" &&   BAZEL_INSTALLER_URL="https://github.com/bazelbuild/bazel/releases/download/${BAZEL_VERSION}/bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh" &&   BAZEL_INSTALLER_FILE="bazel_installer.sh" &&   wget -q "${BAZEL_INSTALLER_URL}" -O "${BAZEL_INSTALLER_FILE}" &&   chmod +x "${BAZEL_INSTALLER_FILE}" &&   "./${BAZEL_INSTALLER_FILE}" &&   rm -rf "./${BAZEL_INSTALLER_FILE}" # buildkit
                        
# 2023-09-26 13:10:21  4.78GB 执行命令并创建新的镜像层
RUN |4 VERSION=2-6 CONTAINER_NAME=tf2-gpu/2-6+cu113 DEBIAN_FRONTEND=noninteractive ENABLE_MULTI_ENV=false /bin/sh -c export CONDA_REPOSITORY="/tmp/conda" &&     chmod +x /install_packages.sh &&     PACKAGE_SET="tf-${VERSION}-gpu" &&     if [ "${ENABLE_MULTI_ENV}" = "true" ]; then       PACKAGE_SET="tf-${VERSION}-2env-gpu";     fi &&     ENV_DOCKER=1 /install_packages.sh "${ENABLE_MULTI_ENV}" "${PACKAGE_SET}" # buildkit
                        
# 2023-09-26 12:54:17  0.00B 设置环境变量 ENABLE_MULTI_ENV
ENV ENABLE_MULTI_ENV=false
                        
# 2023-09-26 12:54:17  0.00B 定义构建参数
ARG ENABLE_MULTI_ENV
                        
# 2023-09-26 12:54:17  0.00B 设置环境变量 NODE_OPTIONS
ENV NODE_OPTIONS=--max-old-space-size=4096
                        
# 2023-09-26 12:54:17  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib:/usr/local/lib/x86_64-linux-gnu:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib:/usr/local/lib/x86_64-linux-gnu:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-09-26 12:54:17  19.13KB 执行命令并创建新的镜像层
RUN |3 VERSION=2-6 CONTAINER_NAME=tf2-gpu/2-6+cu113 DEBIAN_FRONTEND=noninteractive /bin/sh -c update-alternatives --set cuda /usr/local/cuda-11.3 # buildkit
                        
# 2023-09-26 12:54:16  1.92GB 执行命令并创建新的镜像层
RUN |3 VERSION=2-6 CONTAINER_NAME=tf2-gpu/2-6+cu113 DEBIAN_FRONTEND=noninteractive /bin/sh -c apt-get --allow-releaseinfo-change update &&     apt-get install -y --no-install-recommends         libnvinfer8 libnvinfer-plugin8 python3-libnvinfer &&     rm -rf /var/lib/apt/lists/* &&     rm -rf /usr/lib/x86_64-linux-gnu/libnvcaffe_parser* &&     rm -rf /usr/lib/x86_64-linux-gnu/libnvparsers* # buildkit
                        
# 2023-09-26 12:54:16  0.00B 定义构建参数
ARG DEBIAN_FRONTEND=noninteractive
                        
# 2023-09-26 12:54:16  0.00B 设置环境变量 CONTAINER_NAME
ENV CONTAINER_NAME=tf2-gpu/2-6+cu113
                        
# 2023-09-26 12:54:16  0.00B 定义构建参数
ARG CONTAINER_NAME
                        
# 2023-09-26 12:54:16  0.00B 添加元数据标签
LABEL com.google.environment=Container: TensorFlow 2-6
                        
# 2023-09-26 12:54:16  0.00B 定义构建参数
ARG VERSION
                        
# 2023-09-26 11:58:09  0.00B 设置默认要执行的命令
CMD ["/run_jupyter.sh"]
                        
# 2023-09-26 11:58:09  420.00B 执行命令并创建新的镜像层
RUN |2 DEBIAN_FRONTEND=noninteractive PY_VERSION=3.7 /bin/sh -c chmod +x run_jupyter.sh # buildkit
                        
# 2023-09-26 11:58:09  420.00B 复制新文件或目录到容器中
COPY build/container/run_jupyter.sh /run_jupyter.sh # buildkit
                        
# 2023-09-26 11:58:09  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/entrypoint.sh"]
                        
# 2023-09-26 11:58:09  219.00B 执行命令并创建新的镜像层
RUN |2 DEBIAN_FRONTEND=noninteractive PY_VERSION=3.7 /bin/sh -c chmod +x entrypoint.sh # buildkit
                        
# 2023-09-26 11:58:08  219.00B 复制新文件或目录到容器中
COPY build/container/entrypoint.sh /entrypoint.sh # buildkit
                        
# 2023-09-26 11:58:08  614.00B 复制新文件或目录到容器中
COPY build/package/conda/channels.json /opt/google/conda/channels.json # buildkit
                        
# 2023-09-26 11:58:08  8.85KB 复制新文件或目录到容器中
COPY build/package/packages/jupyter/jupyter_notebook_config.py /opt/jupyter/.jupyter/jupyter_notebook_config.py # buildkit
                        
# 2023-09-26 11:58:08  229.00B 复制新文件或目录到容器中
COPY build/package/packages/jupyter/ipython_kernel_config.py /etc/ipython/ipython_kernel_config.py # buildkit
                        
# 2023-09-26 11:58:08  4.80KB 执行命令并创建新的镜像层
RUN |2 DEBIAN_FRONTEND=noninteractive PY_VERSION=3.7 /bin/sh -c chown -R "jupyter:jupyter" "/home/jupyter/." # buildkit
                        
# 2023-09-26 11:58:08  334.12KB 执行命令并创建新的镜像层
RUN |2 DEBIAN_FRONTEND=noninteractive PY_VERSION=3.7 /bin/sh -c adduser --uid 1000 --gid 1001 jupyter # buildkit
                        
# 2023-09-26 11:58:08  2.12KB 执行命令并创建新的镜像层
RUN |2 DEBIAN_FRONTEND=noninteractive PY_VERSION=3.7 /bin/sh -c addgroup --gid 1001 jupyter # buildkit
                        
# 2023-09-26 11:58:07  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib:/usr/local/lib/x86_64-linux-gnu:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-09-26 11:58:07  0.00B 创建挂载点用于持久化数据或共享数据
VOLUME [/home/jupyter]
                        
# 2023-09-26 11:58:07  0.00B 声明容器运行时监听的端口
EXPOSE map[8080/tcp:{}]
                        
# 2023-09-26 11:58:07  0.00B 设置环境变量 SHELL
ENV SHELL=/bin/bash
                        
# 2023-09-26 11:58:07  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-09-26 11:58:07  432.04MB 执行命令并创建新的镜像层
RUN |2 DEBIAN_FRONTEND=noninteractive PY_VERSION=3.7 /bin/sh -c chmod +x /opt/google/conda/provision_conda.sh && /opt/google/conda/provision_conda.sh # buildkit
                        
# 2023-09-26 11:57:51  0.00B 设置环境变量 DL_ANACONDA_HOME
ENV DL_ANACONDA_HOME=/opt/conda
                        
# 2023-09-26 11:57:51  0.00B 设置环境变量 ANACONDA_PYTHON_VERSION
ENV ANACONDA_PYTHON_VERSION=3.7
                        
# 2023-09-26 11:57:51  0.00B 定义构建参数
ARG PY_VERSION
                        
# 2023-09-26 11:57:51  1.08KB 复制新文件或目录到容器中
COPY build/container/install_packages.sh /install_packages.sh # buildkit
                        
# 2023-09-26 11:57:51  71.71KB 复制新文件或目录到容器中
COPY build/vm/packer/generic/packages /opt/google # buildkit
                        
# 2023-09-26 11:57:51  26.23MB 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c cd / &&     cp /tmp/openmpi/openmpi.tar.gz . &&     tar xf openmpi.tar.gz &&     rm -f openmpi.tar.gz # buildkit
                        
# 2023-09-26 11:57:50  3.38MB 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c apt update -y &&     apt install -y libnuma-dev # buildkit
                        
# 2023-09-26 11:57:44  51.67MB 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c if dpkg -s libnccl2; then         echo "deb https://packages.cloud.google.com/apt google-fast-socket main" | tee /etc/apt/sources.list.d/google-fast-socket.list &&         curl -s -L https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - &&         apt-get --allow-releaseinfo-change update && apt install -y google-fast-socket;     fi # buildkit
                        
# 2023-09-26 11:57:35  905.50MB 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c apt-get --allow-releaseinfo-change update -y &&     apt-get install -y dirmngr &&     apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 8B57C5C2836F4BEB &&     apt-key adv --keyserver keyserver.ubuntu.com --recv-keys FEEA9169307EA071 &&     apt-get --allow-releaseinfo-change update -y &&     echo "deb [signed-by=/usr/share/keyrings/cloud.google.gpg] https://packages.cloud.google.com/apt cloud-sdk main" | tee -a /etc/apt/sources.list.d/google-cloud-sdk.list &&     curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key --keyring /usr/share/keyrings/cloud.google.gpg add - &&     apt-get --allow-releaseinfo-change update -y &&     apt-get install -y apt-transport-https ca-certificates gnupg &&     echo "deb http://packages.cloud.google.com/apt gcsfuse-focal main" | tee /etc/apt/sources.list.d/gcsfuse.list &&     curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - &&     apt-get --allow-releaseinfo-change update -y &&     apt-get install -y google-cloud-sdk && apt-get install -y gcsfuse &&     rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-09-26 11:56:45  844.76MB 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c apt-get --allow-releaseinfo-change -o Acquire::Check-Valid-Until=false update -y &&     apt-get install --no-install-recommends -y -q        $(grep -vE "^\s*#" aptget-requirements.txt | tr "\n" " ") &&     rm -rf /var/lib/apt/lists/* &&     rm -rf aptget-requirements.txt # buildkit
                        
# 2023-09-26 11:55:06  0.00B 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c if [ "${BASE_IMAGE}" =~ "^nvidia. *" ]; then       apt update -y || true && apt install -y wget && apt install -yq software-properties-common &&       wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin &&       mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600 &&       apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/3bf863cc.pub &&       add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /" &&       apt-get --allow-releaseinfo-change update;     fi # buildkit
                        
# 2023-09-26 11:55:05  480.00B 复制新文件或目录到容器中
COPY build/vm/packer/base/aptget-requirements.txt /aptget-requirements.txt # buildkit
                        
# 2023-09-26 11:55:05  895.12MB 执行命令并创建新的镜像层
RUN |1 DEBIAN_FRONTEND=noninteractive /bin/sh -c apt update --allow-releaseinfo-change -y &&     apt upgrade -y # buildkit
                        
# 2023-09-26 11:55:05  0.00B 定义构建参数
ARG DEBIAN_FRONTEND=noninteractive
                        
# 2023-09-26 11:55:05  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2023-09-26 11:55:05  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2023-09-26 11:55:05  0.00B 设置环境变量 GCSFUSE_METADATA_IMAGE_TYPE
ENV GCSFUSE_METADATA_IMAGE_TYPE=DLC
                        
# 2023-09-26 11:55:05  0.00B 添加元数据标签
LABEL com.google.environment=Container: Minimal
                        
# 2023-06-22 07:15:08  4.02GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-06-22 07:15:08  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.2.0.53
                        
# 2023-06-22 07:15:08  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-06-22 07:15:08  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-06-22 07:15:08  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.2.0.53-1+cuda11.3
                        
# 2023-06-22 07:15:08  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.2.0.53-1+cuda11.3
                        
# 2023-06-22 07:15:08  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-06-22 07:15:08  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.2.0.53
                        
# 2023-06-22 06:53:49  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-06-22 06:53:49  374.40KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-06-22 06:53:46  3.08GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     libtinfo5 libncursesw5     cuda-cudart-dev-11-3=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-3=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-3=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-3=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-3=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-3=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-06-22 06:53:46  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-06-22 06:53:46  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.9.9-1+cuda11.3
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.9.9-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.9.9-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-3=11.3.111-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.3.111-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-3=11.3.0-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=11.3.0-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-3=11.5.1.109-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-3
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.5.1.109-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-3=11.3.3.95-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.3.3.95-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.6.0.109-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.3.58-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.3.109-1
                        
# 2023-06-22 06:53:46  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.3.1-1
                        
# 2023-06-22 06:44:37  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-06-22 06:44:37  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-06-22 06:44:37  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-06-22 06:44:37  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-06-22 06:44:37  256.87KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-06-22 06:44:36  1.74GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-3=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-3=${NV_NVTX_VERSION}     libcusparse-11-3=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-06-22 06:44:36  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-06-22 06:44:36  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.9.9-1+cuda11.3
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.9.9-1
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.9.9-1
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-3=11.5.1.109-1
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.5.1.109-1
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-3
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.6.0.109-1
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-3=11.3.3.95-1
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.3.3.95-1
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.3.109-1
                        
# 2023-06-22 06:44:36  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.3.1-1
                        
# 2023-06-22 06:37:44  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-06-22 06:37:44  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-06-22 06:37:44  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-06-22 06:37:44  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-06-22 06:37:44  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-06-22 06:37:44  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-06-22 06:37:43  34.23MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-3=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-06-22 06:37:35  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.3.1
                        
# 2023-06-22 06:37:35  18.32MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-06-22 06:37:35  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-06-22 06:37:35  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-06-22 06:37:35  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-3
                        
# 2023-06-22 06:37:35  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.3.109-1
                        
# 2023-06-22 06:37:35  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand driver>
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.3 brand=tesla,driver>=418,driver<419 driver>=450
                        
# 2023-06-22 06:37:35  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-06-06 01:08:58  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-06-06 01:08:58  72.79MB 
/bin/sh -c #(nop) ADD file:655d373cb551d0dd5d7867f88a4f98908dc3f16190986f693e88c423e6f21b8d in / 
                        
# 2023-06-06 01:08:57  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=20.04
                        
# 2023-06-06 01:08:57  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-06-06 01:08:57  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-06-06 01:08:57  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:05538d5a721189fab55be45db7957b4b2fb844772c38a56abf467bc18651674c",
    "RepoTags": [
        "gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest"
    ],
    "RepoDigests": [
        "gcr.io/deeplearning-platform-release/tf2-gpu.2-6@sha256:615754a0aa3b0b6c225c0c0ff5c2cfaa31e54148e894b632818600b2f1d9011b",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/gcr.io/deeplearning-platform-release/tf2-gpu.2-6@sha256:0a9675690bc3415778ba95286ba773a5a2d92eff053af3a438ef637d7974c6a6"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2023-09-26T05:11:47.670045472Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "8080/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.3 brand=tesla,driver\u003e=418,driver\u003c419 driver\u003e=450",
            "NV_CUDA_CUDART_VERSION=11.3.109-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-3",
            "CUDA_VERSION=11.3.1",
            "LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib:/usr/local/lib/x86_64-linux-gnu:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib:/usr/local/lib/x86_64-linux-gnu:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.3.1-1",
            "NV_NVTX_VERSION=11.3.109-1",
            "NV_LIBNPP_VERSION=11.3.3.95-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-3=11.3.3.95-1",
            "NV_LIBCUSPARSE_VERSION=11.6.0.109-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-3",
            "NV_LIBCUBLAS_VERSION=11.5.1.109-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-3=11.5.1.109-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.9.9-1",
            "NCCL_VERSION=2.9.9-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.9.9-1+cuda11.3",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=11.3.109-1",
            "NV_NVML_DEV_VERSION=11.3.58-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.6.0.109-1",
            "NV_LIBNPP_DEV_VERSION=11.3.3.95-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-3=11.3.3.95-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.5.1.109-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-3",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-3=11.5.1.109-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=11.3.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-3=11.3.0-1",
            "NV_NVPROF_VERSION=11.3.111-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-3=11.3.111-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.9.9-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.9.9-1+cuda11.3",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.2.0.53",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.2.0.53-1+cuda11.3",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.2.0.53-1+cuda11.3",
            "GCSFUSE_METADATA_IMAGE_TYPE=DLC",
            "LC_ALL=C.UTF-8",
            "LANG=C.UTF-8",
            "ANACONDA_PYTHON_VERSION=3.7",
            "DL_ANACONDA_HOME=/opt/conda",
            "SHELL=/bin/bash",
            "CONTAINER_NAME=tf2-gpu/2-6+cu113",
            "NODE_OPTIONS=--max-old-space-size=4096",
            "ENABLE_MULTI_ENV=false"
        ],
        "Cmd": [
            "/run_jupyter.sh"
        ],
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": {
            "/home/jupyter": {}
        },
        "WorkingDir": "",
        "Entrypoint": [
            "/entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.google.environment": "Container: TensorFlow 2-6",
            "com.nvidia.cudnn.version": "8.2.0.53",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "20.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 19018278011,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/b156f1e7379284f40fe3301e5635ead8fe46d1f813e4aa2f09395be74278318c/diff:/var/lib/docker/overlay2/7f05c60e366b1a864ac2d88ec66d8cf52f471fa5df433b1476fafc68db1b5952/diff:/var/lib/docker/overlay2/d36b28deefd8f9a834b59010aafb9af9c0e6d10fd511d81402529e208f6b6325/diff:/var/lib/docker/overlay2/8048ff46865e43e6f22b225ac5f44724f9d07b7d512015106ac833c0a076a44d/diff:/var/lib/docker/overlay2/99a74712982911e4d9824f0049a216815a2fc7cbdceeec6f15b4bd92d85f5ca8/diff:/var/lib/docker/overlay2/912db5c99d43b9ba04728a33234d26d4daf3a194fbcd95e8ec0c561c3b6f344f/diff:/var/lib/docker/overlay2/90e3027592a4f5a3841b6d3664ab4fb953ace44c319b56453b0779b46af388b8/diff:/var/lib/docker/overlay2/f37799329cf73f79e47288dd58701454b3864909738893021c816115970e9997/diff:/var/lib/docker/overlay2/b288c69352d75bb46102a4c705e3dedea22c4236907d989fbe0bd9a5e8425329/diff:/var/lib/docker/overlay2/6cd8acd06ea1ae6ceb691ec15f014de2a6b2b2b96f973de6d3e5b1de36489489/diff:/var/lib/docker/overlay2/91c82dfc4ef6b645a1627c4a96cb45270bd56454b78d2ee3e1b62af6b28ef8d5/diff:/var/lib/docker/overlay2/0bb7adb6eb8189ebbd439665ac8ff3dcd05e6b9cbc39fbba8509c54328cb4969/diff:/var/lib/docker/overlay2/012fba40a37f70b4d753c36db18fc6b7339c96f9c13f5e4ee8a3abba6498c311/diff:/var/lib/docker/overlay2/b8725bbe249994b41c9ca46006b22035fc816b73fb02898f91b6a3bd4c202b89/diff:/var/lib/docker/overlay2/356f804663927da047a67e459ff0e87953715645d383206dcb14a634f6c52dbc/diff:/var/lib/docker/overlay2/6aac6ca760b0d75660fb03242ce18f1e51a6744ad8c51921501b8eab7256b65a/diff:/var/lib/docker/overlay2/3eb5f1e6406d29711726e202db4e92ddc35762c4534aa97798c376ec6034f314/diff:/var/lib/docker/overlay2/7bd5ae5bc3df141855a0265f22774362aabef948d0c49dce26ed4e005b2421fe/diff:/var/lib/docker/overlay2/c35527b04c54249366a6c7bc34b88c2718c98ffb9e5081dc4aa0be3d5684ec4b/diff:/var/lib/docker/overlay2/4409b191e2c65c1e94a1446a8e7fed8e9eb1256515be77b94a66851af14cc77b/diff:/var/lib/docker/overlay2/3016f6180bfb21354ffd29b8fbee247303660970cde40214aa34df551cbee1a7/diff:/var/lib/docker/overlay2/95c6f8aadbcf4a072fc254f4182da94fcb1752bd122bd5db367e83a5ff17cc2c/diff:/var/lib/docker/overlay2/2d2834956a68b0377460843395e3cd7025c937a2a04c76d5fec84e965d083559/diff:/var/lib/docker/overlay2/cb8bf941ce1fb98819b095c627c90ed981408a25633eb32a81f61cc13bb488a6/diff:/var/lib/docker/overlay2/5c8e9b618c1b248f3be958df4c4a3a93de3e3ca69296cb8ecf197885c2a0aa3e/diff:/var/lib/docker/overlay2/c12e2983569cffcc10f60014826afbbe63e2877a8fae24552d61094999bb23ea/diff:/var/lib/docker/overlay2/b4e16a898adc3ff9e0bcb6bc789393dff1f3c737503886270ed6e7f1ef76b013/diff:/var/lib/docker/overlay2/7b11708c3a019df26855993e02e318c8e6cca09def7ab7a742315b2391a75564/diff:/var/lib/docker/overlay2/5cfa7a0890f4fa1fe0fe24474140b48bcfee9cf60cf9e2aa2bf152c3ca4a916f/diff:/var/lib/docker/overlay2/c17cbcc9555d725369c40cdd22e2b138b34de0167ef4e4b79e58b1df02951845/diff:/var/lib/docker/overlay2/3bdade97791b087ed31db37e71c3c85df3923ff64932fadebf87eaecd9a733cf/diff:/var/lib/docker/overlay2/f672423d3ba855ba365ec9df803f2b2049a6c8f8a9b057420188431f7718d689/diff:/var/lib/docker/overlay2/6836d645087f7431453ec12120515393a9306cca96b6d3e7180f157c8eea1d2a/diff:/var/lib/docker/overlay2/393b2052389c665c8f7c52bf1f19a02b02b7b35e38083b6c8c429f2853a4b4ce/diff:/var/lib/docker/overlay2/175341896be85e6c17dde186714ca078b42eb8888ddc1148b41210709d92d622/diff:/var/lib/docker/overlay2/7dfe6bc49bf39e0c29ffdd9326f47fa2c0b8ad249175f9398059d107fb749b60/diff:/var/lib/docker/overlay2/addd162c0a78e11c0925e143cc496b468ae454821aeb3735880995d86790b6ed/diff",
            "MergedDir": "/var/lib/docker/overlay2/aae68ce2fbbb0d5be3152cabf51e40bc434ccfc1624dc0a0c86ed81be493e9d8/merged",
            "UpperDir": "/var/lib/docker/overlay2/aae68ce2fbbb0d5be3152cabf51e40bc434ccfc1624dc0a0c86ed81be493e9d8/diff",
            "WorkDir": "/var/lib/docker/overlay2/aae68ce2fbbb0d5be3152cabf51e40bc434ccfc1624dc0a0c86ed81be493e9d8/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:ec66d8cea54a2f4dfbbd8342ce082503bf8541e996a800c0d724b8dd2fea7f6a",
            "sha256:1e4369562af2776e0c15f6b3cbff934bef391cde6cc507e88d893f95eb8e277a",
            "sha256:995f183bef2191339a5f42248f38d932150a04b13a308f446d4def90f1849024",
            "sha256:2ed07a8596206f76ee478ce3bad1a53af8dc30c5e5c8c99027a6c4a62ec19220",
            "sha256:0fe166373eb964444eb9eaafe9a974d97dec266627869ddf87e17a93effa2f40",
            "sha256:bb9ed9356ee85c847e1f1cb4c79116fe0abf1fbd82fe140536a2e4f01b30a748",
            "sha256:6ffbef4e19ae986a85110908632de28ec8394de2d19822387104718d2014d052",
            "sha256:09001fa7f0e329725d950021008ece7dccc7e29e1585f5ebcef0ce10d27ba5a2",
            "sha256:143c7090d6d6e356e0262c15c2a39387c1eed7e5359b85af6524c97dca222c8f",
            "sha256:9b60e1a1cbfbe7dfe42134064164b8bcbe3ad31566409e8d594a3cd5a6a9cd3b",
            "sha256:9a9d17453a10dc7b2e2cd5da8b98aff949023720b1ccd63791ad61d9fa7579ae",
            "sha256:1e0fad0ce3ec932cb5400801d9507246e8226509f77e9f3a24856b3fd926b778",
            "sha256:c438e19a23b9410631ecb0920f89d0021f92446180eff9707d976079174496f3",
            "sha256:7d6bfde9fbe7058deae5f3e7cb2446c98627b4f18c1d013b94d795a1bf448882",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:ef7a45d9868d412f6b130f93ce0259ee9814f2210ac246ae615a18331ffb0324",
            "sha256:05a5747fb50720527ee1f0584ac8163cf1b194b06acd0838f4a4f958a424f21a",
            "sha256:141f003efb3f927f3fb073b09111af01b0b809d12f37a21ecd8a04092e920b25",
            "sha256:eb91bddea38c0a1644db4db736bbbe5e4d497541de26bc1abd7878e97f741c1b",
            "sha256:4446016a6563813c7234a3ce49f0f959f2967795e1aefe95f70cc6ffd944fd3f",
            "sha256:fa2b875aafbded5024deda274fd04e8b38d6eb5fe81f2551efe7d8310873a65e",
            "sha256:cf4fe5bb1a64c3eb09a110835cbf777034c9634743fe4265969872f96e2d1ab3",
            "sha256:ae655a59ef62bbbc8e3b124096565e6776cd5f9d8d84e931dd4e50800f92964b",
            "sha256:f6cd5d477c3fbe1d52cf4acd27b6dec0b8a11875e634f3a359c0f4efb7338af4",
            "sha256:0daba76b686e46e01ee78c84e1c534edd099025b48d9b54fd9ff3c720d968df3",
            "sha256:320a8f11c8be0fbfab3c5b58c4b2b75dd55cc75234e30daf49347323c1b1bd2a",
            "sha256:f11fc3b84a9fe3b4937dcb9c2bf53835e0b28c6259a957210233b7fcbe76f7e3",
            "sha256:5f780a21443c3d9e55d88a3374aa1a89bc19981f4624412d6ae9749bcb2d934a",
            "sha256:c6b5aab144d84f3c15b3574879f64b48008f509d0715571fd1de7082361cbe57",
            "sha256:90fbb1ea45fe64279b34492db0c3ffa9fa0b064acb3d812b14c78e6e5c855897",
            "sha256:9fd8e5a64ccf5b3e70ba816ded95301920a969c5f8eea86c596a9b9e57dc5668",
            "sha256:f305c3a19090d39bdaee810fc673c3d9583d3b81282afc793b891ab99848b8a7",
            "sha256:d9e2b0241882369d096c7be819c9b0e5ea35c36f3f9c0d221027dd928b5c3428",
            "sha256:f36bfab43ef93f3779a25cf2eb7162af545d2bd3a96a5c1eb84d7d9d15f05b8d",
            "sha256:51b4d0db42609a0396e3eeeb0328d0bee7c88277da2b912322a77d5d004a4b6e",
            "sha256:2a3dfd540bb44b9492f5e9db0d1bd339be1b745936ac85a01047a5c7852e203d",
            "sha256:fa6d6ec5d543ef3d31a370a60914bc6b04b4794cbc82074890094732948c3bdc",
            "sha256:8c602640cdfbb3690c32e57484565b3a906d315bc126c2ce306b4c3549ad8bfb"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-03-20T16:37:39.165617925+08:00"
    }
}

更多版本

gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest

linux/amd64 gcr.io19.02GB2025-03-20 16:56
30