ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2 linux/amd64

ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2 - 国内下载镜像源 浏览次数:26
```html

这是一个基于FastAPI框架的Kokoro项目镜像,运行在CPU架构上。它由remsky维护,并托管在GitHub Container Registry (ghcr.io)上。

```
源镜像 ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2
镜像ID sha256:f2b9e8a9e9980494d4f8c64ec2878cc87016eb5e5a2c6c29443f57671baea474
镜像TAG v0.2.2
大小 3.81GB
镜像源 ghcr.io
CMD ./entrypoint.sh
启动入口
工作目录 /app
OS/平台 linux/amd64
浏览量 26 次
贡献者 35*******3@qq.com
镜像创建 2025-02-13T07:28:50.393327397Z
同步时间 2025-04-02 14:24
更新时间 2025-04-06 13:30
环境变量
PATH=/app/.venv/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LANG=C.UTF-8 GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D PYTHON_VERSION=3.10.16 PYTHON_SHA256=bfb249609990220491a1b92850a07135ed0831e41738cf681d63cf01b2a8fbd1 PYTHONUNBUFFERED=1 PYTHONPATH=/app:/app/api UV_LINK_MODE=copy USE_GPU=false PHONEMIZER_ESPEAK_PATH=/usr/bin PHONEMIZER_ESPEAK_DATA=/usr/share/espeak-ng-data ESPEAK_DATA_PATH=/usr/share/espeak-ng-data DOWNLOAD_MODEL=true DEVICE=cpu

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2  ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2  ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2

Shell快速替换命令

sed -i 's#ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2  ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2  ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2'

镜像构建历史


# 2025-02-13 15:28:50  0.00B 设置默认要执行的命令
CMD ["./entrypoint.sh"]
                        
# 2025-02-13 15:28:50  0.00B 设置环境变量 DEVICE
ENV DEVICE=cpu
                        
# 2025-02-13 15:28:50  327.42MB 执行命令并创建新的镜像层
RUN /bin/sh -c if [ "$DOWNLOAD_MODEL" = "true" ]; then     python download_model.py --output api/src/models/v1_0;     fi # buildkit
                        
# 2025-02-13 15:28:43  0.00B 设置环境变量 DOWNLOAD_MODEL
ENV DOWNLOAD_MODEL=true
                        
# 2025-02-13 15:28:43  0.00B 设置环境变量 PYTHONUNBUFFERED PYTHONPATH PATH UV_LINK_MODE USE_GPU PHONEMIZER_ESPEAK_PATH PHONEMIZER_ESPEAK_DATA ESPEAK_DATA_PATH
ENV PYTHONUNBUFFERED=1 PYTHONPATH=/app:/app/api PATH=/app/.venv/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin UV_LINK_MODE=copy USE_GPU=false PHONEMIZER_ESPEAK_PATH=/usr/bin PHONEMIZER_ESPEAK_DATA=/usr/share/espeak-ng-data ESPEAK_DATA_PATH=/usr/share/espeak-ng-data
                        
# 2025-02-13 15:28:43  229.00B 执行命令并创建新的镜像层
RUN /bin/sh -c chmod +x ./entrypoint.sh # buildkit
                        
# 2025-02-13 15:28:43  5.68KB 复制新文件或目录到容器中
COPY --chown=appuser:appuser docker/scripts/ ./ # buildkit
                        
# 2025-02-13 15:28:43  96.33KB 复制新文件或目录到容器中
COPY --chown=appuser:appuser web ./web # buildkit
                        
# 2025-02-13 15:28:43  35.39MB 复制新文件或目录到容器中
COPY --chown=appuser:appuser api ./api # buildkit
                        
# 2025-02-13 15:28:42  2.33GB 执行命令并创建新的镜像层
RUN /bin/sh -c uv venv --python 3.10 &&     uv sync --extra cpu # buildkit
                        
# 2025-02-13 15:28:11  2.24KB 复制新文件或目录到容器中
COPY --chown=appuser:appuser pyproject.toml ./pyproject.toml # buildkit
                        
# 2025-02-13 15:28:11  0.00B 设置工作目录为/app
WORKDIR /app
                        
# 2025-02-13 15:28:11  0.00B 指定运行容器时使用的用户
USER appuser
                        
# 2025-02-13 15:28:11  9.18KB 执行命令并创建新的镜像层
RUN /bin/sh -c useradd -m -u 1000 appuser &&     mkdir -p /app/api/src/models/v1_0 &&     chown -R appuser:appuser /app # buildkit
                        
# 2025-02-13 15:28:11  39.85MB 执行命令并创建新的镜像层
RUN /bin/sh -c curl -LsSf https://astral.sh/uv/install.sh | sh &&     mv /root/.local/bin/uv /usr/local/bin/ &&     mv /root/.local/bin/uvx /usr/local/bin/ # buildkit
                        
# 2025-02-13 15:28:09  952.22MB 执行命令并创建新的镜像层
RUN /bin/sh -c apt-get update && apt-get install -y     espeak-ng     espeak-ng-data     git     libsndfile1     curl     ffmpeg     g++ && apt-get clean && rm -rf /var/lib/apt/lists/* && mkdir -p /usr/share/espeak-ng-data && ln -s /usr/lib/*/espeak-ng-data/* /usr/share/espeak-ng-data/ # buildkit
                        
# 2024-12-05 00:49:14  0.00B 设置默认要执行的命令
CMD ["python3"]
                        
# 2024-12-05 00:49:14  36.00B 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 	for src in idle3 pip3 pydoc3 python3 python3-config; do 		dst="$(echo "$src" | tr -d 3)"; 		[ -s "/usr/local/bin/$src" ]; 		[ ! -e "/usr/local/bin/$dst" ]; 		ln -svT "$src" "/usr/local/bin/$dst"; 	done # buildkit
                        
# 2024-12-05 00:49:14  43.18MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 		savedAptMark="$(apt-mark showmanual)"; 	apt-get update; 	apt-get install -y --no-install-recommends 		dpkg-dev 		gcc 		gnupg 		libbluetooth-dev 		libbz2-dev 		libc6-dev 		libdb-dev 		libffi-dev 		libgdbm-dev 		liblzma-dev 		libncursesw5-dev 		libreadline-dev 		libsqlite3-dev 		libssl-dev 		make 		tk-dev 		uuid-dev 		wget 		xz-utils 		zlib1g-dev 	; 		wget -O python.tar.xz "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"; 	echo "$PYTHON_SHA256 *python.tar.xz" | sha256sum -c -; 	wget -O python.tar.xz.asc "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"; 	GNUPGHOME="$(mktemp -d)"; export GNUPGHOME; 	gpg --batch --keyserver hkps://keys.openpgp.org --recv-keys "$GPG_KEY"; 	gpg --batch --verify python.tar.xz.asc python.tar.xz; 	gpgconf --kill all; 	rm -rf "$GNUPGHOME" python.tar.xz.asc; 	mkdir -p /usr/src/python; 	tar --extract --directory /usr/src/python --strip-components=1 --file python.tar.xz; 	rm python.tar.xz; 		cd /usr/src/python; 	gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"; 	./configure 		--build="$gnuArch" 		--enable-loadable-sqlite-extensions 		--enable-optimizations 		--enable-option-checking=fatal 		--enable-shared 		--with-lto 		--with-ensurepip 	; 	nproc="$(nproc)"; 	EXTRA_CFLAGS="$(dpkg-buildflags --get CFLAGS)"; 	LDFLAGS="$(dpkg-buildflags --get LDFLAGS)"; 	LDFLAGS="${LDFLAGS:--Wl},--strip-all"; 	make -j "$nproc" 		"EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" 		"LDFLAGS=${LDFLAGS:-}" 	; 	rm python; 	make -j "$nproc" 		"EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" 		"LDFLAGS=${LDFLAGS:--Wl},-rpath='\$\$ORIGIN/../lib'" 		python 	; 	make install; 		cd /; 	rm -rf /usr/src/python; 		find /usr/local -depth 		\( 			\( -type d -a \( -name test -o -name tests -o -name idle_test \) \) 			-o \( -type f -a \( -name '*.pyc' -o -name '*.pyo' -o -name 'libpython*.a' \) \) 		\) -exec rm -rf '{}' + 	; 		ldconfig; 		apt-mark auto '.*' > /dev/null; 	apt-mark manual $savedAptMark; 	find /usr/local -type f -executable -not \( -name '*tkinter*' \) -exec ldd '{}' ';' 		| awk '/=>/ { so = $(NF-1); if (index(so, "/usr/local/") == 1) { next }; gsub("^/(usr/)?", "", so); printf "*%s\n", so }' 		| sort -u 		| xargs -r dpkg-query --search 		| cut -d: -f1 		| sort -u 		| xargs -r apt-mark manual 	; 	apt-get purge -y --auto-remove -o APT::AutoRemove::RecommendsImportant=false; 	rm -rf /var/lib/apt/lists/*; 		export PYTHONDONTWRITEBYTECODE=1; 	python3 --version; 		pip3 install 		--disable-pip-version-check 		--no-cache-dir 		--no-compile 		'setuptools==65.5.1' 		wheel 	; 	pip3 --version # buildkit
                        
# 2024-12-05 00:49:14  0.00B 设置环境变量 PYTHON_SHA256
ENV PYTHON_SHA256=bfb249609990220491a1b92850a07135ed0831e41738cf681d63cf01b2a8fbd1
                        
# 2024-12-05 00:49:14  0.00B 设置环境变量 PYTHON_VERSION
ENV PYTHON_VERSION=3.10.16
                        
# 2024-12-05 00:49:14  0.00B 设置环境变量 GPG_KEY
ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D
                        
# 2024-12-05 00:49:14  9.24MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; 	apt-get update; 	apt-get install -y --no-install-recommends 		ca-certificates 		netbase 		tzdata 	; 	rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-12-05 00:49:14  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2024-12-05 00:49:14  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-12-05 00:49:14  74.77MB 
# debian.sh --arch 'amd64' out/ 'bookworm' '@1738540800'
                        
                    

镜像信息

{
    "Id": "sha256:f2b9e8a9e9980494d4f8c64ec2878cc87016eb5e5a2c6c29443f57671baea474",
    "RepoTags": [
        "ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2"
    ],
    "RepoDigests": [
        "ghcr.io/remsky/kokoro-fastapi-cpu@sha256:76549cce3c5cc5ed4089619a9cffc3d39a041476ff99c5138cd18b6da832c4d7",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/remsky/kokoro-fastapi-cpu@sha256:441d9f6fbb6fe97f8fb799da0c44513aaeaa7d2133e43ba71a6c05e1dbd948fa"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-02-13T07:28:50.393327397Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "appuser",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/app/.venv/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "LANG=C.UTF-8",
            "GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D",
            "PYTHON_VERSION=3.10.16",
            "PYTHON_SHA256=bfb249609990220491a1b92850a07135ed0831e41738cf681d63cf01b2a8fbd1",
            "PYTHONUNBUFFERED=1",
            "PYTHONPATH=/app:/app/api",
            "UV_LINK_MODE=copy",
            "USE_GPU=false",
            "PHONEMIZER_ESPEAK_PATH=/usr/bin",
            "PHONEMIZER_ESPEAK_DATA=/usr/share/espeak-ng-data",
            "ESPEAK_DATA_PATH=/usr/share/espeak-ng-data",
            "DOWNLOAD_MODEL=true",
            "DEVICE=cpu"
        ],
        "Cmd": [
            "./entrypoint.sh"
        ],
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/app",
        "Entrypoint": null,
        "OnBuild": null,
        "Labels": null
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 3810963345,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/0522980cbdffdb54cb9e3f03611a028ad5c670fb0c7a01abd0245a876cbd8374/diff:/var/lib/docker/overlay2/b99c7489aec5eac8b26917fdf949de3b44df030eef204f628aacc91bb40d370e/diff:/var/lib/docker/overlay2/25760e8ca5e8582c86fa0a34879eabac9e9774c742d650e9743af5852519ffa5/diff:/var/lib/docker/overlay2/5a5d100aa1adcc30eb41abea81e06745c8708bc205bf50167d7f952c6132b668/diff:/var/lib/docker/overlay2/725721149c6fae0f038ac6481c56524730451f0acdcba83fea8c345593f18ecb/diff:/var/lib/docker/overlay2/7496b6937108adbdd58e4d93c7a3c38165e0c6f372d0551097941745ce0749c6/diff:/var/lib/docker/overlay2/a50a17895643b04ca63fd5ed3101898a2bc2b1eebbe56faecfc8748665d74c14/diff:/var/lib/docker/overlay2/8b9e963986d9a643fb38cdc82a21ef69f2b831e98040f564211b875d765c8f89/diff:/var/lib/docker/overlay2/932bca350361659c6731fab3bf09d013346edc5c83943faeeaf55e99dae59704/diff:/var/lib/docker/overlay2/f30752bc27687e2618354f68c5c4cd239ee5b424b444ef12cd7eb09538acde68/diff:/var/lib/docker/overlay2/906521189d33eab33688d502346752e5ec8f979e085b45434e73df20fca9e7b2/diff:/var/lib/docker/overlay2/f71fe5c319c3d1d5c3f1a1c9e0093c42f22ec22ae36820bbc06d0350c46123c0/diff:/var/lib/docker/overlay2/35cc3957df18d226f7a2066b93f85b5e59b8c799d798fae6c4901032d2f34dab/diff:/var/lib/docker/overlay2/3b9f1c9f79955caf411c0b023b4b965e6d1cfb19e48945a40ce0924977816e6d/diff",
            "MergedDir": "/var/lib/docker/overlay2/4c47943ed509c3364f71885e1773ed8ffb25a35745babaecc0790594cf267fe5/merged",
            "UpperDir": "/var/lib/docker/overlay2/4c47943ed509c3364f71885e1773ed8ffb25a35745babaecc0790594cf267fe5/diff",
            "WorkDir": "/var/lib/docker/overlay2/4c47943ed509c3364f71885e1773ed8ffb25a35745babaecc0790594cf267fe5/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:7914c8f600f532b7adbd0b003888e3aa921687d62dbe2f1f829d0ab6234a158a",
            "sha256:93d4d04734760c246037175e8cd708e5531fcfe177a055e2918a108d2a320045",
            "sha256:f52fdf68748376f0d0ac622e029b10ecf23aaddd2c297f186fb5a7f0ba725bdb",
            "sha256:cd9604f50b8995315102c2ec74c15b2797842317004e822e7fe4e3929c7b2f60",
            "sha256:6e37d9c2510bc905a7002ee0793b7f80430d7e20504c73819607dcdf3efb2c6f",
            "sha256:cc263d34945a0bb7d39d7ecb369947e98077300be46209e57d89efc33a3c17c8",
            "sha256:0f1ebfca6983b4231db1af1e3e52cafd4294b3fbe4b646533dd14b791563517d",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:4ac32462a681d529d8508eddd2ed3c32cca489524432d719b5ea01564178c293",
            "sha256:bbd8f29116db9bfc8877b1fddf99c9fccee0368d4484f0f141cd17089fdf9563",
            "sha256:e270c2af8bd1839d6f2243e6dd6e3be8975a494394df64e31003ce5456ea1f42",
            "sha256:98590cbe80ee6ababffe0442637fa4a09bac2cfd5046151c6c56d272985ee57e",
            "sha256:acbe3375328680d42a805e23651ad4f03fc7ecd078f666dfcde8d0d3a22bdde4",
            "sha256:c2b490f92b83c02d614887cfd8c2e5c25805d65d5d1d83a33267f4cc9d63c6f8",
            "sha256:1c373fcffc3f4a5ea5b30f9a9ffea4d1108fa366ccd74334826c18bedf8292ce"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-04-02T14:21:16.916272154+08:00"
    }
}

更多版本

ghcr.io/remsky/kokoro-fastapi-cpu:v0.2.2

linux/amd64 ghcr.io3.81GB2025-04-02 14:24
25