docker.io/nvcr.io/nvidia/pytorch:24.11-py3 linux/amd64

docker.io/nvcr.io/nvidia/pytorch:24.11-py3 - 国内下载镜像源 浏览次数:13
这里是镜像的描述信息: NVIDIA PyTorch Docker Image

这是一个基于PyTorch框架的Docker容器镜像,提供了一个完整的深度学习环境。该镜像包含了PyTorch 1.x版本,以及其他必需的依赖包,如CUDA、cuDNN等。

使用这个镜像,您可以轻松地在本地环境中搭建一个深度学习工作站,进行各种机器学习和计算机视觉任务的实验和开发。

此外,该镜像还支持GPU加速,通过NVIDIA的CUDA和cuDNN技术,可以显著提高PyTorch的性能和效率。

源镜像 docker.io/nvcr.io/nvidia/pytorch:24.11-py3
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3
镜像ID sha256:43d407029b5a8e664ad3f4848efbd4750810afbd56e831d0c15bad140e402c09
镜像TAG 24.11-py3
大小 21.77GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 13 次
贡献者
镜像创建 2024-11-15T18:54:46.239451822Z
同步时间 2025-04-04 03:43
更新时间 2025-04-04 21:32
开放端口
6006/tcp 8888/tcp
环境变量
PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin CUDA_VERSION=12.6.3.001 CUDA_DRIVER_VERSION=560.35.05 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS= _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0 NCCL_VERSION=2.23.4 CUBLAS_VERSION=12.6.4.1 CUFFT_VERSION=11.3.0.4 CURAND_VERSION=10.3.7.77 CUSPARSE_VERSION=12.5.4.2 CUSPARSELT_VERSION=0.6.3.2 CUSOLVER_VERSION=11.7.1.2 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.54 NVJPEG_VERSION=12.3.3.54 CUDNN_VERSION=9.5.1.17 CUDNN_FRONTEND_VERSION=1.8.0 TRT_VERSION=10.6.0.26 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2024.6.1.90 NSIGHT_COMPUTE_VERSION=2024.3.2.3 DALI_VERSION=1.43.0 DALI_BUILD=19497385 POLYGRAPHY_VERSION=0.49.13 TRANSFORMER_ENGINE_VERSION=1.12 MODEL_OPT_VERSION=0.19.0 LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video NVIDIA_PRODUCT_NAME=PyTorch GDRCOPY_VERSION=2.4.1 HPCX_VERSION=2.21 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.18.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0 EFA_VERSION=1.34.0 AWS_OFI_NCCL_VERSION=1.12.1 OPAL_PREFIX=/opt/hpcx/ompi OMPI_MCA_coll_hcoll_enable=0 LIBRARY_PATH=/usr/local/cuda/lib64/stubs: PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 PYTORCH_VERSION=2.6.0a0+df5bbc0 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.11 NVFUSER_BUILD_VERSION=0d33366 NVFUSER_VERSION=0d33366 PIP_BREAK_SYSTEM_PACKAGES=1 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python NVPL_LAPACK_MATH_MODE=PEDANTIC PYTHONIOENCODING=utf-8 LC_ALL=C.UTF-8 PIP_DEFAULT_TIMEOUT=100 JUPYTER_PORT=8888 TENSORBOARD_PORT=6006 UCC_CL_BASIC_TLS=^sharp TORCH_CUDA_ARCH_LIST=7.0 7.5 8.0 8.6 9.0+PTX PYTORCH_HOME=/opt/pytorch/pytorch CUDA_HOME=/usr/local/cuda TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1 COCOAPI_VERSION=2.0+nv0.8.1 TORCH_CUDNN_V8_API_ENABLED=1 CUDA_MODULE_LOADING=LAZY NVIDIA_BUILD_ID=122402533
镜像标签
122402533: com.nvidia.build.id 40d6cf911ff7816d89ec212ae4ba065395be1d07: com.nvidia.build.ref 12.6.4.1: com.nvidia.cublas.version 9.0: com.nvidia.cuda.version 9.5.1.17: com.nvidia.cudnn.version 11.3.0.4: com.nvidia.cufft.version 10.3.7.77: com.nvidia.curand.version 11.7.1.2: com.nvidia.cusolver.version 12.5.4.2: com.nvidia.cusparse.version 0.6.3.2: com.nvidia.cusparselt.version 2.0.2.5: com.nvidia.cutensor.version 2.23.4: com.nvidia.nccl.version 12.3.1.54: com.nvidia.npp.version 2024.3.2.3: com.nvidia.nsightcompute.version 2024.6.1.90: com.nvidia.nsightsystems.version 12.3.3.54: com.nvidia.nvjpeg.version 2.6.0a0+df5bbc0: com.nvidia.pytorch.version 10.6.0.26: com.nvidia.tensorrt.version : com.nvidia.tensorrtoss.version nvidia_driver: com.nvidia.volumes.needed ubuntu: org.opencontainers.image.ref.name 24.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3  docker.io/nvcr.io/nvidia/pytorch:24.11-py3

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3  docker.io/nvcr.io/nvidia/pytorch:24.11-py3

Shell快速替换命令

sed -i 's#nvcr.io/nvidia/pytorch:24.11-py3#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3  docker.io/nvcr.io/nvidia/pytorch:24.11-py3'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3  docker.io/nvcr.io/nvidia/pytorch:24.11-py3'

镜像构建历史


# 2024-11-16 02:54:46  0.00B 添加元数据标签
LABEL com.nvidia.build.ref=40d6cf911ff7816d89ec212ae4ba065395be1d07
                        
# 2024-11-16 02:54:46  0.00B 定义构建参数
ARG NVIDIA_BUILD_REF=40d6cf911ff7816d89ec212ae4ba065395be1d07
                        
# 2024-11-16 02:54:46  0.00B 添加元数据标签
LABEL com.nvidia.build.id=122402533
                        
# 2024-11-16 02:54:46  0.00B 设置环境变量 NVIDIA_BUILD_ID
ENV NVIDIA_BUILD_ID=122402533
                        
# 2024-11-16 02:54:46  0.00B 定义构建参数
ARG NVIDIA_BUILD_ID=122402533
                        
# 2024-11-16 02:54:46  719.00B 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2024-11-16 02:54:46  83.49KB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 PYVER=3.12 /bin/sh -c ln -sf ${_CUDA_COMPAT_PATH}/lib.real ${_CUDA_COMPAT_PATH}/lib  && echo ${_CUDA_COMPAT_PATH}/lib > /etc/ld.so.conf.d/00-cuda-compat.conf  && ldconfig  && rm -f ${_CUDA_COMPAT_PATH}/lib # buildkit
                        
# 2024-11-16 02:54:46  0.00B 设置环境变量 CUDA_MODULE_LOADING
ENV CUDA_MODULE_LOADING=LAZY
                        
# 2024-11-16 02:54:46  0.00B 设置环境变量 TORCH_CUDNN_V8_API_ENABLED
ENV TORCH_CUDNN_V8_API_ENABLED=1
                        
# 2024-11-16 02:54:46  355.98MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 PYVER=3.12 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Transformer Engine in iGPU container until Version variable is set"; else      NVTE_BUILD_THREADS_PER_JOB=8 pip install --no-cache-dir --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@release_v${TRANSFORMER_ENGINE_VERSION}; fi # buildkit
                        
# 2024-11-16 02:49:23  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin
                        
# 2024-11-16 02:49:23  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-11-16 02:49:23  401.28MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 PYVER=3.12 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Flash Attention in iGPU as it is a requirement for Transformer Engine"; else     pip install --no-cache-dir /opt/pytorch/flash_attn*.whl; fi # buildkit
                        
# 2024-11-16 02:49:19  45.21MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 PYVER=3.12 /bin/sh -c pip install --no-cache-dir /opt/pytorch/torch_tensorrt/dist/*.whl # buildkit
                        
# 2024-11-16 02:49:18  508.17MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 PYVER=3.12 /bin/sh -c pip install --no-cache-dir /opt/pytorch/apex/dist/*.whl # buildkit
                        
# 2024-11-16 02:24:49  0.00B 定义构建参数
ARG PYVER=3.12
                        
# 2024-11-16 02:24:49  153.51MB 复制新文件或目录到容器中
COPY torch_tensorrt/ /opt/pytorch/torch_tensorrt/ # buildkit
                        
# 2024-11-16 02:24:49  65.66MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip --version && python -c 'import sys; print(sys.platform)'     && pip install --no-cache-dir nvidia-pyindex     && pip install --extra-index-url https://urm.nvidia.com/artifactory/api/pypi/sw-tensorrt-pypi/simple --no-cache-dir "polygraphy==${POLYGRAPHY_VERSION}"     && pip install --extra-index-url https://pypi.nvidia.com "nvidia-modelopt[torch]==${MODEL_OPT_VERSION}" # buildkit
                        
# 2024-11-16 02:24:35  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin
                        
# 2024-11-16 02:24:35  6.84MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c set -x  && URL=$(VERIFY=1 /nvidia/build-scripts/installTRT.sh | sed -n "s/^.*\(http.*\)tar.*$/\1/p")tar  && FILE=$(wget -O - $URL | sed -n 's/^.*href="\(TensorRT[^"]*\)".*$/\1/p' | egrep -v "internal|safety")  && wget -q $URL/$FILE -O - | tar -xz  && PY=$(python -c 'import sys; print(str(sys.version_info[0])+str(sys.version_info[1]))')  && pip install TensorRT-*/python/tensorrt-*-cp$PY*.whl  && mv /usr/src/tensorrt /opt  && ln -s /opt/tensorrt /usr/src/tensorrt  && rm -r TensorRT-* # buildkit
                        
# 2024-11-16 02:23:26  35.04MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c chmod -R a+w . # buildkit
                        
# 2024-11-16 02:23:26  34.89MB 复制新文件或目录到容器中
COPY tutorials tutorials # buildkit
                        
# 2024-11-16 02:23:26  2.07KB 复制新文件或目录到容器中
COPY docker-examples docker-examples # buildkit
                        
# 2024-11-16 02:23:26  2.05KB 复制新文件或目录到容器中
COPY NVREADME.md README.md # buildkit
                        
# 2024-11-16 02:23:26  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-11-16 02:23:26  3.73GB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c if [ "${L4T}" = "1" ]; then     echo "Not installing rapids for L4T build." ; else     find /rapids  -name "*-Linux.tar.gz" -exec     tar -C /usr --exclude="*.a" --exclude="bin/xgboost" --strip-components=1 -xvf {} \;  && find /rapids -name "*.whl"     ! -name "tornado-*"     ! -name "Pillow-*"     ! -name "certifi-*"     ! -name "protobuf-*" -exec     pip install --no-cache-dir {} + ; pip install numpy==1.26.4; fi # buildkit
                        
# 2024-11-16 02:22:37  224.07KB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir --disable-pip-version-check tabulate # buildkit
                        
# 2024-11-16 02:22:35  173.40MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c ( cd fuser && pip install -r requirements.txt &&  python setup.py -version-tag=a0+${NVFUSER_VERSION} install && python setup.py clean && cp $(find /usr/local/lib/python${PYVER}/dist-packages/ -name libnvfuser_codegen.so)  /usr/local/lib/python${PYVER}/dist-packages/torch/lib/ )  && ( cd lightning-thunder && python setup.py install && rm -rf build)  && ( cd lightning-thunder && mkdir tmp && cd tmp && git clone -b v${CUDNN_FRONTEND_VERSION} --recursive --single-branch https://github.com/NVIDIA/cudnn-frontend.git cudnn_frontend && cd cudnn_frontend && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . && cd ../../ && rm -rf tmp )  && ( cd pytorch/third_party/onnx && pip uninstall typing -y && CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . ) # buildkit
                        
# 2024-11-16 02:15:33  2.21KB 复制新文件或目录到容器中
COPY singularity/ /.singularity.d/ # buildkit
                        
# 2024-11-16 02:15:33  69.39MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c export COCOAPI_TAG=$(echo ${COCOAPI_VERSION} | sed 's/^.*+n//')  && pip install --disable-pip-version-check --no-cache-dir git+https://github.com/nvidia/cocoapi.git@${COCOAPI_TAG}#subdirectory=PythonAPI # buildkit
                        
# 2024-11-16 02:15:01  0.00B 设置环境变量 COCOAPI_VERSION
ENV COCOAPI_VERSION=2.0+nv0.8.1
                        
# 2024-11-16 02:15:01  806.67MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c if [ -z "${DALI_VERSION}" ] ; then   echo "Not Installing DALI for L4T Build." ; else   export DALI_PKG_SUFFIX="cuda${CUDA_VERSION%%.*}0"   && pip install --disable-pip-version-check --no-cache-dir                 --extra-index-url https://developer.download.nvidia.com/compute/redist                 --extra-index-url http://sqrl/dldata/pip-dali${DALI_URL_SUFFIX:-} --trusted-host sqrl         nvidia-dali-${DALI_PKG_SUFFIX}==${DALI_VERSION}; fi # buildkit
                        
# 2024-11-16 02:14:52  586.17MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir /tmp/dist/*.whl # buildkit
                        
# 2024-11-16 02:14:47  11.68MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c cd pytorch && pip install --no-cache-dir -v -r /opt/pytorch/pytorch/requirements.txt # buildkit
                        
# 2024-11-16 02:14:45  11.25MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c patchelf --set-rpath '$ORIGIN:/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torchvision/' /usr/local/lib/libtorchvision.so && patchelf --set-soname libjpeg.so.62 --output /usr/local/lib/libjpeg.so.62 $(readlink -f $(ldd /usr/local/lib/python3.12/dist-packages/torchvision/image.so | grep libjpeg | awk '{print $3}')) # buildkit
                        
# 2024-11-16 02:14:45  0.00B 复制新文件或目录到容器中
COPY /usr/local/lib64/libjpeg* /usr/local/lib/ # buildkit
                        
# 2024-11-16 02:14:45  10.02MB 复制新文件或目录到容器中
COPY /usr/local/lib64/libtorchvision.so /usr/local/lib/libtorchvision.so # buildkit
                        
# 2024-11-16 02:14:45  405.57KB 复制新文件或目录到容器中
COPY /usr/local/include/torchvision/ /usr/local/include/torchvision/ # buildkit
                        
# 2024-11-16 02:14:45  8.90KB 复制新文件或目录到容器中
COPY /usr/local/share/cmake/TorchVision/ /usr/local/share/cmake/TorchVision/ # buildkit
                        
# 2024-11-16 02:14:45  1.79GB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install /opt/transfer/torch*.whl     && patchelf --set-rpath '/usr/local/lib' /usr/local/lib/python${PYVER}/dist-packages/torch/lib/libtorch_global_deps.so # buildkit
                        
# 2024-11-16 02:14:19  0.00B 设置环境变量 TORCH_ALLOW_TF32_CUBLAS_OVERRIDE
ENV TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
                        
# 2024-11-16 02:14:19  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2024-11-16 02:14:19  0.00B 设置环境变量 PYTORCH_HOME
ENV PYTORCH_HOME=/opt/pytorch/pytorch
                        
# 2024-11-16 02:14:19  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=7.0 7.5 8.0 8.6 9.0+PTX
                        
# 2024-11-16 02:14:19  0.00B 设置环境变量 UCC_CL_BASIC_TLS
ENV UCC_CL_BASIC_TLS=^sharp
                        
# 2024-11-16 02:14:19  65.56MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c OPENCV_VERSION=4.10.0 &&     cd / &&     wget -q -O - https://github.com/opencv/opencv/archive/${OPENCV_VERSION}.tar.gz | tar -xzf - &&     cd /opencv-${OPENCV_VERSION} &&     cmake -GNinja -Bbuild -H.           -DWITH_CUDA=OFF -DWITH_1394=OFF           -DPYTHON3_PACKAGES_PATH="/usr/local/lib/python${PYVER}/dist-packages"           -DBUILD_opencv_cudalegacy=OFF -DBUILD_opencv_stitching=OFF -DWITH_IPP=OFF -DWITH_PROTOBUF=OFF &&     cmake --build build --target install &&     cd modules/python/package &&     pip install --no-cache-dir --disable-pip-version-check -v . &&     rm -rf /opencv-${OPENCV_VERSION} # buildkit
                        
# 2024-11-16 02:09:17  0.00B 声明容器运行时监听的端口
EXPOSE map[6006/tcp:{}]
                        
# 2024-11-16 02:09:17  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2024-11-16 02:09:17  0.00B 设置环境变量 TENSORBOARD_PORT
ENV TENSORBOARD_PORT=6006
                        
# 2024-11-16 02:09:17  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2024-11-16 02:09:17  248.00B 复制新文件或目录到容器中
COPY jupyter_config/settings.jupyterlab-settings /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/ # buildkit
                        
# 2024-11-16 02:09:17  236.00B 复制新文件或目录到容器中
COPY jupyter_config/manager.jupyterlab-settings /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/ # buildkit
                        
# 2024-11-16 02:09:17  554.00B 复制新文件或目录到容器中
COPY jupyter_config/jupyter_notebook_config.py /usr/local/etc/jupyter/ # buildkit
                        
# 2024-11-16 02:09:17  18.73MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir jupyterlab-tensorboard-pro jupytext     black isort  && mkdir -p /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/  && jupyter lab clean # buildkit
                        
# 2024-11-16 02:09:13  27.81KB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c PATCHED_FILE=$(python -c "from tensorboard.plugins.core import core_plugin as _; print(_.__file__)") &&     sed -i 's/^\( *"--bind_all",\)$/\1 default=True,/' "$PATCHED_FILE" &&     test $(grep '^ *"--bind_all", default=True,$' "$PATCHED_FILE" | wc -l) -eq 1 # buildkit
                        
# 2024-11-16 02:09:13  200.57MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c git config --global url."https://github".insteadOf git://github &&     pip install --no-cache-dir 'jupyterlab>=4.1.0,<5.0.0a0' notebook tensorboard==2.16.2     jupyterlab_code_formatter python-hostlist # buildkit
                        
# 2024-11-16 02:08:59  2.19GB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir         numpy==1.26.4         scipy==1.11.3         "PyYAML>=5.4.1"         astunparse         typing_extensions         cffi         spacy==3.7.5         mock         tqdm         librosa==0.10.1         expecttest==0.1.3         hypothesis==5.35.1         xdoctest==1.0.2         pytest==8.1.1         pytest-xdist         pytest-rerunfailures         pytest-shard         pytest-flakefinder         pybind11         Cython         "regex>=2020.1.8"         protobuf==4.24.4 &&         six==1.16.0 &&     if [[ $TARGETARCH = "amd64" ]] ; then pip install --no-cache-dir mkl==2021.1.1 mkl-include==2021.1.1 mkl-devel==2021.1.1 ;     find /usr/local/lib -maxdepth 1 -type f -regex '.*\/lib\(tbb\|mkl\).*\.so\($\|\.[0-9]*\.[0-9]*\)' -exec rm -v {} + ; fi # buildkit
                        
# 2024-11-16 02:08:08  0.00B 设置环境变量 PIP_DEFAULT_TIMEOUT
ENV PIP_DEFAULT_TIMEOUT=100
                        
# 2024-11-16 02:08:08  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-11-16 02:08:08  0.00B 设置环境变量 PYTHONIOENCODING
ENV PYTHONIOENCODING=utf-8
                        
# 2024-11-16 02:08:08  1.34GB 复制新文件或目录到容器中
COPY . . # buildkit
                        
# 2024-11-16 02:07:59  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2024-11-16 02:07:59  0.00B 设置环境变量 NVPL_LAPACK_MATH_MODE
ENV NVPL_LAPACK_MATH_MODE=PEDANTIC
                        
# 2024-11-16 02:07:59  0.00B 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c if [ $TARGETARCH = "arm64" ]; then cd /opt &&     curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/nvpl_slim_24.04/sbsa/nvpl_slim_24.04.tar" --output nvpl_slim_24.04.tar &&     tar -xf nvpl_slim_24.04.tar &&     cp -r nvpl_slim_24.04/lib/* /usr/local/lib &&     cp -r nvpl_slim_24.04/include/* /usr/local/include &&     rm -rf nvpl_slim_24.04.tar nvpl_slim_24.04 ; fi # buildkit
                        
# 2024-11-16 02:07:59  46.71MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/OpenBLAS/0.3.24-$(uname -m)/OpenBLAS-0.3.24-$(uname -m).tar.gz" --output OpenBLAS.tar.gz &&     tar -xf OpenBLAS.tar.gz -C /usr/local/ &&     rm OpenBLAS.tar.gz # buildkit
                        
# 2024-11-16 02:07:58  74.52MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir pip 'setuptools<71' &&     pip install --no-cache-dir cmake # buildkit
                        
# 2024-11-16 02:07:54  12.79MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c DEBIAN_FRONTEND=noninteractive apt remove -y --force-yes python3-pip &&    curl -O https://bootstrap.pypa.io/get-pip.py &&     python get-pip.py &&     rm get-pip.py # buildkit
                        
# 2024-11-16 02:07:51  0.00B 设置环境变量 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION
ENV PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
                        
# 2024-11-16 02:07:51  230.31MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.11 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c export PYSFX=`echo "${PYVER}" | cut -c1-1` &&     export DEBIAN_FRONTEND=noninteractive &&     apt-get update &&     apt-get install -y --no-install-recommends         python$PYVER-dev         python$PYSFX         python$PYSFX-dev         python$PYSFX-venv         python-is-python$PYSFX         autoconf         automake         libatlas-base-dev         libgoogle-glog-dev         libbz2-dev         libc-ares2         libre2-dev         libleveldb-dev         liblmdb-dev         libprotobuf-dev         libsnappy-dev         libtool         nasm         protobuf-compiler         pkg-config         unzip         sox         libsndfile1         libpng-dev         libhdf5-dev         gfortran         rapidjson-dev         ninja-build         libedit-dev         build-essential         patchelf     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-11-16 02:07:51  0.00B 定义构建参数
ARG L4T=0
                        
# 2024-11-16 02:07:51  0.00B 设置环境变量 PIP_BREAK_SYSTEM_PACKAGES
ENV PIP_BREAK_SYSTEM_PACKAGES=1
                        
# 2024-11-16 02:07:51  0.00B 定义构建参数
ARG PYVER_MAJMIN=312
                        
# 2024-11-16 02:07:51  0.00B 定义构建参数
ARG PYVER=3.12
                        
# 2024-11-16 02:07:51  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
# 2024-11-16 02:07:51  0.00B 添加元数据标签
LABEL com.nvidia.pytorch.version=2.6.0a0+df5bbc0
                        
# 2024-11-16 02:07:51  0.00B 设置环境变量 NVFUSER_BUILD_VERSION NVFUSER_VERSION
ENV NVFUSER_BUILD_VERSION=0d33366 NVFUSER_VERSION=0d33366
                        
# 2024-11-16 02:07:51  0.00B 设置环境变量 PYTORCH_BUILD_VERSION PYTORCH_VERSION PYTORCH_BUILD_NUMBER NVIDIA_PYTORCH_VERSION
ENV PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 PYTORCH_VERSION=2.6.0a0+df5bbc0 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.11
                        
# 2024-11-16 02:07:51  0.00B 定义构建参数
ARG NVFUSER_BUILD_VERSION=0d33366
                        
# 2024-11-16 02:07:51  0.00B 定义构建参数
ARG PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0
                        
# 2024-11-16 02:07:51  0.00B 定义构建参数
ARG NVIDIA_PYTORCH_VERSION=24.11
                        
# 2024-11-16 02:07:51  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=PyTorch
                        
# 2024-11-15 06:32:09  39.59KB 执行命令并创建新的镜像层
RUN |9 GDRCOPY_VERSION=2.4.1 HPCX_VERSION=2.21 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.18.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.34.0 AWS_OFI_NCCL_VERSION=1.12.1 TARGETARCH=amd64 /bin/sh -c if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then            echo "/opt/amazon/aws-ofi-nccl/lib" > /etc/ld.so.conf.d/aws-ofi-nccl.conf       && ldconfig;                                                 fi # buildkit
                        
# 2024-11-15 06:32:09  934.87KB 复制新文件或目录到容器中
COPY /opt/amazon/aws-ofi-nccl /opt/amazon/aws-ofi-nccl # buildkit
                        
# 2024-11-15 06:31:53  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:
                        
# 2024-11-15 06:31:53  1.01GB 执行命令并创建新的镜像层
RUN |9 GDRCOPY_VERSION=2.4.1 HPCX_VERSION=2.21 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.18.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.34.0 AWS_OFI_NCCL_VERSION=1.12.1 TARGETARCH=amd64 /bin/sh -c export DEVEL=1 BASE=0  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUDA.sh  && /nvidia/build-scripts/installLIBS.sh  && if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then /nvidia/build-scripts/installNCCL.sh; fi  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installCUSPARSELT.sh  && if [ -f "/tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch" ]; then patch -p0 < /tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch; fi  && rm -f /tmp/cuda-*.patch # buildkit
                        
# 2024-11-15 06:28:51  1.49KB 复制新文件或目录到容器中
COPY cuda-*.patch /tmp # buildkit
                        
# 2024-11-15 06:28:51  0.00B 设置环境变量 OMPI_MCA_coll_hcoll_enable
ENV OMPI_MCA_coll_hcoll_enable=0
                        
# 2024-11-15 06:28:51  0.00B 设置环境变量 OPAL_PREFIX PATH
ENV OPAL_PREFIX=/opt/hpcx/ompi PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin
                        
# 2024-11-15 06:28:51  226.69MB 执行命令并创建新的镜像层
RUN |9 GDRCOPY_VERSION=2.4.1 HPCX_VERSION=2.21 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.18.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.34.0 AWS_OFI_NCCL_VERSION=1.12.1 TARGETARCH=amd64 /bin/sh -c cd /nvidia  && ( export DEBIAN_FRONTEND=noninteractive        && apt-get update                            && apt-get install -y --no-install-recommends              libibverbs1                                  libibverbs-dev                               librdmacm1                                   librdmacm-dev                                libibumad3                                   libibumad-dev                                ibverbs-utils                                ibverbs-providers                     && rm -rf /var/lib/apt/lists/*               && rm $(dpkg-query -L                                    libibverbs-dev                               librdmacm-dev                                libibumad-dev                            | grep "\(\.so\|\.a\)$")          )                                            && ( cd opt/gdrcopy/                              && dpkg -i libgdrapi_*.deb                   )                                         && ( cp -r opt/hpcx /opt/                                         && cp etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/          && ln -sf /opt/hpcx/ompi /usr/local/mpi                      && ln -sf /opt/hpcx/ucx  /usr/local/ucx                      && sed -i 's/^\(hwloc_base_binding_policy\) = core$/\1 = none/' /opt/hpcx/ompi/etc/openmpi-mca-params.conf         && sed -i 's/^\(btl = self\)$/#\1/'                             /opt/hpcx/ompi/etc/openmpi-mca-params.conf       )                                                         && ( if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then           cd opt/amazon/efa/                                           && dpkg -i libfabric*.deb                                    && rm /opt/amazon/efa/lib/libfabric.a                        && echo "/opt/amazon/efa/lib" > /etc/ld.so.conf.d/efa.conf;         fi                                                         )                                                         && ldconfig # buildkit
                        
# 2024-11-15 06:28:51  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
# 2024-11-15 06:28:51  0.00B 设置环境变量 GDRCOPY_VERSION HPCX_VERSION MOFED_VERSION OPENUCX_VERSION OPENMPI_VERSION RDMACORE_VERSION EFA_VERSION AWS_OFI_NCCL_VERSION
ENV GDRCOPY_VERSION=2.4.1 HPCX_VERSION=2.21 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.18.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0 EFA_VERSION=1.34.0 AWS_OFI_NCCL_VERSION=1.12.1
                        
# 2024-11-15 06:28:51  0.00B 定义构建参数
ARG AWS_OFI_NCCL_VERSION=1.12.1
                        
# 2024-11-15 06:28:51  0.00B 定义构建参数
ARG EFA_VERSION=1.34.0
                        
# 2024-11-15 06:28:51  0.00B 定义构建参数
ARG OPENMPI_VERSION=4.1.7
                        
# 2024-11-15 06:28:51  0.00B 定义构建参数
ARG OPENUCX_VERSION=1.18.0
                        
# 2024-11-15 06:28:51  0.00B 定义构建参数
ARG MOFED_VERSION=5.4-rdmacore39.0
                        
# 2024-11-15 06:28:51  0.00B 定义构建参数
ARG RDMACORE_VERSION=39.0
                        
# 2024-11-15 06:28:51  0.00B 定义构建参数
ARG HPCX_VERSION=2.21
                        
# 2024-11-15 06:28:51  0.00B 定义构建参数
ARG GDRCOPY_VERSION=2.4.1
                        
# 2024-11-15 06:28:43  101.49MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         build-essential         git         libglib2.0-0         less         libhwloc15         libnl-route-3-200         libnl-3-dev         libnl-route-3-dev         libnuma-dev         libnuma1         libpmi2-0-dev         nano         numactl         openssh-client         vim         wget  && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-11-15 06:01:19  148.72KB 复制新文件或目录到容器中
COPY NVIDIA_Deep_Learning_Container_License.pdf /workspace/ # buildkit
                        
# 2024-11-15 06:01:19  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2024-11-15 06:01:19  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2024-11-15 06:01:19  15.93KB 复制新文件或目录到容器中
COPY entrypoint/ /opt/nvidia/ # buildkit
                        
# 2024-11-15 06:01:19  0.00B 设置环境变量 PATH LD_LIBRARY_PATH NVIDIA_VISIBLE_DEVICES NVIDIA_DRIVER_CAPABILITIES
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
                        
# 2024-11-15 06:01:19  0.00B 定义构建参数
ARG _LIBPATH_SUFFIX=
                        
# 2024-11-15 06:01:19  46.00B 执行命令并创建新的镜像层
RUN |24 CUDA_VERSION=12.6.3.001 CUDA_DRIVER_VERSION=560.35.05 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.23.4 CUBLAS_VERSION=12.6.4.1 CUFFT_VERSION=11.3.0.4 CURAND_VERSION=10.3.7.77 CUSPARSE_VERSION=12.5.4.2 CUSOLVER_VERSION=11.7.1.2 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.54 NVJPEG_VERSION=12.3.3.54 CUDNN_VERSION=9.5.1.17 CUDNN_FRONTEND_VERSION=1.8.0 TRT_VERSION=10.6.0.26 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2024.6.1.90 NSIGHT_COMPUTE_VERSION=2024.3.2.3 CUSPARSELT_VERSION=0.6.3.2 DALI_VERSION=1.43.0 DALI_BUILD=19497385 POLYGRAPHY_VERSION=0.49.13 TRANSFORMER_ENGINE_VERSION=1.12 MODEL_OPT_VERSION=0.19.0 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf  && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2024-11-15 06:01:19  13.39KB 复制文件或目录到容器中
ADD docs.tgz / # buildkit
                        
# 2024-11-15 06:01:19  0.00B 设置环境变量 DALI_VERSION DALI_BUILD POLYGRAPHY_VERSION TRANSFORMER_ENGINE_VERSION MODEL_OPT_VERSION
ENV DALI_VERSION=1.43.0 DALI_BUILD=19497385 POLYGRAPHY_VERSION=0.49.13 TRANSFORMER_ENGINE_VERSION=1.12 MODEL_OPT_VERSION=0.19.0
                        
# 2024-11-15 06:01:19  0.00B 定义构建参数
ARG MODEL_OPT_VERSION=0.19.0
                        
# 2024-11-15 06:01:19  0.00B 定义构建参数
ARG TRANSFORMER_ENGINE_VERSION=1.12
                        
# 2024-11-15 06:01:19  0.00B 定义构建参数
ARG POLYGRAPHY_VERSION=0.49.13
                        
# 2024-11-15 06:01:19  0.00B 定义构建参数
ARG DALI_BUILD=19497385
                        
# 2024-11-15 06:01:19  0.00B 定义构建参数
ARG DALI_VERSION=1.43.0
                        
# 2024-11-15 06:01:19  0.00B 添加元数据标签
LABEL com.nvidia.nccl.version=2.23.4 com.nvidia.cublas.version=12.6.4.1 com.nvidia.cufft.version=11.3.0.4 com.nvidia.curand.version=10.3.7.77 com.nvidia.cusparse.version=12.5.4.2 com.nvidia.cusparselt.version=0.6.3.2 com.nvidia.cusolver.version=11.7.1.2 com.nvidia.cutensor.version=2.0.2.5 com.nvidia.npp.version=12.3.1.54 com.nvidia.nvjpeg.version=12.3.3.54 com.nvidia.cudnn.version=9.5.1.17 com.nvidia.tensorrt.version=10.6.0.26 com.nvidia.tensorrtoss.version= com.nvidia.nsightsystems.version=2024.6.1.90 com.nvidia.nsightcompute.version=2024.3.2.3
                        
# 2024-11-15 06:01:19  6.59GB 执行命令并创建新的镜像层
RUN |19 CUDA_VERSION=12.6.3.001 CUDA_DRIVER_VERSION=560.35.05 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.23.4 CUBLAS_VERSION=12.6.4.1 CUFFT_VERSION=11.3.0.4 CURAND_VERSION=10.3.7.77 CUSPARSE_VERSION=12.5.4.2 CUSOLVER_VERSION=11.7.1.2 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.54 NVJPEG_VERSION=12.3.3.54 CUDNN_VERSION=9.5.1.17 CUDNN_FRONTEND_VERSION=1.8.0 TRT_VERSION=10.6.0.26 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2024.6.1.90 NSIGHT_COMPUTE_VERSION=2024.3.2.3 CUSPARSELT_VERSION=0.6.3.2 /bin/sh -c /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installCUSPARSELT.sh  && if [ -z "${JETPACK_HOST_MOUNTS}" ]; then       /nvidia/build-scripts/installNCCL.sh;     fi; # buildkit
                        
# 2024-11-15 05:59:59  0.00B 设置环境变量 NCCL_VERSION CUBLAS_VERSION CUFFT_VERSION CURAND_VERSION CUSPARSE_VERSION CUSPARSELT_VERSION CUSOLVER_VERSION CUTENSOR_VERSION NPP_VERSION NVJPEG_VERSION CUDNN_VERSION CUDNN_FRONTEND_VERSION TRT_VERSION TRTOSS_VERSION NSIGHT_SYSTEMS_VERSION NSIGHT_COMPUTE_VERSION
ENV NCCL_VERSION=2.23.4 CUBLAS_VERSION=12.6.4.1 CUFFT_VERSION=11.3.0.4 CURAND_VERSION=10.3.7.77 CUSPARSE_VERSION=12.5.4.2 CUSPARSELT_VERSION=0.6.3.2 CUSOLVER_VERSION=11.7.1.2 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.54 NVJPEG_VERSION=12.3.3.54 CUDNN_VERSION=9.5.1.17 CUDNN_FRONTEND_VERSION=1.8.0 TRT_VERSION=10.6.0.26 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2024.6.1.90 NSIGHT_COMPUTE_VERSION=2024.3.2.3
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG CUSPARSELT_VERSION=0.6.3.2
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG NSIGHT_COMPUTE_VERSION=2024.3.2.3
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG NSIGHT_SYSTEMS_VERSION=2024.6.1.90
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG TRTOSS_VERSION=
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG TRT_VERSION=10.6.0.26
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG CUDNN_FRONTEND_VERSION=1.8.0
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG CUDNN_VERSION=9.5.1.17
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG NVJPEG_VERSION=12.3.3.54
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG NPP_VERSION=12.3.1.54
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG CUTENSOR_VERSION=2.0.2.5
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG CUSOLVER_VERSION=11.7.1.2
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG CUSPARSE_VERSION=12.5.4.2
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG CURAND_VERSION=10.3.7.77
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG CUFFT_VERSION=11.3.0.4
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG CUBLAS_VERSION=12.6.4.1
                        
# 2024-11-15 05:59:59  0.00B 定义构建参数
ARG NCCL_VERSION=2.23.4
                        
# 2024-11-15 05:59:59  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver com.nvidia.cuda.version=9.0
                        
# 2024-11-15 05:59:59  0.00B 设置环境变量 _CUDA_COMPAT_PATH ENV BASH_ENV SHELL NVIDIA_REQUIRE_CUDA
ENV _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0
                        
# 2024-11-15 05:59:59  59.18KB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.6.3.001 CUDA_DRIVER_VERSION=560.35.05 JETPACK_HOST_MOUNTS= /bin/sh -c cp -vprd /nvidia/. /  &&  patch -p0 < /etc/startup_scripts.patch  &&  rm -f /etc/startup_scripts.patch # buildkit
                        
# 2024-11-15 05:59:59  460.10MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.6.3.001 CUDA_DRIVER_VERSION=560.35.05 JETPACK_HOST_MOUNTS= /bin/sh -c /nvidia/build-scripts/installCUDA.sh # buildkit
                        
# 2024-11-15 04:15:01  0.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.6.3.001 CUDA_DRIVER_VERSION=560.35.05 JETPACK_HOST_MOUNTS= /bin/sh -c if [ -n "${JETPACK_HOST_MOUNTS}" ]; then        echo "/usr/lib/aarch64-linux-gnu/tegra" > /etc/ld.so.conf.d/nvidia-tegra.conf     && echo "/usr/lib/aarch64-linux-gnu/tegra-egl" >> /etc/ld.so.conf.d/nvidia-tegra.conf;     fi # buildkit
                        
# 2024-11-15 04:15:01  0.00B 设置环境变量 CUDA_VERSION CUDA_DRIVER_VERSION CUDA_CACHE_DISABLE NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS
ENV CUDA_VERSION=12.6.3.001 CUDA_DRIVER_VERSION=560.35.05 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
                        
# 2024-11-15 04:15:01  0.00B 定义构建参数
ARG JETPACK_HOST_MOUNTS=
                        
# 2024-11-15 04:15:01  0.00B 定义构建参数
ARG CUDA_DRIVER_VERSION=560.35.05
                        
# 2024-11-15 04:15:01  0.00B 定义构建参数
ARG CUDA_VERSION=12.6.3.001
                        
# 2024-11-15 04:15:01  334.34MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         apt-utils         build-essential         ca-certificates         curl         libncurses6         libncursesw6         patch         wget         rsync         unzip         jq         gnupg         libtcmalloc-minimal4  && rm -rf /var/lib/apt/lists/*  && echo "hsts=0" > /root/.wgetrc # buildkit
                        
# 2024-10-11 11:48:04  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2024-10-11 11:48:03  78.11MB 
/bin/sh -c #(nop) ADD file:34dc4f3ab7a694ecde47ff7a610be18591834c45f1d7251813267798412604e5 in / 
                        
# 2024-10-11 11:48:01  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=24.04
                        
# 2024-10-11 11:48:01  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2024-10-11 11:48:01  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2024-10-11 11:48:01  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:43d407029b5a8e664ad3f4848efbd4750810afbd56e831d0c15bad140e402c09",
    "RepoTags": [
        "nvcr.io/nvidia/pytorch:24.11-py3",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.11-py3"
    ],
    "RepoDigests": [
        "nvcr.io/nvidia/pytorch@sha256:832d94d665baebc0f3f6cfa3168f21d75f7aa8f02ade5ebb65e102e55df79243",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch@sha256:0b4e704154ab03d59757d15640c4aad71d91b7719b3eab99a3c90bf57e2826ba"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-11-15T18:54:46.239451822Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "6006/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin",
            "CUDA_VERSION=12.6.3.001",
            "CUDA_DRIVER_VERSION=560.35.05",
            "CUDA_CACHE_DISABLE=1",
            "NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=",
            "_CUDA_COMPAT_PATH=/usr/local/cuda/compat",
            "ENV=/etc/shinit_v2",
            "BASH_ENV=/etc/bash.bashrc",
            "SHELL=/bin/bash",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=9.0",
            "NCCL_VERSION=2.23.4",
            "CUBLAS_VERSION=12.6.4.1",
            "CUFFT_VERSION=11.3.0.4",
            "CURAND_VERSION=10.3.7.77",
            "CUSPARSE_VERSION=12.5.4.2",
            "CUSPARSELT_VERSION=0.6.3.2",
            "CUSOLVER_VERSION=11.7.1.2",
            "CUTENSOR_VERSION=2.0.2.5",
            "NPP_VERSION=12.3.1.54",
            "NVJPEG_VERSION=12.3.3.54",
            "CUDNN_VERSION=9.5.1.17",
            "CUDNN_FRONTEND_VERSION=1.8.0",
            "TRT_VERSION=10.6.0.26",
            "TRTOSS_VERSION=",
            "NSIGHT_SYSTEMS_VERSION=2024.6.1.90",
            "NSIGHT_COMPUTE_VERSION=2024.3.2.3",
            "DALI_VERSION=1.43.0",
            "DALI_BUILD=19497385",
            "POLYGRAPHY_VERSION=0.49.13",
            "TRANSFORMER_ENGINE_VERSION=1.12",
            "MODEL_OPT_VERSION=0.19.0",
            "LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility,video",
            "NVIDIA_PRODUCT_NAME=PyTorch",
            "GDRCOPY_VERSION=2.4.1",
            "HPCX_VERSION=2.21",
            "MOFED_VERSION=5.4-rdmacore39.0",
            "OPENUCX_VERSION=1.18.0",
            "OPENMPI_VERSION=4.1.7",
            "RDMACORE_VERSION=39.0",
            "EFA_VERSION=1.34.0",
            "AWS_OFI_NCCL_VERSION=1.12.1",
            "OPAL_PREFIX=/opt/hpcx/ompi",
            "OMPI_MCA_coll_hcoll_enable=0",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs:",
            "PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0",
            "PYTORCH_VERSION=2.6.0a0+df5bbc0",
            "PYTORCH_BUILD_NUMBER=0",
            "NVIDIA_PYTORCH_VERSION=24.11",
            "NVFUSER_BUILD_VERSION=0d33366",
            "NVFUSER_VERSION=0d33366",
            "PIP_BREAK_SYSTEM_PACKAGES=1",
            "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python",
            "NVPL_LAPACK_MATH_MODE=PEDANTIC",
            "PYTHONIOENCODING=utf-8",
            "LC_ALL=C.UTF-8",
            "PIP_DEFAULT_TIMEOUT=100",
            "JUPYTER_PORT=8888",
            "TENSORBOARD_PORT=6006",
            "UCC_CL_BASIC_TLS=^sharp",
            "TORCH_CUDA_ARCH_LIST=7.0 7.5 8.0 8.6 9.0+PTX",
            "PYTORCH_HOME=/opt/pytorch/pytorch",
            "CUDA_HOME=/usr/local/cuda",
            "TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1",
            "COCOAPI_VERSION=2.0+nv0.8.1",
            "TORCH_CUDNN_V8_API_ENABLED=1",
            "CUDA_MODULE_LOADING=LAZY",
            "NVIDIA_BUILD_ID=122402533"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.build.id": "122402533",
            "com.nvidia.build.ref": "40d6cf911ff7816d89ec212ae4ba065395be1d07",
            "com.nvidia.cublas.version": "12.6.4.1",
            "com.nvidia.cuda.version": "9.0",
            "com.nvidia.cudnn.version": "9.5.1.17",
            "com.nvidia.cufft.version": "11.3.0.4",
            "com.nvidia.curand.version": "10.3.7.77",
            "com.nvidia.cusolver.version": "11.7.1.2",
            "com.nvidia.cusparse.version": "12.5.4.2",
            "com.nvidia.cusparselt.version": "0.6.3.2",
            "com.nvidia.cutensor.version": "2.0.2.5",
            "com.nvidia.nccl.version": "2.23.4",
            "com.nvidia.npp.version": "12.3.1.54",
            "com.nvidia.nsightcompute.version": "2024.3.2.3",
            "com.nvidia.nsightsystems.version": "2024.6.1.90",
            "com.nvidia.nvjpeg.version": "12.3.3.54",
            "com.nvidia.pytorch.version": "2.6.0a0+df5bbc0",
            "com.nvidia.tensorrt.version": "10.6.0.26",
            "com.nvidia.tensorrtoss.version": "",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "24.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 21773110840,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/d160c6c84090ec71d5f68240d0e2c9505787101c240c497a26d266c2cee70623/diff:/var/lib/docker/overlay2/c114a47db832923d8b3fafba547983e6e484ccdfcc43137c9f1b3f64c4878b58/diff:/var/lib/docker/overlay2/3c7ef57cc33e7f8213470b5fb0fbc65c83651ace8c73dda42f5c46bed378f8d2/diff:/var/lib/docker/overlay2/e8554657d30b54f240710c5d4fbbab82b4b28d0ac771515fa78898aaddefdcfd/diff:/var/lib/docker/overlay2/8fa32b347330ec770e56242388e8ff3d7ec31cedc0e2794e6fa8258479d0e37a/diff:/var/lib/docker/overlay2/e6d20fd58f60042e9af7a19f25015bfb1b3d0647e9c631ffa8caf57ac69925f6/diff:/var/lib/docker/overlay2/5564922e9390ca6aa942aed208170b8ff2055545cd7a6edc2afd70ca8f6b1e9d/diff:/var/lib/docker/overlay2/04cce4ea4fd69d21c919215dddd2b68188fd0dff5f1f94d46f8aa00c6ac64dc6/diff:/var/lib/docker/overlay2/f30438adfa8e84d811c122983534c8a6fe192f89de0b9d9f5ee0f9eace2dfafd/diff:/var/lib/docker/overlay2/72374f9f3caa21c1fcf48633927341491a0b2c3f421743f9b433b8e867daff05/diff:/var/lib/docker/overlay2/35e34c3d397b6385da609d95fec83fd14e0acffd2e8ff02819dca0803aefeeaf/diff:/var/lib/docker/overlay2/b062e122b60bc162b61b13249b6cb1ad1d023f9c7346d54e6627490b00294d88/diff:/var/lib/docker/overlay2/cbc821b3617d5d372f6efacc0359ba6dbb9b588bd6e5e2f2e7a30d2571e1fc8b/diff:/var/lib/docker/overlay2/594a37a3eb17121b895af772e45a04cf3a95c87ba1e66a91cc8d64b03be39d6f/diff:/var/lib/docker/overlay2/2c3c6dca036494662beb8cab10e04a0550d52fa845e7310489970072394bd95c/diff:/var/lib/docker/overlay2/b92942f32b4fce81b3c6cc6078b267908a6d52284910e02c7a0f10d2ec92dd07/diff:/var/lib/docker/overlay2/547a85fdeeb31b403247048bf80e20f0af04f90a42b3ea02ec5e68735469c71e/diff:/var/lib/docker/overlay2/404f5b9430b2df7b395c181f2cee4ee3f49324e09946188926b4fae2f48c40a9/diff:/var/lib/docker/overlay2/51ef5a68577fb027524cc19c72799a2246abeb5cf0e996e69f35b3f7a2162a16/diff:/var/lib/docker/overlay2/0772274eb6d093ecb1532e974da1bd8bf96e16376c3163d5244b47ea62b8db57/diff:/var/lib/docker/overlay2/e95c4688efc6d8447f3ca87c737b50b22937026cfdc6b19ed21a67ed05079060/diff:/var/lib/docker/overlay2/c93f9e498450bf3f9500bfd02a08b4254d0bdb11b5599f9f5457bc794f0d0f97/diff:/var/lib/docker/overlay2/87771543854fb12e42af6be658ccebef4264ae7ddc5750d48fd2100103e60afa/diff:/var/lib/docker/overlay2/29199280c257eb2e4e4e5c4bd3dc05d7bd67394e066488b3cf06c677395b6cf5/diff:/var/lib/docker/overlay2/5a0de8e78aa50cd30af82328348b60547e0e5caf7b670dbb31c6410fc08a30d0/diff:/var/lib/docker/overlay2/fdfd240ee173699512f2805fb41d480b3b5ab256e0f64b9e6c9a10f934168232/diff:/var/lib/docker/overlay2/0720b0100c7db826b9ba1da854750ff5f48ee4a5f8eb1e48f0cd6a6f84c34098/diff:/var/lib/docker/overlay2/6c8c02a8460ca7667d81744cf1f5f7d1c3d346cac9010be7c6e7fc3e7db3a6ed/diff:/var/lib/docker/overlay2/7e64151b73769f6a46e9c6ad56b1e2dc09a8bec5f6501e34d4b7d848afea6c43/diff:/var/lib/docker/overlay2/29010a72dede611684d2a86aa245c5c3d28cdbee357177e4c8efc4ab16f21160/diff:/var/lib/docker/overlay2/90cf316e968f73686628b4013c99f6cdf844ed12c8f15fa77e48bc513d90566b/diff:/var/lib/docker/overlay2/26d8493e4a7712d4fe55a09830b7ca4468628e06a2b8efca84b6c3166b078ae7/diff:/var/lib/docker/overlay2/2b7dce006243b427cbd3cdf2537f9067ea902929bceb24a4cb711db5c50c4da8/diff:/var/lib/docker/overlay2/f774e7b48a3e5b461892367af0fd051f5d17a4692057ae208797b3e987fb416c/diff:/var/lib/docker/overlay2/b3dd216a40420232bbb8fed0c16676bdec74ec7fff20ea9d74172a7e8752255a/diff:/var/lib/docker/overlay2/9b6e7c450a41a04aa67cd7b604bc0d2d2bb83f72f0dd3c67dae95c41c115d862/diff:/var/lib/docker/overlay2/e1851121613d7e6efc5f259d4d1dba37af0dc873be795ec95d69a8bfe1ef94b0/diff:/var/lib/docker/overlay2/faf21a4baaad95aa39e42183d7ab4c48024e7d1853fa3784c952e919480a0ca4/diff:/var/lib/docker/overlay2/036c72af3966306f6bbb031ae268996ce78ea61817e5a4828c846bd88a1f45ff/diff:/var/lib/docker/overlay2/6dd8baef367f87bc077772eed9a933605430aeaf24cb3f2a10c9e8f7c38ea4ac/diff:/var/lib/docker/overlay2/9b8eeb8ca9a1fa071028c3706cbfc2f106a1f76828cc2c65aee8636786e59cbf/diff:/var/lib/docker/overlay2/f16fc00d7d393b92bc128712bb51ada3f59a346535379c95ff2fedc2471b6849/diff:/var/lib/docker/overlay2/e2476f5ecbe583b24d9b10e91f618b55fe926ff6c718f04a57f4ddf2f145ebc5/diff:/var/lib/docker/overlay2/58520b898658f19e658cda98ce9905e82090406dc72192a096d79b61b5739b93/diff:/var/lib/docker/overlay2/ae3fa20a6df8b19bd656b676850453a0d524f32cff694459c5954948bcedd0d9/diff:/var/lib/docker/overlay2/d0264c99cc008286d22d80aed728416388f4fcc2ebbfcebab8b6e58d05b0737e/diff:/var/lib/docker/overlay2/f93059f1b8cbc711fe7e511250d8ba29d85195a7efb874d52e44c80bed785818/diff:/var/lib/docker/overlay2/a99509d109bf50e20c6bc2f43ffa86988fcda9ddd54c5017205733079d83dd09/diff:/var/lib/docker/overlay2/debe947aef3ac6d5650d6c35705a76d78868b75e43a446b11d1cdd42ac03b77b/diff:/var/lib/docker/overlay2/c819cd4b13d66d259526ebb92655cde245454d92ac88e84e1f18b128f58dfc37/diff:/var/lib/docker/overlay2/e6606e4ac68e01a0f57c26196282924d3ead60a4ffd255cd149abba0ff4afdb2/diff:/var/lib/docker/overlay2/cfd9bffacc0b4fd46b8ad6bc2892b25c240ffe36675dff7f07880027a47acc16/diff:/var/lib/docker/overlay2/cdbe8a4f4d28ef9081ab1ad24f777fe430745989bb1ebd65b6dcbdc782694101/diff:/var/lib/docker/overlay2/272c90c7408a606d73b68b81b9f6397e565503ece3c79a391de3d2a0e9e77475/diff:/var/lib/docker/overlay2/1d46124b431f3611591aad0543f74fd102fcb364c9ee990a7a75c76f99fa1e42/diff:/var/lib/docker/overlay2/d583d1eb19e14a1a7a06fc1512f5914dd6e888a9143fe62cfaf6faec8a342e64/diff:/var/lib/docker/overlay2/4813b2c0271fa1814a213155692d0f894cf35a84cd43ef0acfba7d71b0251105/diff:/var/lib/docker/overlay2/2b3f8aeb563f0c18c69cf09ba66a541277d872db02cf3731f3b7c23498acdf1f/diff",
            "MergedDir": "/var/lib/docker/overlay2/01771a3b8255dbe17e7ed87b1a476ff97d580a104ab47971a417977c2cb5f8af/merged",
            "UpperDir": "/var/lib/docker/overlay2/01771a3b8255dbe17e7ed87b1a476ff97d580a104ab47971a417977c2cb5f8af/diff",
            "WorkDir": "/var/lib/docker/overlay2/01771a3b8255dbe17e7ed87b1a476ff97d580a104ab47971a417977c2cb5f8af/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:a46a5fb872b554648d9d0262f302b2c1ded46eeb1ef4dc727ecc5274605937af",
            "sha256:6d74e45fd4b42cd45d074bc949b083cea74c5145e3efb6918f769c3bace5bdc1",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:05aff6d2ab8c405b32e3404a06265ac6b4fa51ddb773a8f04a33bad9fc772034",
            "sha256:ca0dd27178e9ce7d10759c8ee8e69671c9945b08579f7c38ffa543dfe5abe9ed",
            "sha256:246646e0912c243b36e39f96a03f05368a24726bee4c6c91498a6f27a0c87c5f",
            "sha256:a85674803ab7cb40178bff8fd9b6ab0613db6a9f3bc890066695718436bc7309",
            "sha256:5376009637acb0ef03e1861255b3a94a2aa7ceff33917203a2af39bc3dfaa254",
            "sha256:2b0f526f74f6ba3f2e3b6df51360903610ffe3c15e50abb82299a6ade5827104",
            "sha256:89494db40d325b7bb9a546176599dc3076bd5b8d4055d30e1db06c113a6cea23",
            "sha256:69810bb4dbb8745cd2164c28d6aaac74b993ab57425a03e6a7bbbcb92e7ffef3",
            "sha256:809c736dfd91067738af257c335c06206e7cf7cbacf6529f96b65e334df75b2d",
            "sha256:fb284a463611436b85cd11fd283f66de137bf73d0b54b8f62dc0c7cdec026da3",
            "sha256:266708598a8a305d6a501a1babc54a3bf3eb487e7ff6a9b7115a464c50e6b447",
            "sha256:2ea9ef6427605a1ad42ef1562ecdae65f078b14ebc3a1ef990ffe5025bdf1971",
            "sha256:47b8af59651c11d60fe85546194cbd893151d339859399c4d468143dc173335f",
            "sha256:b75c4ed095681a52c02dacf6c74545ab52322a1475022eac0ce4e715d14d15a8",
            "sha256:28bae7465eb947c175bf6d80ecc214ff290d0e96fd1e9275920d260fcdf70167",
            "sha256:5a9bade901b0f66c2a090d3b3b11237a94d48facb181d42527a1b799b367acc5",
            "sha256:e745d89538cac62be9ce67e8a5b3b78007e975bf17b193c4a5dfbab8d62443df",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:8e185c034090fb8c8d92735cd68e283a9d7c6d5429ca814783aebf70b1846558",
            "sha256:31d52059b475c80c6b5a8998ddf2a71bf5cf9a87a4368c0146385d0621a0f8e8",
            "sha256:4e355a7c20f4ff7a0cb121c637cb02e4c90759c61a403a82bc58c02d1586c435",
            "sha256:183aad4fe01520bccf21dddb173e49fc17621a87f136136adfdbcdd0a58ef056",
            "sha256:a176e44cf3782650f0a1f104fc15637f8c3ae188ca50009c811d6af1b8b483a7",
            "sha256:54be8a899bf532da55d65d982dd8fac943cabb1ba94f1fef5092efac5634440a",
            "sha256:f201152130203325ae2f8c47056017e2183a06ef23a7a9b7a6a01c8afe13625f",
            "sha256:2db08eb71932acb825d7d12abfb10148db524cfad81db2ea1a4c3351ded05c28",
            "sha256:9c38f82124856e875013fc9f3c6534f84d6f34bc5f46c3b767f213424470f730",
            "sha256:22f02fd3d0d75bbaba1660884bbdebbfaab423513500f389cdce025d8e8a0181",
            "sha256:e15185f4146e1949db38fcf318c4444b1331f3e3ddfcb6a2e00e7c5d02267e46",
            "sha256:9baf8a695551d8bb1e0bc211e3b8268eebecb40e566fc6fed5f0ddd266931a30",
            "sha256:218ef016c9e214226e9ee8b41f9b8868b198b697929df97c75e12ca593009872",
            "sha256:2ec4778a520c058c6c5731b9a3d9add74bec8c0551cd8593b26c75b63662946c",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:e00bf96d9ff67b92e50c1390c6fb9d42a1138723286d237a64b30ce43cec07fa",
            "sha256:d9d9cbae174b56c47f2b567fe6b3409ab9280b1d1db1354333ef33aac089e959",
            "sha256:4e5c0aa0c5a4fbc832c1ecb2e6109cec6a3e39b801534311824db6082dd668e3",
            "sha256:d58e17ee36adc96123b72af14715dc6692d6e8988d76e9096068fe49d80a4da7",
            "sha256:96c4a16eac03b661ef35b616d407c4398f530f93f0b6af3085ec3acecbd7e672",
            "sha256:c2f3b2849be17697988f072f7792a7a1c14255b7849ec1a553b5c99be823c3f7",
            "sha256:5a302e59d1cacfa5faec7f36056fca233f17a472de15c77539bc2b9d0ebfa1c7",
            "sha256:fdc6f2d207bd8d6719cd11e5dc197dabcfe58125033a7149b99455ebe08b1985",
            "sha256:86265989237056a36a69f66146873c10d8561943c0901003b324a37f34e5faa5",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:bed84eb9f97143624ea390bce43d60e1fb65d08e79641a34df3d1de7c7892638",
            "sha256:b6bf95f062a735de94d1cb9b789a69f464de73dc115cc648e9bc81493bdb381f",
            "sha256:6a5e408b508906ab2a90751c3a123c9646028a44fb0321673f95e800a266e73c",
            "sha256:140f9c48031984761bb657d31fe371b427ade0b5d7c65d83517d9d4b8bf4fea0",
            "sha256:f30989dc6a9bd8ffd2ce111e3e21cc7aaaf03b71e504440259841de759fe4219",
            "sha256:e304b1853ced2a7f6805d58852dafaab9de12783ae3eecc1452494b0797790bf",
            "sha256:b970eff5aacd60febae57f3c63fb911302612b057d133b1cdc9a3e1ec5dc2089",
            "sha256:523ec0185f32ffee74a49d261c5d323231e35a988ee0f711e7e6314ce10b2241",
            "sha256:36ad1f3d588a7bb57565af94346280b1b59d255f8c86c466e8d8d24fd21f1b51",
            "sha256:7f098551e9c795d22b59c7cfa118404d661760cbe6f5fe0909ccf25d5d474361",
            "sha256:95a37576fd52efcf919c69d84ea823e9e9454070c70bf8453d8d5a67e213bd6f",
            "sha256:c1b64dd29909d2c4eca37291cf498ad89d17faf539d8465e7a30a930f748828f",
            "sha256:9f285d9194fe0052a9b1bd90c4f2bc629cce8ab5524e81600a1d1eff69edf911"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-04-04T03:19:16.030964666+08:00"
    }
}

更多版本

docker.io/nvcr.io/nvidia/pytorch:24.01-py3

linux/amd64 docker.io22.02GB2024-09-20 00:38
784

docker.io/nvcr.io/nvidia/pytorch:22.12-py3

linux/amd64 docker.io18.27GB2024-10-17 00:56
440

docker.io/nvcr.io/nvidia/pytorch:23.04-py3

linux/amd64 docker.io20.38GB2024-10-18 01:26
378

docker.io/nvcr.io/nvidia/pytorch:24.06-py3

linux/amd64 docker.io19.15GB2024-10-22 00:29
512

docker.io/nvcr.io/nvidia/pytorch:21.11-py3

linux/amd64 docker.io14.47GB2024-10-22 10:38
370

docker.io/nvcr.io/nvidia/pytorch:24.07-py3

linux/amd64 docker.io20.19GB2025-01-09 00:29
441

docker.io/nvcr.io/nvidia/pytorch:24.02-py3

linux/amd64 docker.io22.21GB2025-02-23 20:44
452

docker.io/nvcr.io/nvidia/pytorch:24.05-py3

linux/amd64 docker.io18.78GB2025-03-18 01:37
70

docker.io/nvcr.io/nvidia/pytorch:24.11-py3

linux/amd64 docker.io21.77GB2025-04-04 03:43
12

docker.io/nvcr.io/nvidia/pytorch:24.10-py3

linux/amd64 docker.io21.03GB2025-04-04 03:50
15