quay.io/jupyter/tensorflow-notebook:cuda-latest linux/amd64

quay.io/jupyter/tensorflow-notebook:cuda-latest - 国内下载镜像源 浏览次数:68

温馨提示:此镜像为latest tag镜像,本站无法保证此版本为最新镜像

```html

这是一个预构建的Jupyter Notebook Docker镜像,包含TensorFlow深度学习框架。它提供了一个方便易用的环境,可以直接在浏览器中运行Jupyter Notebook,并利用TensorFlow进行机器学习和深度学习任务。 该镜像预先配置好了TensorFlow及其依赖项,方便用户快速启动和使用,无需自行安装和配置复杂的运行环境。

```
源镜像 quay.io/jupyter/tensorflow-notebook:cuda-latest
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest
镜像ID sha256:3f40a6b5a861c2bb4ce2a4711e1d30a7b56405b7b96268bd752fda11ed4ac4c8
镜像TAG cuda-latest
大小 8.50GB
镜像源 quay.io
CMD start-notebook.py
启动入口 tini -g -- start.sh
工作目录 /home/jovyan
OS/平台 linux/amd64
浏览量 68 次
贡献者
镜像创建 2024-12-31T17:50:13.025793491Z
同步时间 2025-01-04 00:53
更新时间 2025-02-04 18:30
开放端口
8888/tcp
环境变量
PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/nvidia/bin DEBIAN_FRONTEND=noninteractive CONDA_DIR=/opt/conda SHELL=/bin/bash NB_USER=jovyan NB_UID=1000 NB_GID=100 LC_ALL=C.UTF-8 LANG=C.UTF-8 LANGUAGE=C.UTF-8 HOME=/home/jovyan JUPYTER_PORT=8888 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility LD_LIBRARY_PATH=:/usr/local/nvidia/lib64
镜像标签
Jupyter Project <jupyter@googlegroups.com>: maintainer ubuntu: org.opencontainers.image.ref.name 24.04: org.opencontainers.image.version
镜像安全扫描 查看Trivy扫描报告

系统OS: ubuntu 24.04 扫描引擎: Trivy 扫描时间: 2025-01-04 01:29

低危漏洞:104 中危漏洞:742 高危漏洞:1 严重漏洞:0

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest  quay.io/jupyter/tensorflow-notebook:cuda-latest

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest  quay.io/jupyter/tensorflow-notebook:cuda-latest

Shell快速替换命令

sed -i 's#quay.io/jupyter/tensorflow-notebook:cuda-latest#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest  quay.io/jupyter/tensorflow-notebook:cuda-latest'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest  quay.io/jupyter/tensorflow-notebook:cuda-latest'

镜像构建历史


# 2025-01-01 01:50:13  0.00B 设置环境变量 PATH LD_LIBRARY_PATH
ENV PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/nvidia/bin LD_LIBRARY_PATH=:/usr/local/nvidia/lib64
                        
# 2025-01-01 01:50:13  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2025-01-01 01:50:13  459.00B 复制新文件或目录到容器中
COPY --chown=1000:100 nvidia-lib-dirs.sh /opt/conda/etc/conda/activate.d/ # buildkit
                        
# 2025-01-01 01:50:13  0.00B 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c mkdir -p "${CONDA_DIR}/etc/conda/activate.d/" &&     fix-permissions "${CONDA_DIR}" # buildkit
                        
# 2025-01-01 01:50:11  295.00B 复制新文件或目录到容器中
COPY --chown=1000:100 20tensorboard-proxy-env.sh /usr/local/bin/before-notebook.d/ # buildkit
                        
# 2025-01-01 01:50:11  4.92GB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c pip install --no-cache-dir     "jupyter-server-proxy"     "tensorflow[and-cuda]<=2.17.1" &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2025-01-01 01:50:11  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2025-01-01 01:50:11  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2025-01-01 01:43:39  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2025-01-01 01:43:39  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2025-01-01 01:43:39  133.00KB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c MPLBACKEND=Agg python -c "import matplotlib.pyplot" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2025-01-01 01:43:38  2.31MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c git clone https://github.com/PAIR-code/facets &&     jupyter nbclassic-extension install facets/facets-dist/ --sys-prefix &&     rm -rf /tmp/facets &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2025-01-01 01:43:35  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2025-01-01 01:43:35  1.36GB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c mamba install --yes     'altair'     'beautifulsoup4'     'bokeh'     'bottleneck'     'cloudpickle'     'conda-forge::blas=*=openblas'     'cython'     'dask'     'dill'     'h5py'     'ipympl'     'ipywidgets'     'jupyterlab-git'     'matplotlib-base'     'numba'     'numexpr'     'openpyxl'     'pandas'     'patsy'     'protobuf'     'pytables'     'scikit-image'     'scikit-learn'     'scipy'     'seaborn'     'sqlalchemy'     'statsmodels'     'sympy'     'widgetsnbextension'     'xlrd' &&     mamba clean --all -f -y &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2025-01-01 01:43:00  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2025-01-01 01:43:00  732.38MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     build-essential     cm-super     dvipng     ffmpeg &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-01-01 01:43:00  0.00B 指定运行容器时使用的用户
USER root
                        
# 2025-01-01 01:43:00  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2025-01-01 01:43:00  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2025-01-01 01:39:55  6.49KB 复制新文件或目录到容器中
COPY setup-scripts/ /opt/setup-scripts/ # buildkit
                        
# 2025-01-01 01:39:55  292.00B 复制新文件或目录到容器中
COPY --chown=1000:100 Rprofile.site /opt/conda/lib/R/etc/ # buildkit
                        
# 2025-01-01 01:39:55  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2025-01-01 01:39:55  10.29KB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c update-alternatives --install /usr/bin/nano nano /bin/nano-tiny 10 # buildkit
                        
# 2025-01-01 01:39:55  594.34MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     curl     git     nano-tiny     tzdata     unzip     vim-tiny     openssh-client     less     texlive-xetex     texlive-fonts-recommended     texlive-plain-generic     xclip &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-01-01 01:39:55  0.00B 指定运行容器时使用的用户
USER root
                        
# 2025-01-01 01:39:55  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2025-01-01 01:39:55  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2025-01-01 01:36:33  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2025-01-01 01:36:33  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2025-01-01 01:36:33  0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "/etc/jupyter/docker_healthcheck.py || exit 1"] "3s" "1s" "3s" "0s" '\x03'}
                        
# 2025-01-01 01:36:33  3.03KB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c fix-permissions /etc/jupyter/ # buildkit
                        
# 2025-01-01 01:36:32  0.00B 指定运行容器时使用的用户
USER root
                        
# 2025-01-01 01:36:32  3.03KB 复制新文件或目录到容器中
COPY jupyter_server_config.py docker_healthcheck.py /etc/jupyter/ # buildkit
                        
# 2025-01-01 01:36:32  2.58KB 复制新文件或目录到容器中
COPY start-notebook.py start-notebook.sh start-singleuser.py start-singleuser.sh /usr/local/bin/ # buildkit
                        
# 2025-01-01 01:36:32  0.00B 设置默认要执行的命令
CMD ["start-notebook.py"]
                        
# 2025-01-01 01:36:32  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2025-01-01 01:36:32  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2025-01-01 01:36:32  313.44MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c mamba install --yes     'jupyterhub-singleuser'     'jupyterlab'     'nbclassic'     'notebook>=7.2.2' &&     jupyter server --generate-config &&     mamba clean --all -f -y &&     jupyter lab clean &&     rm -rf "/home/${NB_USER}/.cache/yarn" &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2025-01-01 01:36:16  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2025-01-01 01:36:16  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2025-01-01 01:36:16  205.06MB 执行命令并创建新的镜像层
RUN /bin/bash -o pipefail -c apt-get update --yes &&     apt-get install --yes --no-install-recommends     fonts-liberation     pandoc     run-one &&     apt-get clean && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-01-01 01:36:16  0.00B 指定运行容器时使用的用户
USER root
                        
# 2025-01-01 01:36:16  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2025-01-01 01:36:16  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2025-01-01 01:35:10  0.00B 设置工作目录为/home/jovyan
WORKDIR /home/jovyan
                        
# 2025-01-01 01:35:10  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2025-01-01 01:35:10  406.00B 复制新文件或目录到容器中
COPY 10activate-conda-env.sh /usr/local/bin/before-notebook.d/ # buildkit
                        
# 2025-01-01 01:35:10  0.00B 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.12 /bin/bash -o pipefail -c mkdir /usr/local/bin/start-notebook.d &&     mkdir /usr/local/bin/before-notebook.d # buildkit
                        
# 2025-01-01 01:35:10  0.00B 指定运行容器时使用的用户
USER root
                        
# 2025-01-01 01:35:10  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["tini" "-g" "--" "start.sh"]
                        
# 2025-01-01 01:35:10  13.88KB 复制新文件或目录到容器中
COPY run-hooks.sh start.sh /usr/local/bin/ # buildkit
                        
# 2025-01-01 01:35:10  259.10MB 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.12 /bin/bash -o pipefail -c set -x &&     arch=$(uname -m) &&     if [ "${arch}" = "x86_64" ]; then         arch="64";     fi &&     wget --progress=dot:giga -O -         "https://micro.mamba.pm/api/micromamba/linux-${arch}/latest" | tar -xvj bin/micromamba &&     PYTHON_SPECIFIER="python=${PYTHON_VERSION}" &&     if [[ "${PYTHON_VERSION}" == "default" ]]; then PYTHON_SPECIFIER="python"; fi &&     ./bin/micromamba install         --root-prefix="${CONDA_DIR}"         --prefix="${CONDA_DIR}"         --yes         'jupyter_core'         'conda'         'mamba'         "${PYTHON_SPECIFIER}" &&     rm -rf /tmp/bin/ &&     mamba list --full-name 'python' | awk 'END{sub("[^.]*$", "*", $2); print $1 " " $2}' >> "${CONDA_DIR}/conda-meta/pinned" &&     mamba clean --all -f -y &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2025-01-01 01:34:54  0.00B 设置工作目录为/tmp
WORKDIR /tmp
                        
# 2025-01-01 01:34:54  163.00B 复制新文件或目录到容器中
COPY --chown=1000:100 initial-condarc /opt/conda/.condarc # buildkit
                        
# 2025-01-01 01:34:54  0.00B 执行命令并创建新的镜像层
RUN |4 NB_USER=jovyan NB_UID=1000 NB_GID=100 PYTHON_VERSION=3.12 /bin/bash -o pipefail -c mkdir "/home/${NB_USER}/work" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2025-01-01 01:34:54  0.00B 定义构建参数
ARG PYTHON_VERSION=3.12
                        
# 2025-01-01 01:34:54  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2025-01-01 01:34:54  13.45KB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c echo "auth requisite pam_deny.so" >> /etc/pam.d/su &&     sed -i.bak -e 's/^%admin/#%admin/' /etc/sudoers &&     sed -i.bak -e 's/^%sudo/#%sudo/' /etc/sudoers &&     useradd --no-log-init --create-home --shell /bin/bash --uid "${NB_UID}" --no-user-group "${NB_USER}" &&     mkdir -p "${CONDA_DIR}" &&     chown "${NB_USER}:${NB_GID}" "${CONDA_DIR}" &&     chmod g+w /etc/passwd &&     fix-permissions "${CONDA_DIR}" &&     fix-permissions "/home/${NB_USER}" # buildkit
                        
# 2025-01-01 01:34:54  4.47KB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c if grep -q "${NB_UID}" /etc/passwd; then         userdel --remove $(id -un "${NB_UID}");     fi # buildkit
                        
# 2025-01-01 01:34:54  3.80KB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c sed -i 's/^#force_color_prompt=yes/force_color_prompt=yes/' /etc/skel/.bashrc &&     echo 'eval "$(conda shell.bash hook)"' >> /etc/skel/.bashrc # buildkit
                        
# 2025-01-01 01:34:54  0.00B 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c chmod a+rx /usr/local/bin/fix-permissions # buildkit
                        
# 2025-01-01 01:34:53  1.04KB 复制新文件或目录到容器中
COPY fix-permissions /usr/local/bin/fix-permissions # buildkit
                        
# 2025-01-01 01:34:53  0.00B 设置环境变量 PATH HOME
ENV PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin HOME=/home/jovyan
                        
# 2025-01-01 01:34:53  0.00B 设置环境变量 CONDA_DIR SHELL NB_USER NB_UID NB_GID LC_ALL LANG LANGUAGE
ENV CONDA_DIR=/opt/conda SHELL=/bin/bash NB_USER=jovyan NB_UID=1000 NB_GID=100 LC_ALL=C.UTF-8 LANG=C.UTF-8 LANGUAGE=C.UTF-8
                        
# 2025-01-01 01:34:53  25.97MB 执行命令并创建新的镜像层
RUN |3 NB_USER=jovyan NB_UID=1000 NB_GID=100 /bin/bash -o pipefail -c apt-get update --yes &&     apt-get upgrade --yes &&     apt-get install --yes --no-install-recommends     bzip2     ca-certificates     locales     netbase     sudo     tini     wget &&     apt-get clean && rm -rf /var/lib/apt/lists/* &&     echo "en_US.UTF-8 UTF-8" > /etc/locale.gen &&     echo "C.UTF-8 UTF-8" >> /etc/locale.gen &&     locale-gen # buildkit
                        
# 2025-01-01 01:34:53  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2025-01-01 01:34:53  0.00B 指定运行容器时使用的用户
USER root
                        
# 2025-01-01 01:34:53  0.00B 
SHELL [/bin/bash -o pipefail -c]
                        
# 2025-01-01 01:34:53  0.00B 定义构建参数
ARG NB_GID=100
                        
# 2025-01-01 01:34:53  0.00B 定义构建参数
ARG NB_UID=1000
                        
# 2025-01-01 01:34:53  0.00B 定义构建参数
ARG NB_USER=jovyan
                        
# 2025-01-01 01:34:53  0.00B 添加元数据标签
LABEL maintainer=Jupyter Project <jupyter@googlegroups.com>
                        
# 2024-11-20 01:29:25  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2024-11-20 01:29:25  78.12MB 
/bin/sh -c #(nop) ADD file:bcebbf0fddcba5b864d5d267b68dd23bcfb01275e6ec7bcab69bf8b56af14804 in / 
                        
# 2024-11-20 01:29:23  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=24.04
                        
# 2024-11-20 01:29:23  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2024-11-20 01:29:23  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2024-11-20 01:29:23  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:3f40a6b5a861c2bb4ce2a4711e1d30a7b56405b7b96268bd752fda11ed4ac4c8",
    "RepoTags": [
        "quay.io/jupyter/tensorflow-notebook:cuda-latest",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook:cuda-latest"
    ],
    "RepoDigests": [
        "quay.io/jupyter/tensorflow-notebook@sha256:ab772d3e41da0930bee9c91223ac337dc254ba6d773af65f83f8c34db303bb02",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/quay.io/jupyter/tensorflow-notebook@sha256:07348eb67db4c0fbab4161b6eac2fbea1d5d33c162815177a9bb8634bf8a2e95"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-12-31T17:50:13.025793491Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "1000",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/nvidia/bin",
            "DEBIAN_FRONTEND=noninteractive",
            "CONDA_DIR=/opt/conda",
            "SHELL=/bin/bash",
            "NB_USER=jovyan",
            "NB_UID=1000",
            "NB_GID=100",
            "LC_ALL=C.UTF-8",
            "LANG=C.UTF-8",
            "LANGUAGE=C.UTF-8",
            "HOME=/home/jovyan",
            "JUPYTER_PORT=8888",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "LD_LIBRARY_PATH=:/usr/local/nvidia/lib64"
        ],
        "Cmd": [
            "start-notebook.py"
        ],
        "Healthcheck": {
            "Test": [
                "CMD-SHELL",
                "/etc/jupyter/docker_healthcheck.py || exit 1"
            ],
            "Interval": 3000000000,
            "Timeout": 1000000000,
            "StartPeriod": 3000000000,
            "Retries": 3
        },
        "ArgsEscaped": true,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home/jovyan",
        "Entrypoint": [
            "tini",
            "-g",
            "--",
            "start.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "maintainer": "Jupyter Project \u003cjupyter@googlegroups.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "24.04"
        },
        "Shell": [
            "/bin/bash",
            "-o",
            "pipefail",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 8495855047,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/df9bad1dd06e3f6e0dc7d5f997571bac3255a67a5d54e77098641edb313bcef2/diff:/var/lib/docker/overlay2/52c930dc269a5e19a93c2c6ceb29b31cc9313ad2392047f546a0d4a158eda6b6/diff:/var/lib/docker/overlay2/dd07f3389ca9c30ae8397ff8af946884ffd7b370672a97952f7ab213237894e9/diff:/var/lib/docker/overlay2/230fe6de570ac3864f757385b897fad18e02ff29220b12548b786ccba56709f0/diff:/var/lib/docker/overlay2/e84ecd7942a9bcf73f280b745312e01d43376f4733b4828e8eaa01f59323a3ae/diff:/var/lib/docker/overlay2/73248d4448ddaa88394c6f7b13e1086447256d51f28b2beb5833c12ec6aaa7ff/diff:/var/lib/docker/overlay2/f0f5a855012a8873652e8f076f34b5038bbfd846d4e21928ab9a6063e3c1078a/diff:/var/lib/docker/overlay2/37d5ecf51efff2b4ae80ff6cc3ec8d4d0224b1502d74a4882af097ec78a69831/diff:/var/lib/docker/overlay2/306ce66bb577df2c25a43b410b47af8931382c929e233cae2db676a9186f7064/diff:/var/lib/docker/overlay2/1aea4b1ee532c55af9d0bffc74c734a1f2e4431204af726bcdc861ad80bccf80/diff:/var/lib/docker/overlay2/8e983f2ba94ed70292cc7eb5554b7e0b0fd1ae599ef2f0c1565af347774b4ec3/diff:/var/lib/docker/overlay2/cee60ebd565a6146609d0924a1c22da8296dd2c3ccef29d0f7d88a16c9a40bd9/diff:/var/lib/docker/overlay2/44051cf2b4bfeb46a93d72bdba86d233c41304209d7894cfab2db395cb23678a/diff:/var/lib/docker/overlay2/9769b06035c02eb370b5f41032f1a61e6fa1f5572de97efdef50dde76470a312/diff:/var/lib/docker/overlay2/29f3555319bea8fd776e57d15d1e19c099930fb0ac53b5c7f7fcd202ee38a5eb/diff:/var/lib/docker/overlay2/b3446a3643fecb9b3171077f765603283479f1c93eb71a693750b20a7e0f98fa/diff:/var/lib/docker/overlay2/51cd9eaf31c914fad3d0febde669401944c12344c89534d0c92cd487c12531df/diff:/var/lib/docker/overlay2/7353044322ed7d7eadcc28708954a07b9202107ed5ad28344728b8f518c7a63a/diff:/var/lib/docker/overlay2/cb68200a85a51e274b8a2282895e5e75296b8e5c8a87194305b6a46a8dd26adc/diff:/var/lib/docker/overlay2/49b0c8af614768de0e81c4064d29ce0b97f3a31b95ccad2326829bc451614806/diff:/var/lib/docker/overlay2/5589c764d7223c163185c4c351e0c5a1e8b5357a33d198c19fc5816756e9ed1d/diff:/var/lib/docker/overlay2/5afae1cfb5dd8ae49206b86e3ee75ade859cc39615b7a2d79e076f5b66d98398/diff:/var/lib/docker/overlay2/c240e6e9d94b36ebe6f9d51052b3309cb6d1f444a0bdb33747424a1041bb5da6/diff:/var/lib/docker/overlay2/2b9c6273ed138387a89e453e7dfe1a9b6eaac7de30cadbd14a84b5a83117913e/diff:/var/lib/docker/overlay2/6d57b4366933c64a6ef3f27692ea18553c53853796dc837e2fa197914819e0c3/diff:/var/lib/docker/overlay2/90815591d7b144279c3fa2569a63b7b729b01c9598e7980a6b859f77f435fdea/diff:/var/lib/docker/overlay2/36f3fc8763926d54e081bf21aafc99dc33d875a66dbf5317e84ae506a00422a2/diff:/var/lib/docker/overlay2/65de9c14100644f2af9f529e4f24fb7247cc25b6ef24e016cac497810b727c47/diff:/var/lib/docker/overlay2/ba65c519778b936ff8511b961f51c3a69e1e5743f502df5ea804d2421e64ece0/diff:/var/lib/docker/overlay2/1b98c7c64aa049aa22e347635227846833ef42240d40c93d2f487b545ae09f32/diff:/var/lib/docker/overlay2/1233003803b7050b91e6bfee992b2f8a5138ab8297e16a1e0d68607de5e2d56a/diff:/var/lib/docker/overlay2/f33a1adcc6167ba963af349d90d5e1163dedc0079116e0bcbd7c00989dd91577/diff:/var/lib/docker/overlay2/b1e3aab323335dc27569c25526068a543b2869f54fdbef3e881039a7410e1b6e/diff:/var/lib/docker/overlay2/77b5803266ccf2e8b5e8fd733341a8bbda1a0db66ae6b373be8dd605ae7ea002/diff:/var/lib/docker/overlay2/dd9c6c06cee7cbeacd7427404922c280abf5a7156d6a8d1736426b0776ed9b6a/diff",
            "MergedDir": "/var/lib/docker/overlay2/bb43cd8d5fd544d67a67952f663008f449c9dca52b08711b8d9246722e830e1e/merged",
            "UpperDir": "/var/lib/docker/overlay2/bb43cd8d5fd544d67a67952f663008f449c9dca52b08711b8d9246722e830e1e/diff",
            "WorkDir": "/var/lib/docker/overlay2/bb43cd8d5fd544d67a67952f663008f449c9dca52b08711b8d9246722e830e1e/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:687d50f2f6a697da02e05f2b2b9cb05c1d551f37c404ebe55fdec44b0ae8aa5c",
            "sha256:7a58bbb730bad9e6092b1c3e3a7106e979f4dee764f76d1839073e1655a4b8a7",
            "sha256:45b2513ee74a27ef7c7df7d8ea75901d3ef40f7df67a87304801f9783577b4a9",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:7adf1d022df5b1639e72d81c6b65bae22e4260a8b909185a6474f65eb9a2631f",
            "sha256:42afd412e22de9a88cce257ee78ca1af9448f2230a3bf17a70e3623868750424",
            "sha256:c20eddc9f09a78bfa9a65c594ab069b5b49d5622513807c4611455947922e4c1",
            "sha256:c5fc4bca81c59a8a36899a63d2d2802d94f925339831688a8ef9761d4f7113a5",
            "sha256:a9caf9eedcd79475c6286228c76c2144f6dcb27037d6b61036aaec95740eae14",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:4a3ebde08ab58b247a6b26b196bd2b685b4d83695fa6ce1d7b45e4ca60287bd4",
            "sha256:0a0691ff642d52ca8aa6711a8b7ef535acaf60791ec5bff05756ce2494161044",
            "sha256:3c0f5d0f1fdf654205704e380f6c7a904ca5cdee6f48393f825006bd24ec0fe6",
            "sha256:ec14d5aefa930dfb6201b5988835c46b5529163da740c2cb2ce17b70d2d11147",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:f0f01f8282db633b2719f43b51f3e23a7c49cc81341910c2d4883d5d85558eb4",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:bb8a98de0b00adbc25682d601918e96cf5ed238b1e3e9f6e23c1b699c3e77abd",
            "sha256:70bc1e30fbcf8d19a834514a365aca2f3b09fb20721d7b933a9663bbc6fd98da",
            "sha256:9214316ff24661b2f3d60bea71095e9140547a7f196a34bbe2b2ab0fc2dfb2d6",
            "sha256:dd2fb7e3be779f9664bfbf9f6eb542cdcfb1af58a5eb9d93b47e120c47ee82ab",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:e3a2ec1fea1797b1f0e412642d475362912d02edf53324a42ed7ee2766096eeb",
            "sha256:a183e766582210994b2dcdd52f56d73b5fd7d7c2302d5b34e8bc6800488571ef",
            "sha256:474a588b046a2902ecf67f30b9047777df785b44cdb48c1374ddcf1c564c8141",
            "sha256:b8829f18fbc76c13aea1f7b0c5ea754d34b040472118022cdf664a57b2bb51c6",
            "sha256:f3df38ad9456d6b955c52343caf2d54c78e4192f11d5f9e29493e2b0f3e6e438",
            "sha256:612f0a56d50dcf5ae8ba641e6bc10390f6e230e2d681e65b25a3f8b20c4a05de",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:668d1b258f6b1725df33e895401525f88edae8505d454ee2164d68d685fca509",
            "sha256:c31e3b2b44bc3cf01e2c4b74faf471a3c32cac0dabb41b26e1692134d08232f5",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:282ad97a7b97829885337a9cb03ba2bddf97cc22331a34926ad038e53b1e0061",
            "sha256:ddcafb4172e4358189fcb67995e80245b6b7baedc3ae820172a80ab07184583c",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:f02c589b70709c90e60955eae448af3c8562298f3b6c3df7baf73b13a6359ff0"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-01-04T00:45:11.882153129+08:00"
    }
}

更多版本

quay.io/jupyter/tensorflow-notebook:cuda-latest

linux/amd64 quay.io8.50GB2025-01-04 00:53
67