ghcr.io/huggingface/text-generation-inference:3.1.0 linux/amd64

ghcr.io/huggingface/text-generation-inference:3.1.0 - 国内下载镜像源 浏览次数:54

用于文本生成的 Hugging Face Inference 镜像。它旨在提供高性能的文本生成服务,优化了延迟和吞吐量。该镜像支持多种模型,并提供了易于使用的 API,方便部署和扩展。

源镜像 ghcr.io/huggingface/text-generation-inference:3.1.0
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0
镜像ID sha256:6724f1647f1b8ab2cfd35aa8a5944ef5ccb7d82a342a8c4c6cdd03918068483a
镜像TAG 3.1.0
大小 12.24GB
镜像源 ghcr.io
CMD
启动入口 /tgi-entrypoint.sh
工作目录 /usr/src
OS/平台 linux/amd64
浏览量 54 次
贡献者
镜像创建 2025-01-31T13:35:29.320141947Z
同步时间 2025-02-11 04:56
更新时间 2025-02-21 17:45
环境变量
PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.55-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/opt/conda/lib/ NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility CONDA_PREFIX=/opt/conda HF_HOME=/data HF_HUB_ENABLE_HF_TRANSFER=1 PORT=80 UV_SYSTEM_PYTHON=1 EXLLAMA_NO_FLASH_ATTN=1
镜像标签
NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer 2025-01-31T13:28:43.167Z: org.opencontainers.image.created Large Language Model Text Generation Inference: org.opencontainers.image.description Apache-2.0: org.opencontainers.image.licenses ubuntu: org.opencontainers.image.ref.name 463228ebfc444f60fa351da34a2ba158af0fe9d8: org.opencontainers.image.revision https://github.com/huggingface/text-generation-inference: org.opencontainers.image.source text-generation-inference: org.opencontainers.image.title https://github.com/huggingface/text-generation-inference: org.opencontainers.image.url 3.1.0: org.opencontainers.image.version
镜像安全扫描 查看Trivy扫描报告

系统OS: ubuntu 22.04 扫描引擎: Trivy 扫描时间: 2025-02-11 05:00

低危漏洞:155 中危漏洞:749 高危漏洞:2 严重漏洞:0

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0  ghcr.io/huggingface/text-generation-inference:3.1.0

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0  ghcr.io/huggingface/text-generation-inference:3.1.0

Shell快速替换命令

sed -i 's#ghcr.io/huggingface/text-generation-inference:3.1.0#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0  ghcr.io/huggingface/text-generation-inference:3.1.0'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0  ghcr.io/huggingface/text-generation-inference:3.1.0'

镜像构建历史


# 2025-01-31 21:35:29  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/tgi-entrypoint.sh"]
                        
# 2025-01-31 21:35:29  0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c chmod +x /tgi-entrypoint.sh # buildkit
                        
# 2025-01-31 21:35:29  135.00B 复制新文件或目录到容器中
COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh # buildkit
                        
# 2025-01-31 21:35:29  6.76MB 复制新文件或目录到容器中
COPY /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher # buildkit
                        
# 2025-01-31 21:35:29  38.57MB 复制新文件或目录到容器中
COPY /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router # buildkit
                        
# 2025-01-31 21:35:29  11.81MB 复制新文件或目录到容器中
COPY /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark # buildkit
                        
# 2025-01-31 21:24:16  220.15MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends         build-essential         g++         && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-01-31 21:24:09  0.00B 设置环境变量 EXLLAMA_NO_FLASH_ATTN
ENV EXLLAMA_NO_FLASH_ATTN=1
                        
# 2025-01-31 21:24:09  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/opt/conda/lib/
                        
# 2025-01-31 21:24:09  1.48GB 执行命令并创建新的镜像层
RUN /bin/sh -c cd server &&     make gen-server &&     python -c "from text_generation_server.pb import generate_pb2" &&     pip install -U pip uv &&     uv pip install -e ".[attention, bnb, accelerate, compressed-tensors, marlin, moe, quantize, peft, outlines]" --no-cache-dir # && ENV LD_PRELOAD=/opt/conda/lib/python3.11/site-packages/nvidia/nccl/lib/libnccl.so.2 # buildkit
                        
# 2025-01-31 21:26:12  0.00B 设置环境变量 UV_SYSTEM_PYTHON
ENV UV_SYSTEM_PYTHON=1
                        
# 2025-01-31 21:26:12  0.00B 复制新文件或目录到容器中
COPY server/Makefile server/Makefile # buildkit
                        
# 2025-01-31 21:24:00  2.58MB 复制新文件或目录到容器中
COPY server server # buildkit
                        
# 2025-01-24 08:45:47  13.42KB 复制新文件或目录到容器中
COPY proto proto # buildkit
                        
# 2025-01-24 08:45:47  633.52MB 复制新文件或目录到容器中
COPY /opt/conda/lib/python3.11/site-packages/flashinfer/ /opt/conda/lib/python3.11/site-packages/flashinfer/ # buildkit
                        
# 2025-01-24 02:43:17  23.81MB 复制新文件或目录到容器中
COPY /usr/src/causal-conv1d/build/lib.linux-x86_64-cpython-311/ /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:43:17  183.76MB 复制新文件或目录到容器中
COPY /usr/src/mamba/build/lib.linux-x86_64-cpython-311/ /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:43:17  24.03MB 复制新文件或目录到容器中
COPY /usr/src/lorax-punica/server/punica_kernels/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:43:17  41.56MB 复制新文件或目录到容器中
COPY /usr/src/eetq/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:43:17  9.71MB 复制新文件或目录到容器中
COPY /usr/src/llm-awq/awq/kernels/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:43:17  94.94MB 复制新文件或目录到容器中
COPY /usr/src/exllamav2/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:43:17  555.89KB 复制新文件或目录到容器中
COPY /usr/src/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:43:17  3.04MB 复制新文件或目录到容器中
COPY /usr/src/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:43:17  623.95MB 复制新文件或目录到容器中
COPY /opt/conda/lib/python3.11/site-packages/flash_attn_2_cuda.cpython-311-x86_64-linux-gnu.so /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:19:39  10.74MB 复制新文件或目录到容器中
COPY /usr/src/flash-attention/csrc/rotary/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:19:39  725.07MB 复制新文件或目录到容器中
COPY /usr/src/flash-attention/csrc/layer_norm/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:19:39  153.86MB 复制新文件或目录到容器中
COPY /usr/src/flash-attention/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages # buildkit
                        
# 2025-01-24 02:03:07  7.62GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2025-01-07 00:06:06  92.55MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends         libssl-dev         ca-certificates         make         curl         git         && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-01-31 21:26:12  0.00B 设置工作目录为/usr/src
WORKDIR /usr/src
                        
# 2025-01-31 21:26:12  0.00B 设置环境变量 HF_HOME HF_HUB_ENABLE_HF_TRANSFER PORT
ENV HF_HOME=/data HF_HUB_ENABLE_HF_TRANSFER=1 PORT=80
                        
# 2025-01-31 21:26:12  0.00B 设置环境变量 PATH CONDA_PREFIX
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin CONDA_PREFIX=/opt/conda
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:44:29  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:44:29  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:44:29  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:44:29  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.0
                        
# 2023-11-10 13:44:18  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:44:18  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:44:18  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.55-1
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:44:18  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:6724f1647f1b8ab2cfd35aa8a5944ef5ccb7d82a342a8c4c6cdd03918068483a",
    "RepoTags": [
        "ghcr.io/huggingface/text-generation-inference:3.1.0",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference:3.1.0"
    ],
    "RepoDigests": [
        "ghcr.io/huggingface/text-generation-inference@sha256:da2982809d778a3e81e2d459c4aa516c50f6add2d7dcbf1180fc973fd6ecf379",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/huggingface/text-generation-inference@sha256:9b3e1fa901b744f2bf200ec0832acaff1fe125ab4b9733de9fb8769f0a84de77"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-01-31T13:35:29.320141947Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.55-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/opt/conda/lib/",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "CONDA_PREFIX=/opt/conda",
            "HF_HOME=/data",
            "HF_HUB_ENABLE_HF_TRANSFER=1",
            "PORT=80",
            "UV_SYSTEM_PYTHON=1",
            "EXLLAMA_NO_FLASH_ATTN=1"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/usr/src",
        "Entrypoint": [
            "/tgi-entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.created": "2025-01-31T13:28:43.167Z",
            "org.opencontainers.image.description": "Large Language Model Text Generation Inference",
            "org.opencontainers.image.licenses": "Apache-2.0",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.revision": "463228ebfc444f60fa351da34a2ba158af0fe9d8",
            "org.opencontainers.image.source": "https://github.com/huggingface/text-generation-inference",
            "org.opencontainers.image.title": "text-generation-inference",
            "org.opencontainers.image.url": "https://github.com/huggingface/text-generation-inference",
            "org.opencontainers.image.version": "3.1.0"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 12238796481,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/2a5d776968c1d3aa876a27a985f5e3d39c6dae6decf22f9955f05bf74039812c/diff:/var/lib/docker/overlay2/ebe445fe07b795a31ee876d2842fd442d0722e121604e724835cad9faf2bbd30/diff:/var/lib/docker/overlay2/8ef27a8ca258065ef2906cebbd241a6a3c94c13db3e4324447476c7fb9251436/diff:/var/lib/docker/overlay2/c388b563ede09aa87b87211a3ab7427b9e062a0401e627d6419b662c87f20bfb/diff:/var/lib/docker/overlay2/73622de092c65cc8790c604b557e90193b3c96b42755ea6a02391ad565fdbcc4/diff:/var/lib/docker/overlay2/54b071d5025731ac2b557bf377dc84e75691348ea9af6f71076ba5732cf24e0f/diff:/var/lib/docker/overlay2/6ca037d5f8b50214d18056eedbe26e45e956c02c460b553f7ff54bf68c50c593/diff:/var/lib/docker/overlay2/40b40bac33646676fb89330fc63e63549e19023ea42d1eb5cfb0486d7c0d428d/diff:/var/lib/docker/overlay2/1fc7779ba0065a1d808037c47a089816dd7f8726f691c18dc2596f7c0da5e530/diff:/var/lib/docker/overlay2/3262d4f1b6846072ce07d2bcec6a6f7ab866b27ff4a32d4e0b90579781e31c03/diff:/var/lib/docker/overlay2/fdee3ce0f06b303c7c1e6d0da399de0cf3276afcffbcef5cb9d79f104a3c7105/diff:/var/lib/docker/overlay2/5a59790d5522239130a7748ed83d78cac4792e9139a0c8c3cf844b94af19dae5/diff:/var/lib/docker/overlay2/e12e9560905c6b90ff800e342def7f293a35df72ed088b2ac2f5af4e82db5e7a/diff:/var/lib/docker/overlay2/59a61bd4a41288a541bf7dfa7ead6b75e18cdbd494203e4216db997c6540f5c1/diff:/var/lib/docker/overlay2/fd1e318cb337836000872b7480ce79e68226e29633345aebf96ca13f79a3f445/diff:/var/lib/docker/overlay2/5abb99cdaa8ca542a121e7ed3a290a1fd1f094d0e935cccbbf02bf9d5a41dc81/diff:/var/lib/docker/overlay2/6d35f34925ee5ba157d09b4c21244cfd3f751d99e57b9a31d5da701c60cda961/diff:/var/lib/docker/overlay2/bac1697db9433c862f5e38ec669fb438cc498024cbae512d1cc96abd9a824fa0/diff:/var/lib/docker/overlay2/aa9a2365c76c14e48d355ae9599c607360ed07778c23747c21be0733dac538be/diff:/var/lib/docker/overlay2/2ff6d3b23a766c514d3d1edc5e6a609dbded98b34e619236f19811ece0addd81/diff:/var/lib/docker/overlay2/067f1623755684401cbf288b8d55c8b3b1dc91674e20022f53da20ea2cedc5f9/diff:/var/lib/docker/overlay2/d04bffd37a703c90ce3d732321143cfacbffb78bea25e91e1f723d37a93542a1/diff:/var/lib/docker/overlay2/6dc5947be2d97be12cf7bfb84bb140e649d3966115ccdad1f0c2b428bf5f58b5/diff:/var/lib/docker/overlay2/164bf678c14dba081e0d1aacba4661160c6f682d5023e88cee0aece687568d7d/diff:/var/lib/docker/overlay2/7a61305da1c37eee299f69cfd940813bed37ec9bf020ccecee6c7704084d6e48/diff:/var/lib/docker/overlay2/86c98ab0ed88b61b06cf59d67d016cbf05a2c7cea2a7a4fe53a6be12a6bb87d7/diff:/var/lib/docker/overlay2/dddcc2c36b2b15125b046f443eaf956385215dd4fe1629756f29c2e1077ee125/diff:/var/lib/docker/overlay2/7c0ec148c160c668fe5b36bcb65f7d5badb55eb5dcdea8490e826c2a41b578a9/diff:/var/lib/docker/overlay2/b213e3c8abc27592f101ffbb1d0f2c437b5effe9b384d0f550f46a4f894f180d/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/e334717044423c79144e67f6bb301b07158e6d9fbe279b1e98a6fae54807c366/merged",
            "UpperDir": "/var/lib/docker/overlay2/e334717044423c79144e67f6bb301b07158e6d9fbe279b1e98a6fae54807c366/diff",
            "WorkDir": "/var/lib/docker/overlay2/e334717044423c79144e67f6bb301b07158e6d9fbe279b1e98a6fae54807c366/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:7b9433fba79bfc9269aab8277ea9975364db1c1f775a7ee6b14b5dffa045b294",
            "sha256:765423415d690bf8ca1510e7147d5b86dba15dcf1a3b1a515f1a85cc5dd439bb",
            "sha256:e4b1bddcbe6378dfa58bf1faa040813b74938129eb4bb06cbf083240335c5c54",
            "sha256:cd77f58b80cdcfac5fcdef06b2033fedc1115073afae035a14b6692cb5cd6650",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:54759b3e6085d6b892b3e3d9d1af94eaa2a1b1589f6b9428e91bfc48ad617c8e",
            "sha256:10cece0ca9e389c1c5e6344e2f85dd584cecea4e0668844e68a3648d00e783f5",
            "sha256:727784b664f3c89143b0a8b14b9e01357794be420e7ce32a62f69e255693cdda",
            "sha256:ffdc8811cc554a36fdc87a6bee8628cf495a2debbd7c5624e016fdfe5c24c9f4",
            "sha256:f0437d05b23bea9e2c2cf02f411b89b64bc09d04900c99cf4d7a0ffb081c961f",
            "sha256:17646bc011bd3255521744a1b63d2a4fc051e966201938d5ba5d26c87ee8e0bc",
            "sha256:30e5b91e74570fe2d67f15d91e4acab198621f765f1c2bc99cf92cc904179460",
            "sha256:1ba71b9725a21c58ac56af97c0886287e37b16c0d87a54f5c2afd346a5fdc777",
            "sha256:791532f96effe16eb8fb1acd5d01416162eee0a24b9343c5c7e9d45aa66aff99",
            "sha256:677ca9ab1989bf1e5a80a27d1caa8d2e1cac2aad07584d6f3953dd4182a2f7d4",
            "sha256:2c36486784faa657ca58cd9eecd5291f3d4a1ce5984a9eed1bfc4f4aaefc6bb1",
            "sha256:734d5fad0ba9ab75cfbe4da77a0b535e1ffc036e939b9b8b581c67354a7fe5bf",
            "sha256:e5eda6c4a2e7d1623d1ae739dd36c8f311f07a02f9162d3d9c8d247f7007ab57",
            "sha256:5ccdcb7a5dd9603a6f3c51e2b4ad99ad8fd5f405d8612d415ec518b34906b18a",
            "sha256:86e903c81833774b42be0c3402dc783ea57696bf3718b7bb7d11582016c8f3ca",
            "sha256:dc603fc8611971d7de861700ad2793a59a27c9a50154b52246f89db91eefe6b4",
            "sha256:7f7928c97a56de49acbb95a46afaa4d01e90107ab2003d9f68ee0524df00f262",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:6105068f627b0dce652585875615e519e75d95e5d93dd8c22f62aec069005030",
            "sha256:9a9397242b634232ca3e1aacbbf09ffd59be74d9d01fd4e440597c042d963683",
            "sha256:107b82bc0e6a639f6360fb2a7fcd9aaac12a8cb668a03bb9583ff8f53b198c9c",
            "sha256:a212343934352136b23a888a2e3445230f43dc0ea5aaaa943cd27b488f6aa042",
            "sha256:93ecc6d86b6ce52e541e90d39cabf77470ba843526300ccbc8bb1847befd157a",
            "sha256:4c772b76e58e5c12913adb52100152d58494b682534b7cc299c5746ec12f55ce",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-02-11T04:43:51.616539175+08:00"
    }
}

更多版本

ghcr.io/huggingface/text-generation-inference:2.1.1

linux/amd64 ghcr.io10.66GB2024-09-07 04:52
149

ghcr.io/huggingface/text-generation-inference:2.2

linux/amd64 ghcr.io11.37GB2024-09-07 05:20
295

ghcr.io/huggingface/text-generation-inference:2.3.0

linux/amd64 ghcr.io13.75GB2024-09-23 15:50
362

ghcr.io/huggingface/text-generation-inference:2.4.0

linux/amd64 ghcr.io14.11GB2024-11-08 17:53
157

ghcr.io/huggingface/text-generation-inference:3.1.0

linux/amd64 ghcr.io12.24GB2025-02-11 04:56
53