镜像构建历史
# 2025-01-05 17:51:57 0.00B 设置默认要执行的命令
CMD ["bash" "start.sh"]
# 2025-01-05 17:51:57 0.00B 设置环境变量 DOCKER
ENV DOCKER=true
# 2025-01-05 17:51:57 0.00B 设置环境变量 WEBUI_BUILD_VERSION
ENV WEBUI_BUILD_VERSION=506dc0149ca973e20768fa3d6f171afac289f606
# 2025-01-05 17:51:57 0.00B 定义构建参数
ARG BUILD_HASH=506dc0149ca973e20768fa3d6f171afac289f606
# 2025-01-05 17:51:57 0.00B 指定运行容器时使用的用户
USER 0:0
# 2025-01-05 17:51:57 0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"] "0s" "0s" "0s" "0s" '\x00'}
# 2025-01-05 17:51:57 0.00B 声明容器运行时监听的端口
EXPOSE map[8080/tcp:{}]
# 2025-01-05 17:51:57 69.66MB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend . # buildkit
# 2025-01-05 17:51:57 3.69KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/package.json /app/package.json # buildkit
# 2025-01-05 17:51:57 113.86KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/CHANGELOG.md /app/CHANGELOG.md # buildkit
# 2025-01-05 17:51:57 226.73MB 复制新文件或目录到容器中
COPY --chown=0:0 /app/build /app/build # buildkit
# 2025-01-05 17:51:07 2.78GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu121 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c pip3 install uv && if [ "$USE_CUDA" = "true" ]; then pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; else pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; fi; chown -R $UID:$GID /app/backend/data/ # buildkit
# 2025-01-05 17:49:55 1.50KB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend/requirements.txt ./requirements.txt # buildkit
# 2024-12-26 02:42:31 1.02GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu121 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ "$USE_OLLAMA" = "true" ]; then apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && apt-get install -y --no-install-recommends curl jq && curl -fsSL https://ollama.com/install.sh | sh && rm -rf /var/lib/apt/lists/*; else apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && rm -rf /var/lib/apt/lists/*; fi # buildkit
# 2024-12-26 02:41:50 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu121 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c chown -R $UID:$GID /app $HOME # buildkit
# 2024-12-26 02:41:50 36.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu121 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id # buildkit
# 2024-12-26 02:41:50 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu121 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c mkdir -p $HOME/.cache/chroma # buildkit
# 2024-12-26 02:41:50 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu121 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ $UID -ne 0 ]; then if [ $GID -ne 0 ]; then addgroup --gid $GID app; fi; adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; fi # buildkit
# 2024-12-26 02:41:50 0.00B 设置环境变量 HOME
ENV HOME=/root
# 2024-12-26 02:41:50 0.00B 设置工作目录为/app/backend
WORKDIR /app/backend
# 2024-12-26 02:41:50 0.00B 设置环境变量 HF_HOME
ENV HF_HOME=/app/backend/data/cache/embedding/models
# 2024-12-26 02:41:50 0.00B 设置环境变量 TIKTOKEN_ENCODING_NAME TIKTOKEN_CACHE_DIR
ENV TIKTOKEN_ENCODING_NAME=cl100k_base TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken
# 2024-12-26 02:41:50 0.00B 设置环境变量 RAG_EMBEDDING_MODEL RAG_RERANKING_MODEL SENTENCE_TRANSFORMERS_HOME
ENV RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 RAG_RERANKING_MODEL= SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models
# 2024-12-26 02:41:50 0.00B 设置环境变量 WHISPER_MODEL WHISPER_MODEL_DIR
ENV WHISPER_MODEL=base WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models
# 2024-12-26 02:41:50 0.00B 设置环境变量 OPENAI_API_KEY WEBUI_SECRET_KEY SCARF_NO_ANALYTICS DO_NOT_TRACK ANONYMIZED_TELEMETRY
ENV OPENAI_API_KEY= WEBUI_SECRET_KEY= SCARF_NO_ANALYTICS=true DO_NOT_TRACK=true ANONYMIZED_TELEMETRY=false
# 2024-12-26 02:41:50 0.00B 设置环境变量 OLLAMA_BASE_URL OPENAI_API_BASE_URL
ENV OLLAMA_BASE_URL=/ollama OPENAI_API_BASE_URL=
# 2024-12-26 02:41:50 0.00B 设置环境变量 ENV PORT USE_OLLAMA_DOCKER USE_CUDA_DOCKER USE_CUDA_DOCKER_VER USE_EMBEDDING_MODEL_DOCKER USE_RERANKING_MODEL_DOCKER
ENV ENV=prod PORT=8080 USE_OLLAMA_DOCKER=false USE_CUDA_DOCKER=false USE_CUDA_DOCKER_VER=cu121 USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL_DOCKER=
# 2024-12-26 02:41:50 0.00B 定义构建参数
ARG GID=0
# 2024-12-26 02:41:50 0.00B 定义构建参数
ARG UID=0
# 2024-12-26 02:41:50 0.00B 定义构建参数
ARG USE_RERANKING_MODEL=
# 2024-12-26 02:41:50 0.00B 定义构建参数
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
# 2024-12-26 02:41:50 0.00B 定义构建参数
ARG USE_CUDA_VER=cu121
# 2024-12-26 02:41:50 0.00B 定义构建参数
ARG USE_OLLAMA=false
# 2024-12-26 02:41:50 0.00B 定义构建参数
ARG USE_CUDA=false
# 2024-12-04 06:49:59 0.00B 设置默认要执行的命令
CMD ["python3"]
# 2024-12-04 06:49:59 36.00B 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; for src in idle3 pip3 pydoc3 python3 python3-config; do dst="$(echo "$src" | tr -d 3)"; [ -s "/usr/local/bin/$src" ]; [ ! -e "/usr/local/bin/$dst" ]; ln -svT "$src" "/usr/local/bin/$dst"; done # buildkit
# 2024-12-04 06:49:59 45.80MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; savedAptMark="$(apt-mark showmanual)"; apt-get update; apt-get install -y --no-install-recommends dpkg-dev gcc gnupg libbluetooth-dev libbz2-dev libc6-dev libdb-dev libffi-dev libgdbm-dev liblzma-dev libncursesw5-dev libreadline-dev libsqlite3-dev libssl-dev make tk-dev uuid-dev wget xz-utils zlib1g-dev ; wget -O python.tar.xz "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"; echo "$PYTHON_SHA256 *python.tar.xz" | sha256sum -c -; wget -O python.tar.xz.asc "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"; GNUPGHOME="$(mktemp -d)"; export GNUPGHOME; gpg --batch --keyserver hkps://keys.openpgp.org --recv-keys "$GPG_KEY"; gpg --batch --verify python.tar.xz.asc python.tar.xz; gpgconf --kill all; rm -rf "$GNUPGHOME" python.tar.xz.asc; mkdir -p /usr/src/python; tar --extract --directory /usr/src/python --strip-components=1 --file python.tar.xz; rm python.tar.xz; cd /usr/src/python; gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"; ./configure --build="$gnuArch" --enable-loadable-sqlite-extensions --enable-optimizations --enable-option-checking=fatal --enable-shared --with-lto --with-ensurepip ; nproc="$(nproc)"; EXTRA_CFLAGS="$(dpkg-buildflags --get CFLAGS)"; LDFLAGS="$(dpkg-buildflags --get LDFLAGS)"; LDFLAGS="${LDFLAGS:--Wl},--strip-all"; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:-}" ; rm python; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:--Wl},-rpath='\$\$ORIGIN/../lib'" python ; make install; cd /; rm -rf /usr/src/python; find /usr/local -depth \( \( -type d -a \( -name test -o -name tests -o -name idle_test \) \) -o \( -type f -a \( -name '*.pyc' -o -name '*.pyo' -o -name 'libpython*.a' \) \) \) -exec rm -rf '{}' + ; ldconfig; apt-mark auto '.*' > /dev/null; apt-mark manual $savedAptMark; find /usr/local -type f -executable -not \( -name '*tkinter*' \) -exec ldd '{}' ';' | awk '/=>/ { so = $(NF-1); if (index(so, "/usr/local/") == 1) { next }; gsub("^/(usr/)?", "", so); printf "*%s\n", so }' | sort -u | xargs -r dpkg-query --search | cut -d: -f1 | sort -u | xargs -r apt-mark manual ; apt-get purge -y --auto-remove -o APT::AutoRemove::RecommendsImportant=false; rm -rf /var/lib/apt/lists/*; export PYTHONDONTWRITEBYTECODE=1; python3 --version; pip3 install --disable-pip-version-check --no-cache-dir --no-compile 'setuptools==65.5.1' wheel ; pip3 --version # buildkit
# 2024-12-04 06:49:59 0.00B 设置环境变量 PYTHON_SHA256
ENV PYTHON_SHA256=2a9920c7a0cd236de33644ed980a13cbbc21058bfdc528febb6081575ed73be3
# 2024-12-04 06:49:59 0.00B 设置环境变量 PYTHON_VERSION
ENV PYTHON_VERSION=3.11.11
# 2024-12-04 06:49:59 0.00B 设置环境变量 GPG_KEY
ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D
# 2024-12-04 06:49:59 8.48MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates netbase tzdata ; rm -rf /var/lib/apt/lists/* # buildkit
# 2024-12-04 06:49:59 0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
# 2024-12-04 06:49:59 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2024-12-04 06:49:59 74.82MB
# debian.sh --arch 'amd64' out/ 'bookworm' '@1734912000'
镜像信息
{
"Id": "sha256:24a0a7483d4c83e5c008a711018fa49880cba6c64ce8b23402ad0714f6931eec",
"RepoTags": [
"ghcr.io/open-webui/open-webui:v0.5.4",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui:v0.5.4"
],
"RepoDigests": [
"ghcr.io/open-webui/open-webui@sha256:42e8fa544facc38d731e3d516fbf478abe435bb4b80798e0934930afea6c5bab",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui@sha256:5209cb9a79bdc78df051a8ffca9e7cc8b1ee17ef9b557b5384cdda934997e32b"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2025-01-05T09:51:57.908509157Z",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "0:0",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"ExposedPorts": {
"8080/tcp": {}
},
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"LANG=C.UTF-8",
"GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D",
"PYTHON_VERSION=3.11.11",
"PYTHON_SHA256=2a9920c7a0cd236de33644ed980a13cbbc21058bfdc528febb6081575ed73be3",
"ENV=prod",
"PORT=8080",
"USE_OLLAMA_DOCKER=false",
"USE_CUDA_DOCKER=false",
"USE_CUDA_DOCKER_VER=cu121",
"USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2",
"USE_RERANKING_MODEL_DOCKER=",
"OLLAMA_BASE_URL=/ollama",
"OPENAI_API_BASE_URL=",
"OPENAI_API_KEY=",
"WEBUI_SECRET_KEY=",
"SCARF_NO_ANALYTICS=true",
"DO_NOT_TRACK=true",
"ANONYMIZED_TELEMETRY=false",
"WHISPER_MODEL=base",
"WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models",
"RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2",
"RAG_RERANKING_MODEL=",
"SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models",
"TIKTOKEN_ENCODING_NAME=cl100k_base",
"TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken",
"HF_HOME=/app/backend/data/cache/embedding/models",
"HOME=/root",
"WEBUI_BUILD_VERSION=506dc0149ca973e20768fa3d6f171afac289f606",
"DOCKER=true"
],
"Cmd": [
"bash",
"start.sh"
],
"Healthcheck": {
"Test": [
"CMD-SHELL",
"curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"
]
},
"ArgsEscaped": true,
"Image": "",
"Volumes": null,
"WorkingDir": "/app/backend",
"Entrypoint": null,
"OnBuild": null,
"Labels": {
"org.opencontainers.image.created": "2025-01-05T09:49:39.929Z",
"org.opencontainers.image.description": "User-friendly AI Interface (Supports Ollama, OpenAI API, ...)",
"org.opencontainers.image.licenses": "MIT",
"org.opencontainers.image.revision": "506dc0149ca973e20768fa3d6f171afac289f606",
"org.opencontainers.image.source": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.title": "open-webui",
"org.opencontainers.image.url": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.version": "0.5.4"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 4225886577,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/a2dbca28cdecd54e33529d660872f9a65b560a2c79bce29569e1e9fbc8da5d58/diff:/var/lib/docker/overlay2/19c352014a8bf0443ce836eadc4b1e70a0e62e3b56b5d56d644078f9d9ae267b/diff:/var/lib/docker/overlay2/d5b944cd70717ac880e44d2b53bd58b6b39e8579e9db416df454f9ab395560d8/diff:/var/lib/docker/overlay2/4664a5506df495aad14b85ca69d7206aaeeb3796661b5647349f3891bc7769c6/diff:/var/lib/docker/overlay2/28f2cb803ec9727f11c8e97f024f844ad8c08768b2ae55ec6a2ac16943eae348/diff:/var/lib/docker/overlay2/ba06ca10d221630ebcc50e301d1a9bcbd9402014512807564dc1d7e81b100b9a/diff:/var/lib/docker/overlay2/ffb6e5999e5c0cd5b3f6f14f9bae29da85047a87be72fbc249894e289c8e5506/diff:/var/lib/docker/overlay2/390e5c7489e03f9ce251b9632cb9cba915d8ee2dc9c10a8d16cc93389c24d3db/diff:/var/lib/docker/overlay2/9b5d2e6186b357918daa27f0f7952e0be602d07f131e4d3b7e9588dbbeba255e/diff:/var/lib/docker/overlay2/52f0a6031136981bfc4829633f2f1b07566295e26ea39d7087540b6895409c2b/diff:/var/lib/docker/overlay2/303f8d54b555856d0d23ffa43ef9afe411f3b2f034edfb5df5696e2012f3d5c6/diff:/var/lib/docker/overlay2/bcaea98040947f547b90e12b00eb7a96a0e3ed5be04b3e8c3e60a9ae95a3b9c4/diff:/var/lib/docker/overlay2/39e8e0f914950f940a8bcbc1b8b8abfccce3f49f1a16d7a8c70e9f4dbd7e8551/diff:/var/lib/docker/overlay2/91d5f313176e0567c036ff41f6d44e9f552258fb2a069032c02165b1338824fe/diff:/var/lib/docker/overlay2/d7da656d9414ae961b292fa109d069e923b341eab550c2db09cb0ab256f4ae70/diff",
"MergedDir": "/var/lib/docker/overlay2/c8cfbb2863018b0bc8ac4b73e1d3a71a2fb52e6aaddad9d9974af7ac06bbac1c/merged",
"UpperDir": "/var/lib/docker/overlay2/c8cfbb2863018b0bc8ac4b73e1d3a71a2fb52e6aaddad9d9974af7ac06bbac1c/diff",
"WorkDir": "/var/lib/docker/overlay2/c8cfbb2863018b0bc8ac4b73e1d3a71a2fb52e6aaddad9d9974af7ac06bbac1c/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:8b296f48696071aafb5a6286ca60d441a7e559b192fc7f94bb63ee93dae98f17",
"sha256:f6ee4a3f4002665c60cff4c02c92ef2465ad4e09761543040b0ead3494cfe607",
"sha256:15faf35c49d14ea8a6d7597b57a24ff5893fec8e8c2dd2f6242a26064b67fb7e",
"sha256:a2962e4963128c1096a01854f36793531a8814384cc2cf2f3a5439b63442adf9",
"sha256:51c19ee292937c97d9c7f68fff2c3d1e198bdf84f2183a56c5c2c8e97594bd73",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:12083ff59f27c5e3e7cfb7827f1eacbd33d76793c9cf1ec14454ac923f88aa44",
"sha256:af566eab6971f26c19cecd144d7ce94c0395f157bcf90b447c7258f20c8b38bc",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:d0d7fc762979dc93574def2064af4053243c4a3d4be1ca6dada37ed7f3dab2a4",
"sha256:efda63a31f8056a9d060ad92432057814221f40b5a458f2bf356c1a5f0091b27",
"sha256:012df3a7898475210371151da46dde29d9d2d07515081a296d55343e8118ec2a",
"sha256:420eac45d0a54fe188e65f8b84aa536b7e841f275857d26880f4c9c6e0f56bd6",
"sha256:8d0628c3d531a21e6b07135fcb25fbb1a4469e23198e350a8d0afcec02660952",
"sha256:1c55a0815369915768ac93e0137f77f520c24b528c13d0c2fb86923e39d7ca28",
"sha256:2d21d6f4a474065281288e08e5fc9bf24bad9ad85189a5a569c8e751225b86eb"
]
},
"Metadata": {
"LastTagTime": "2025-01-06T17:35:29.43049557+08:00"
}
}