docker.io/approachingai/ktransformers:v0.2.4post1-AVX512 linux/amd64

docker.io/approachingai/ktransformers:v0.2.4post1-AVX512 - 国内下载镜像源 浏览次数:168

approachingai/ktransformers 镜像描述

这是一个包含Keras Transformer层的Docker镜像。Keras Transformer提供了一组用于构建Transformer模型的预构建层,方便开发者使用Keras构建各种Transformer架构,例如BERT、GPT等。使用此镜像可以方便地进行Transformer模型的训练和推理,无需手动安装和配置相关的依赖项。

源镜像 docker.io/approachingai/ktransformers:v0.2.4post1-AVX512
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512
镜像ID sha256:0291c5befe64107d7f05fa4805572098fbd8376238008cc61954d58f65fbee3f
镜像TAG v0.2.4post1-AVX512
大小 15.50GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 tail -f /dev/null
工作目录 /workspace/ktransformers
OS/平台 linux/amd64
浏览量 168 次
贡献者
镜像创建 2025-04-04T11:11:55.032379159Z
同步时间 2025-04-20 00:21
更新时间 2025-05-30 23:13
环境变量
PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.105-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.1 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.1-1 NV_NVTX_VERSION=12.1.105-1 NV_LIBNPP_VERSION=12.1.0.40-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 NV_LIBCUSPARSE_VERSION=12.1.0.106-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.3.1-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=12.1.105-1 NV_NVML_DEV_VERSION=12.1.105-1 NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1 NV_LIBNPP_DEV_VERSION=12.1.0.40-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1 NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1 NV_NVPROF_VERSION=12.1.105-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 LIBRARY_PATH=/usr/local/cuda/lib64/stubs PYTORCH_VERSION=2.5.1 CUDA_HOME=/usr/local/cuda
镜像标签
nvidia_driver: com.nvidia.volumes.needed NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512  docker.io/approachingai/ktransformers:v0.2.4post1-AVX512

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512  docker.io/approachingai/ktransformers:v0.2.4post1-AVX512

Shell快速替换命令

sed -i 's#approachingai/ktransformers:v0.2.4post1-AVX512#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512  docker.io/approachingai/ktransformers:v0.2.4post1-AVX512'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512  docker.io/approachingai/ktransformers:v0.2.4post1-AVX512'

镜像构建历史


# 2025-04-04 19:11:55  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["tail" "-f" "/dev/null"]
                        
# 2025-04-04 19:11:55  2.26MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c cp /usr/lib/x86_64-linux-gnu/libstdc++.so.6 /opt/conda/lib/ # buildkit
                        
# 2025-04-04 19:11:54  0.00B 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c pip cache purge # buildkit
                        
# 2025-04-04 19:11:54  42.39MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c pip install third_party/custom_flashinfer/ # buildkit
                        
# 2025-04-04 19:11:50  800.47MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c CPU_INSTRUCT=${CPU_INSTRUCT}     USE_BALANCE_SERVE=1     KTRANSFORMERS_FORCE_BUILD=TRUE     TORCH_CUDA_ARCH_LIST="8.0;8.6;8.7;8.9;9.0+PTX"     pip install . --no-build-isolation --verbose # buildkit
                        
# 2025-04-04 17:51:58  800.19MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c pip install flash-attn # buildkit
                        
# 2025-04-04 17:51:45  43.71MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c pip install ninja pyproject numpy cpufeature aiohttp zmq openai # buildkit
                        
# 2025-04-04 17:51:40  13.49MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c pip install --upgrade pip # buildkit
                        
# 2025-04-04 17:51:38  705.65MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c git submodule update --init --recursive # buildkit
                        
# 2025-04-04 17:51:10  0.00B 设置工作目录为/workspace/ktransformers
WORKDIR /workspace/ktransformers
                        
# 2025-04-04 17:51:10  0.00B 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-04-04 17:51:10  24.28MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c git clone https://github.com/kvcache-ai/ktransformers.git # buildkit
                        
# 2025-04-04 17:51:09  167.56MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c apt install -y --no-install-recommends     libtbb-dev     libssl-dev     libcurl4-openssl-dev     libaio1     libaio-dev     libfmt-dev     libgflags-dev     zlib1g-dev     patchelf     git     wget     vim     gcc     g++     cmake # buildkit
                        
# 2025-04-04 17:51:02  63.22MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX512 /bin/sh -c apt update -y # buildkit
                        
# 2025-04-04 17:50:58  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2025-04-04 17:50:58  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2025-04-04 17:50:58  0.00B 定义构建参数
ARG CPU_INSTRUCT=AVX512
                        
# 2024-10-30 02:08:14  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=2.5.1
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-10-30 02:08:14  0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.5.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=12.1.1 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then         DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends gcc;         rm -rf /var/lib/apt/lists/*;     fi # buildkit
                        
# 2024-10-30 02:08:14  5.80GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2024-10-30 02:04:07  4.92MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.5.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=12.1.1 /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends         ca-certificates         libjpeg-dev         libpng-dev         && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-10-30 02:04:07  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
                        
# 2024-10-30 02:04:07  0.00B 定义构建参数
ARG CUDA_VERSION=12.1.1
                        
# 2024-10-30 02:04:07  0.00B 定义构建参数
ARG TARGETPLATFORM=linux/amd64
                        
# 2024-10-30 02:04:07  0.00B 定义构建参数
ARG TRITON_VERSION=
                        
# 2024-10-30 02:04:07  0.00B 定义构建参数
ARG PYTORCH_VERSION=2.5.1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 13:25:51  385.69KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:25:51  4.79GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:25:51  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:25:51  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:13:35  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 13:13:35  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 13:13:35  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 13:13:35  261.40KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:13:35  2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:13:35  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:13:35  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:08:12  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:08:12  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:08:11  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
                        
# 2023-11-10 13:07:58  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:07:58  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:0291c5befe64107d7f05fa4805572098fbd8376238008cc61954d58f65fbee3f",
    "RepoTags": [
        "approachingai/ktransformers:v0.2.4post1-AVX512",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.2.4post1-AVX512"
    ],
    "RepoDigests": [
        "approachingai/ktransformers@sha256:ee38f8cf501832ef5efe02c78dd15c879b07f17d0bc404145815e7be73411101",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers@sha256:51df468aa42c8d7dc418c20936b3aa02c0751240bf7f76b6e99f26826bbe5c35"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-04-04T11:11:55.032379159Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.105-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.1",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.1-1",
            "NV_NVTX_VERSION=12.1.105-1",
            "NV_LIBNPP_VERSION=12.1.0.40-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
            "NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
            "NV_NVML_DEV_VERSION=12.1.105-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
            "NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
            "NV_NVPROF_VERSION=12.1.105-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "PYTORCH_VERSION=2.5.1",
            "CUDA_HOME=/usr/local/cuda"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace/ktransformers",
        "Entrypoint": [
            "tail",
            "-f",
            "/dev/null"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.volumes.needed": "nvidia_driver",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 15500343582,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/b5db3573d2e9b2fcad8cd9035e2cf02f744dc70e3649250baa79553f3eee0124/diff:/var/lib/docker/overlay2/138e9a2a0a70fe843235a7cb449a3832f1bf2932d7f8c4df0d656128de870089/diff:/var/lib/docker/overlay2/1134a9f49fd9df10e0728d95820cc37dd022ca78e4b934444d1e07280f9fa0c9/diff:/var/lib/docker/overlay2/a931e98563dab55b9a2c2521e8b73458ed1d99f4467794600e950441a1c0aa23/diff:/var/lib/docker/overlay2/1fca413c726d6a083544527818fe8875f1f6fb96e4883a1f615f2836301988b2/diff:/var/lib/docker/overlay2/18c67d2d40041a6db01f781e8f2fcadb38cdbb2bf155577ea7acc4b1ea774ff6/diff:/var/lib/docker/overlay2/18cda6be57f492bfe187ec1d0a12062f3a4ed8b1af5caacb4e83f63c67c0bcd0/diff:/var/lib/docker/overlay2/87b68e4f5bbee18ce59e5a7a2fbbc14530e13d9c00505be943389d229bb28641/diff:/var/lib/docker/overlay2/30f8a0a95ff463ef49da1274e865dc3100a0a58178237f89ecacb5e03b2b0cc0/diff:/var/lib/docker/overlay2/f424a2de21d62d9c803271e88a4e8d548c7f9c4160578c9a991b52fb7052c041/diff:/var/lib/docker/overlay2/e85a6d05a275230f4e818861dc3bd4bbec9445ab8488bc8f61b2493ff8ac174e/diff:/var/lib/docker/overlay2/009118bb10e4a284109d12caab14ff6662baceec46df48579587c5a2b29e3e0e/diff:/var/lib/docker/overlay2/3c85ce090e8b80028a986a2b09d189b81265622cfeb62febd5f464610c4079ba/diff:/var/lib/docker/overlay2/492dcc8bce62c7a7940f6c4390da529732385035619d922ea1151657ef7070cf/diff:/var/lib/docker/overlay2/02db8de7a2e44e8b1370c1b8a702f270df619ac0c7e5f3f9f390ba0051e0e47a/diff:/var/lib/docker/overlay2/983aa28b59e32ecd8fe85e5f2efda27fa3c6c4deeb87d0ae441fff3ea882eee6/diff:/var/lib/docker/overlay2/784998f8a95d87bb295deb36db352ac3ec1c49f66de93d39525091469a3f86df/diff:/var/lib/docker/overlay2/31f69782267aa25ad344407c7eb252aa822b36893f359e2a6e974f50cde09bdc/diff:/var/lib/docker/overlay2/e206224f4d029d655a9805d98068a6b4c6868ebdd91ee2dd111cb56be2b3857d/diff:/var/lib/docker/overlay2/2aaf64b1534f3c51b394067982227c31c62199803879d58792430f1f62479130/diff:/var/lib/docker/overlay2/24e6b812f473fdf7e41ff892237fcb7c8b2ff3027a82fb28b0480a3d266bb615/diff:/var/lib/docker/overlay2/4428bf9c6de4e64bbabcaa297d3d105d7470dfb460be8e0a6763340e5744abf0/diff:/var/lib/docker/overlay2/d59d1be7205b6e9d38df5b86e2e5d99a077e551e308e404a861ce80bf7bf771c/diff:/var/lib/docker/overlay2/01e7cbad893a3ac3743682d8aa5820ba6a365cbedda293ed19f7f24a03d1bcf3/diff:/var/lib/docker/overlay2/16595b95db06dec2839b3b98d7112e53c434fc1d27b437048e7b2175cebc0d9e/diff:/var/lib/docker/overlay2/36d3fcaaa6407672cdf6cb08101bb9847362b01c24b73c0732644847bedba332/diff:/var/lib/docker/overlay2/427180b96263efeb022c822a7b329f73b7da086cc28bf167fdbd5dc4292fa237/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/c5c8c28be2dd808f8b6a5afccb6bc3566ccb4dae7305209cc581135ccd8c272a/merged",
            "UpperDir": "/var/lib/docker/overlay2/c5c8c28be2dd808f8b6a5afccb6bc3566ccb4dae7305209cc581135ccd8c272a/diff",
            "WorkDir": "/var/lib/docker/overlay2/c5c8c28be2dd808f8b6a5afccb6bc3566ccb4dae7305209cc581135ccd8c272a/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:566cd9dd29d693cf0360da8a73391b843bb6ac8f11b4148acf69c4dc79fa87c5",
            "sha256:6ec2b659c9ab00e2b0fc0acd056577e609cc28649650ec7068b81686f6d1a996",
            "sha256:8afeff4e91d72f3de9232ffc0803f70236e316c27b23ee003e6d47fbfcb6e1c4",
            "sha256:bea30ebbe84377ed36503599c2087cd6bda6f4c96cb59525d238d4a00cf902d3",
            "sha256:b15b1df4adac82b2b46124c743a32d5e982cb6b5ee8a3c04949f809abf8962c9",
            "sha256:83ecbf43a888c43f43b0cd9ec7cf551770790c7aeab17f9536b8820db2c5d45d",
            "sha256:83687aeafbbf74a164a51590ffa36c46e9c41ce4ba3eae9daba1d381c64e5f4b",
            "sha256:3416903c2cc4c9f83472b397741f30365f53543862b03ff5727b42b1a2f938cb",
            "sha256:24e1e08aaa60ea10f478c1b68d9444b8ea74bff76e2547712984b5136e79018e",
            "sha256:7aee75a70a2ff35d4990fab501a025afa498f416cb726ace747ccd7fad6500d4",
            "sha256:c787acbf722215596c749d6bcca5f1895643a86d035321997d234f3706221e95",
            "sha256:2c170fff705fc5cb91740815d5279ea5f8235ca7cf2ec03d93b03456b6b2fcc5",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:ffba0182d4cd71765a8941f2f8ba0a5c029d22dc959b030dbc65b3f27c398562",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:2cba3294c0bdb797395a709c68f332aeb7c24b561c10ca6d3a89a9cc957e4e15",
            "sha256:77998083b81fb170b2efad54a9a131ff0e6e8f1d8871179a06f1459aba28ccac",
            "sha256:64a11868fa4ad1483c09a5c2bbd207ec36713aa34e15dad2166671fcd604ee04",
            "sha256:4b07b91c950731deb3e18c79cec24da26d7c2248e5863000998753034c47d99e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:e795d7b82216096648d99f978b271797938f63a4b9ffca2693ab882941d623ea",
            "sha256:e24cd76012a75bcb11f8c7e2311ea6a56be7229d664665e83bcab9d39c937477",
            "sha256:2d9eb3138d74925a550947fabf527642828d182c34c5ec91228f771a92a9f4cf",
            "sha256:4e07468f40d2edb4924e5bde59f253340bb2e813424419160f4c1b8b832cfbba",
            "sha256:cbd2b50199f5638d370446cb54863983dc9ee75d1b0df753fb69fe0d0bd1f8aa",
            "sha256:16b8cf53b62fe5d92e1cead93d83bfa54100ce459f2889461f8321a76e18a6f6",
            "sha256:6335363bf0484b0f3e643299f36016a8841b1247b48a91760e26ba492435290e",
            "sha256:6e7c19d39ea42959524906695c69b2d228473f217a9a6e3dcf98532df1682dd6"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-04-20T00:18:45.202428884+08:00"
    }
}

更多版本

docker.io/approachingai/ktransformers:0.2.1

linux/amd64 docker.io18.50GB2025-02-19 00:37
560

docker.io/approachingai/ktransformers:v0.2.2rc1-AVX512

linux/amd64 docker.io18.37GB2025-02-26 16:11
220

docker.io/approachingai/ktransformers:v0.2.3post1-AVX2

linux/amd64 docker.io14.14GB2025-03-09 08:52
212

docker.io/approachingai/ktransformers:v0.2.3post2-AVX512

linux/amd64 docker.io14.14GB2025-03-19 15:27
188

docker.io/approachingai/ktransformers:v0.2.4post1-AVX512

linux/amd64 docker.io15.50GB2025-04-20 00:21
167

docker.io/approachingai/ktransformers:v0.3.1-AVX2

linux/amd64 docker.io15.32GB2025-05-31 01:44
8

docker.io/approachingai/ktransformers:v0.3.1-AVX512

linux/amd64 docker.io15.32GB2025-05-31 01:49
8