docker.io/approachingai/ktransformers:v0.3.1-AVX2 linux/amd64

docker.io/approachingai/ktransformers:v0.3.1-AVX2 - 国内下载镜像源 浏览次数:22

approachingai/ktransformers 镜像描述

这是一个包含Keras Transformer层的Docker镜像。Keras Transformer提供了一组用于构建Transformer模型的预构建层,方便开发者使用Keras构建各种Transformer架构,例如BERT、GPT等。使用此镜像可以方便地进行Transformer模型的训练和推理,无需手动安装和配置相关的依赖项。

源镜像 docker.io/approachingai/ktransformers:v0.3.1-AVX2
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2
镜像ID sha256:70c33ae753b02a6322bb2ab4923298c0b636a641883f5e37e0f0ed8f3643cc53
镜像TAG v0.3.1-AVX2
大小 15.32GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 tail -f /dev/null
工作目录 /workspace/ktransformers
OS/平台 linux/amd64
浏览量 22 次
贡献者
镜像创建 2025-05-17T10:05:01.632377388Z
同步时间 2025-05-31 01:44
更新时间 2025-06-01 19:36
环境变量
PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.105-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.1 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.1-1 NV_NVTX_VERSION=12.1.105-1 NV_LIBNPP_VERSION=12.1.0.40-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 NV_LIBCUSPARSE_VERSION=12.1.0.106-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.3.1-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=12.1.105-1 NV_NVML_DEV_VERSION=12.1.105-1 NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1 NV_LIBNPP_DEV_VERSION=12.1.0.40-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1 NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1 NV_NVPROF_VERSION=12.1.105-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 LIBRARY_PATH=/usr/local/cuda/lib64/stubs PYTORCH_VERSION=2.5.1 CUDA_HOME=/usr/local/cuda
镜像标签
nvidia_driver: com.nvidia.volumes.needed NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2  docker.io/approachingai/ktransformers:v0.3.1-AVX2

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2  docker.io/approachingai/ktransformers:v0.3.1-AVX2

Shell快速替换命令

sed -i 's#approachingai/ktransformers:v0.3.1-AVX2#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2  docker.io/approachingai/ktransformers:v0.3.1-AVX2'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2  docker.io/approachingai/ktransformers:v0.3.1-AVX2'

镜像构建历史


# 2025-05-17 18:05:01  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["tail" "-f" "/dev/null"]
                        
# 2025-05-17 18:05:01  2.26MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c cp /usr/lib/x86_64-linux-gnu/libstdc++.so.6 /opt/conda/lib/ # buildkit
                        
# 2025-05-17 18:05:01  0.00B 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c pip cache purge # buildkit
                        
# 2025-05-17 18:05:00  42.34MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c pip install third_party/custom_flashinfer/ # buildkit
                        
# 2025-05-17 18:04:57  586.40MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c CPU_INSTRUCT=${CPU_INSTRUCT}     USE_BALANCE_SERVE=1     KTRANSFORMERS_FORCE_BUILD=TRUE     TORCH_CUDA_ARCH_LIST="8.0;8.6;8.7;8.9;9.0+PTX"     pip install . --no-build-isolation --verbose # buildkit
                        
# 2025-05-17 16:51:30  800.19MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c pip install flash-attn # buildkit
                        
# 2025-05-17 16:51:13  44.66MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c pip install ninja pyproject numpy cpufeature aiohttp zmq openai # buildkit
                        
# 2025-05-17 16:51:08  13.35MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c pip install --upgrade pip # buildkit
                        
# 2025-05-17 16:51:06  732.99MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c git submodule update --init --recursive # buildkit
                        
# 2025-05-17 16:50:35  0.00B 设置工作目录为/workspace/ktransformers
WORKDIR /workspace/ktransformers
                        
# 2025-05-17 16:50:35  0.00B 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-05-17 16:50:34  26.57MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c git clone https://github.com/kvcache-ai/ktransformers.git # buildkit
                        
# 2025-05-17 16:50:33  167.56MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c apt install -y --no-install-recommends     libtbb-dev     libssl-dev     libcurl4-openssl-dev     libaio1     libaio-dev     libfmt-dev     libgflags-dev     zlib1g-dev     patchelf     git     wget     vim     gcc     g++     cmake # buildkit
                        
# 2025-05-17 16:50:26  65.49MB 执行命令并创建新的镜像层
RUN |1 CPU_INSTRUCT=AVX2 /bin/sh -c apt update -y # buildkit
                        
# 2025-05-17 16:50:22  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2025-05-17 16:50:22  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2025-05-17 16:50:22  0.00B 定义构建参数
ARG CPU_INSTRUCT=AVX2
                        
# 2024-10-30 02:08:14  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=2.5.1
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2024-10-30 02:08:14  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-10-30 02:08:14  0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.5.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=12.1.1 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then         DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends gcc;         rm -rf /var/lib/apt/lists/*;     fi # buildkit
                        
# 2024-10-30 02:08:14  5.80GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2024-10-30 02:04:07  4.92MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.5.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=12.1.1 /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends         ca-certificates         libjpeg-dev         libpng-dev         && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-10-30 02:04:07  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
                        
# 2024-10-30 02:04:07  0.00B 定义构建参数
ARG CUDA_VERSION=12.1.1
                        
# 2024-10-30 02:04:07  0.00B 定义构建参数
ARG TARGETPLATFORM=linux/amd64
                        
# 2024-10-30 02:04:07  0.00B 定义构建参数
ARG TRITON_VERSION=
                        
# 2024-10-30 02:04:07  0.00B 定义构建参数
ARG PYTORCH_VERSION=2.5.1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 13:25:51  385.69KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:25:51  4.79GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:25:51  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:25:51  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:13:35  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 13:13:35  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 13:13:35  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 13:13:35  261.40KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:13:35  2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:13:35  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:13:35  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:08:12  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:08:12  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:08:11  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
                        
# 2023-11-10 13:07:58  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:07:58  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:70c33ae753b02a6322bb2ab4923298c0b636a641883f5e37e0f0ed8f3643cc53",
    "RepoTags": [
        "approachingai/ktransformers:v0.3.1-AVX2",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers:v0.3.1-AVX2"
    ],
    "RepoDigests": [
        "approachingai/ktransformers@sha256:0584b0f856055b7ca7edc79154fa5e8619619f07f76d3c68ac417e16a40a5d13",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/approachingai/ktransformers@sha256:3ddac8f670f661e27bcd5f7dc8bfdd38ed8ad7f26a00092ffffce5205f1705eb"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-05-17T10:05:01.632377388Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.105-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.1",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.1-1",
            "NV_NVTX_VERSION=12.1.105-1",
            "NV_LIBNPP_VERSION=12.1.0.40-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
            "NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
            "NV_NVML_DEV_VERSION=12.1.105-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
            "NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
            "NV_NVPROF_VERSION=12.1.105-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "PYTORCH_VERSION=2.5.1",
            "CUDA_HOME=/usr/local/cuda"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace/ktransformers",
        "Entrypoint": [
            "tail",
            "-f",
            "/dev/null"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.volumes.needed": "nvidia_driver",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 15318938658,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/8f187c9a27a271e85af49a37a2d694edc48163f18305b5cc9c1cf4daa3d96023/diff:/var/lib/docker/overlay2/105726a8be8f9371dae419fedac07bd3b24ee87bf003ec09157e07bfda5245e6/diff:/var/lib/docker/overlay2/bee004a3cf47ed6563533115ce239a87c1621d24fff1b8d02f164b79f9f91fba/diff:/var/lib/docker/overlay2/dc9c2fd6016b5b79e0edda729ff0a109e713f13af40f0fb0f20514ec53c3b1bb/diff:/var/lib/docker/overlay2/862289565eb3cba36969423e3222180fa57010a4f0372906cbe3004ddf2b61ed/diff:/var/lib/docker/overlay2/5814aa8d95d781242dce64a895debe82ebb87b63a9793eef85ec457b7b09305f/diff:/var/lib/docker/overlay2/6904f2702101f7ace1fc02d112c52d075a9e6b6d75a6939c69a5d4ed027de9fe/diff:/var/lib/docker/overlay2/931509286cfcf5ced1929e46d9cecaa4e5f127a5da88ec4928d7775eff2d3eff/diff:/var/lib/docker/overlay2/68b18874d5d46b7ef9cc1e5ddfbe4a9c64f7075cb7ddcbfd3a3a63d7d228555e/diff:/var/lib/docker/overlay2/a32b6c5f68027d1bff15f7f46bfc71264fd5147d95d703abfd406cc305dd6e9b/diff:/var/lib/docker/overlay2/a49fb66d3d31c7471f19099b8ddd9dd28521ceb65226eb234eb5b0fe8fa8559d/diff:/var/lib/docker/overlay2/4821c389cf0ce7192e86111f66b961aa09f069abdbe3996509bd35962e6d1999/diff:/var/lib/docker/overlay2/f426841a499bb553d24e5355ce262137b7c6192de0b758118c66e3300d34c845/diff:/var/lib/docker/overlay2/3ffa700d1c610d3e561a69b45f24bad1c31460323ebfbe5ff30a97f3d32802c5/diff:/var/lib/docker/overlay2/3222f302308445be514c23fd765446ef5e4136e3ef08e3a4b39c1b683bb0c132/diff:/var/lib/docker/overlay2/dd1ef6995e36a25d260d366fd2ff1b75e99f1e946f17505546c94c8a099dce80/diff:/var/lib/docker/overlay2/00fa8a0eae81173a05f3ff7ad395afb93ef14015a5498e67bd721975092e4ffe/diff:/var/lib/docker/overlay2/b09fb60be2cf320198bc914bc67609661411e83f122e4cefd6d02c848d4ec105/diff:/var/lib/docker/overlay2/e001bda66b35a4a3458236ef84160565da77de99cca97f95f2b21fe752784ba3/diff:/var/lib/docker/overlay2/8d2bddf77257b9d1d286de8388c53bed76093462ee9f28b3608b41e458903b59/diff:/var/lib/docker/overlay2/a49a6c7f62e38eb58df7517eee1df8226ce2e65d6898fd9175ace41e2a90e9f9/diff:/var/lib/docker/overlay2/f990e30e2cf3144015334860613bed0e00c6cb30eec2c7bcb0b6902da2c14bbd/diff:/var/lib/docker/overlay2/d363e273ec013bd024623360a9294a4ba5e9d4ae02f4ce3782b92436b547ddda/diff:/var/lib/docker/overlay2/d5e1a3072e8b412622da9d4b2eab5f14964d05fd262cb67c67300ae26e807548/diff:/var/lib/docker/overlay2/edfadf844ab36cf09cc1448dfd7b162d056ba0a551c28cef0366215becd1f2dd/diff:/var/lib/docker/overlay2/0da3dfb73ce16b7174e73cdb0c68c7e1bd98853fcdbf8051f41306923398cbb7/diff:/var/lib/docker/overlay2/fab49111e0d40c184c19b117b3ccf49dfbed7409feb846c997fe3db4014033b7/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/74567b7072cdf1d912daaf7892f328cf3ed0e8055570c19d4f2c290273b91a1a/merged",
            "UpperDir": "/var/lib/docker/overlay2/74567b7072cdf1d912daaf7892f328cf3ed0e8055570c19d4f2c290273b91a1a/diff",
            "WorkDir": "/var/lib/docker/overlay2/74567b7072cdf1d912daaf7892f328cf3ed0e8055570c19d4f2c290273b91a1a/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:566cd9dd29d693cf0360da8a73391b843bb6ac8f11b4148acf69c4dc79fa87c5",
            "sha256:6ec2b659c9ab00e2b0fc0acd056577e609cc28649650ec7068b81686f6d1a996",
            "sha256:8afeff4e91d72f3de9232ffc0803f70236e316c27b23ee003e6d47fbfcb6e1c4",
            "sha256:bea30ebbe84377ed36503599c2087cd6bda6f4c96cb59525d238d4a00cf902d3",
            "sha256:b15b1df4adac82b2b46124c743a32d5e982cb6b5ee8a3c04949f809abf8962c9",
            "sha256:83ecbf43a888c43f43b0cd9ec7cf551770790c7aeab17f9536b8820db2c5d45d",
            "sha256:83687aeafbbf74a164a51590ffa36c46e9c41ce4ba3eae9daba1d381c64e5f4b",
            "sha256:3416903c2cc4c9f83472b397741f30365f53543862b03ff5727b42b1a2f938cb",
            "sha256:24e1e08aaa60ea10f478c1b68d9444b8ea74bff76e2547712984b5136e79018e",
            "sha256:7aee75a70a2ff35d4990fab501a025afa498f416cb726ace747ccd7fad6500d4",
            "sha256:c787acbf722215596c749d6bcca5f1895643a86d035321997d234f3706221e95",
            "sha256:2c170fff705fc5cb91740815d5279ea5f8235ca7cf2ec03d93b03456b6b2fcc5",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:ffba0182d4cd71765a8941f2f8ba0a5c029d22dc959b030dbc65b3f27c398562",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:fe0c69d801517dfcad32257c417d808cd14b862c73d67c122e9079c53132bc68",
            "sha256:0f90a362e057efaca5598a82e32fcedd6cab4e645e786c4329c2ca3efd7c1313",
            "sha256:d63aaeab143d7bb6bbec02af856cc13521a1d38b9439c034bd784044c0924d1f",
            "sha256:2923d559b58c7fd1d399baa7d885088560c2ad88da39a0f99ec8ef248c622164",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:6bf564cf981e11022b399df611c640d7e3d547cec08ef8d0e0e0501ea9480124",
            "sha256:89303ad78d8efc3e22e9994b2e12ad7c2c0405f3311f5b22811c408b8a611f49",
            "sha256:c8c1da086c9c4cd19eb6153031686f2b95894a97b50b90a61cde32dddf7ca28b",
            "sha256:fa16d9f4cda41240e0093c3d0b7d29cfb0f351f1a5a33fd1863843fd12701098",
            "sha256:8e2100dd990d22d379f50be94fa3235bddfd3a60b92730c84feb3fd439f7afff",
            "sha256:94f23c528fd410045fecc1420785c7b35dbb3082bbed61b25bd01ec0d2266c23",
            "sha256:3ffd6258db1c7a160dc558acb8b40fa08f2d92af5582411d9190390398f9a26c",
            "sha256:8ee222dfa4e305366c1adce83c7225f8ed17c7bda10b1d6d4764f6f285ed63bf"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-05-31T01:41:30.297392793+08:00"
    }
}

更多版本

docker.io/approachingai/ktransformers:0.2.1

linux/amd64 docker.io18.50GB2025-02-19 00:37
565

docker.io/approachingai/ktransformers:v0.2.2rc1-AVX512

linux/amd64 docker.io18.37GB2025-02-26 16:11
223

docker.io/approachingai/ktransformers:v0.2.3post1-AVX2

linux/amd64 docker.io14.14GB2025-03-09 08:52
220

docker.io/approachingai/ktransformers:v0.2.3post2-AVX512

linux/amd64 docker.io14.14GB2025-03-19 15:27
190

docker.io/approachingai/ktransformers:v0.2.4post1-AVX512

linux/amd64 docker.io15.50GB2025-04-20 00:21
172

docker.io/approachingai/ktransformers:v0.3.1-AVX2

linux/amd64 docker.io15.32GB2025-05-31 01:44
21

docker.io/approachingai/ktransformers:v0.3.1-AVX512

linux/amd64 docker.io15.32GB2025-05-31 01:49
17