docker.io/rayproject/ray-ml:2.30.0-py310-gpu linux/amd64

docker.io/rayproject/ray-ml:2.30.0-py310-gpu - 国内下载镜像源 浏览次数:147
你想知道这个镜像的描述信息是啥? 😊

Ray ML

基于Apache Ray的机器学习框架。支持分布式训练、在线服务和批处理预测等场景,提供高性能、高并发性和易用性的机器学习体验。

源镜像 docker.io/rayproject/ray-ml:2.30.0-py310-gpu
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu
镜像ID sha256:0328e7e2dfd28cae48fde833e36f7df20f27e0e70a5a2f7f4d2b46bb39b3d726
镜像TAG 2.30.0-py310-gpu
大小 21.88GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /home/ray
OS/平台 linux/amd64
浏览量 147 次
贡献者 28*******0@qq.com
镜像创建 2024-06-20T20:06:17.51366237Z
同步时间 2024-09-27 00:30
更新时间 2025-01-13 04:53
环境变量
PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 NV_CUDA_CUDART_VERSION=11.8.89-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8 CUDA_VERSION=11.8.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.8.0-1 NV_NVTX_VERSION=11.8.86-1 NV_LIBNPP_VERSION=11.8.0.86-1 NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1 NV_LIBCUSPARSE_VERSION=11.7.5.86-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8 NV_LIBCUBLAS_VERSION=11.11.3.6-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.16.2-1 NCCL_VERSION=2.16.2-1 NV_LIBNCCL_PACKAGE=libnccl2=2.16.2-1+cuda11.8 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=11.8.89-1 NV_NVML_DEV_VERSION=11.8.86-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1 NV_LIBNPP_DEV_VERSION=11.8.0.86-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1 NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1 NV_NVPROF_VERSION=11.8.87-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.16.2-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.16.2-1+cuda11.8 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.9.6.50 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8 TZ=America/Los_Angeles LC_ALL=C.UTF-8 LANG=C.UTF-8 HOME=/home/ray
镜像标签
8.9.6.50: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 20.04: org.opencontainers.image.version

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu  docker.io/rayproject/ray-ml:2.30.0-py310-gpu

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu  docker.io/rayproject/ray-ml:2.30.0-py310-gpu

Shell快速替换命令

sed -i 's#rayproject/ray-ml:2.30.0-py310-gpu#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu  docker.io/rayproject/ray-ml:2.30.0-py310-gpu'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu  docker.io/rayproject/ray-ml:2.30.0-py310-gpu'

镜像构建历史


# 2024-06-21 04:06:17  10.62KB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.30.0-cp310-cp310-manylinux2014_x86_64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip freeze > /home/ray/pip-freeze.txt # buildkit
                        
# 2024-06-21 04:06:16  337.33MB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.30.0-cp310-cp310-manylinux2014_x86_64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip --no-cache-dir install -c $CONSTRAINTS_FILE     `basename $WHEEL_PATH`[all]     --find-links $FIND_LINKS_PATH && sudo rm `basename $WHEEL_PATH` # buildkit
                        
# 2024-06-21 04:05:54  93.55MB 复制新文件或目录到容器中
COPY .whl .whl # buildkit
                        
# 2024-06-21 04:05:53  65.97MB 复制新文件或目录到容器中
COPY .whl/ray-2.30.0-cp310-cp310-manylinux2014_x86_64.whl . # buildkit
                        
# 2024-06-21 04:05:53  59.91KB 复制新文件或目录到容器中
COPY requirements_compiled.txt ./ # buildkit
                        
# 2024-06-21 04:05:53  0.00B 定义构建参数
ARG CONSTRAINTS_FILE=requirements_compiled.txt
                        
# 2024-06-21 04:05:53  0.00B 定义构建参数
ARG FIND_LINKS_PATH=.whl
                        
# 2024-06-21 04:05:53  0.00B 定义构建参数
ARG WHEEL_PATH
                        
# 2024-06-18 04:14:20  0.00B 执行命令并创建新的镜像层
RUN /bin/bash -c python -c "import tensorflow_probability" # buildkit
                        
# 2024-06-18 04:14:20  10.48KB 执行命令并创建新的镜像层
RUN /bin/bash -c $HOME/anaconda3/bin/pip freeze > /home/ray/pip-freeze.txt # buildkit
                        
# 2024-06-18 04:14:19  10.45GB 执行命令并创建新的镜像层
RUN /bin/bash -c sudo chmod +x install-ml-docker-requirements.sh     && ./install-ml-docker-requirements.sh # buildkit
                        
# 2024-06-18 04:07:25  1.98KB 复制新文件或目录到容器中
COPY *install-ml-docker-requirements.sh docker/ray-ml/*install-ml-docker-requirements.sh ./ # buildkit
                        
# 2024-06-18 04:07:25  59.91KB 复制新文件或目录到容器中
COPY *requirements_compiled.txt python/*requirements_compiled.txt ./ # buildkit
                        
# 2024-06-18 04:07:25  6.47KB 复制新文件或目录到容器中
COPY *requirements.txt python/*requirements.txt python/requirements/ml/*requirements.txt python/requirements/docker/*requirements.txt ./ # buildkit
                        
# 2024-06-17 22:54:41  0.00B 设置工作目录为/home/ray
WORKDIR /home/ray
                        
# 2024-06-17 22:54:41  1.19GB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.10 HOSTTYPE=x86_64 RAY_UID=1000 RAY_GID=100 /bin/bash -c sudo apt-get update -y && sudo apt-get upgrade -y     && sudo apt-get install -y         git         libjemalloc-dev         wget         cmake         g++         zlib1g-dev         $(if [ "$AUTOSCALER" = "autoscaler" ]; then echo         tmux         screen         rsync         netbase         openssh-client         gnupg; fi)     && wget --quiet         "https://repo.anaconda.com/miniconda/Miniconda3-py311_23.10.0-1-Linux-${HOSTTYPE}.sh"         -O /tmp/miniconda.sh     && /bin/bash /tmp/miniconda.sh -b -u -p $HOME/anaconda3     && $HOME/anaconda3/bin/conda init     && echo 'export PATH=$HOME/anaconda3/bin:$PATH' >> /home/ray/.bashrc     && rm /tmp/miniconda.sh      && $HOME/anaconda3/bin/conda install -y libgcc-ng python=$PYTHON_VERSION     && $HOME/anaconda3/bin/conda install -y -c conda-forge libffi=3.4.2     && $HOME/anaconda3/bin/conda clean -y --all     && $HOME/anaconda3/bin/pip install --no-cache-dir         flatbuffers         cython==0.29.37         numpy\>=1.20         psutil     && $HOME/anaconda3/bin/pip uninstall -y dask     && sudo apt-get autoremove -y cmake zlib1g-dev         $(if [[ "$BASE_IMAGE" == "ubuntu:focal" && "$HOSTTYPE" == "x86_64" ]]; then echo         g++; fi)     && sudo rm -rf /var/lib/apt/lists/*     && sudo apt-get clean     && (if [ "$AUTOSCALER" = "autoscaler" ];         then $HOME/anaconda3/bin/pip --no-cache-dir install         "redis>=3.5.0,<4.0.0"         "six==1.13.0"         "boto3==1.26.76"         "pyOpenSSL==22.1.0"         "cryptography==38.0.1"         "google-api-python-client==1.7.8"         "google-oauth"         "azure-cli-core==2.40.0"         "azure-identity==1.10.0"         "azure-mgmt-compute==23.1.0"         "azure-mgmt-network==19.0.0"         "azure-mgmt-resource==20.0.0"         "msrestazure==0.6.4";     fi;) # buildkit
                        
# 2024-06-17 22:53:12  0.00B 
SHELL [/bin/bash -c]
                        
# 2024-06-17 22:53:12  0.00B 设置环境变量 HOME
ENV HOME=/home/ray
                        
# 2024-06-17 22:53:12  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2024-06-17 22:53:12  6.53MB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.10 HOSTTYPE=x86_64 RAY_UID=1000 RAY_GID=100 /bin/sh -c apt-get update -y     && apt-get install -y sudo tzdata     && useradd -ms /bin/bash -d /home/ray ray --uid $RAY_UID --gid $RAY_GID     && usermod -aG sudo ray     && echo 'ray ALL=NOPASSWD: ALL' >> /etc/sudoers     && rm -rf /var/lib/apt/lists/*     && apt-get clean # buildkit
                        
# 2024-06-17 22:53:12  0.00B 定义构建参数
ARG RAY_GID=100
                        
# 2024-06-17 22:53:12  0.00B 定义构建参数
ARG RAY_UID=1000
                        
# 2024-06-17 22:53:12  0.00B 定义构建参数
ARG HOSTTYPE=x86_64
                        
# 2024-06-17 22:53:12  0.00B 定义构建参数
ARG PYTHON_VERSION=3.8.16
                        
# 2024-06-17 22:53:12  0.00B 定义构建参数
ARG DEBIAN_FRONTEND=noninteractive
                        
# 2024-06-17 22:53:12  0.00B 设置环境变量 PATH
ENV PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-06-17 22:53:12  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2024-06-17 22:53:12  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-06-17 22:53:12  0.00B 设置环境变量 TZ
ENV TZ=America/Los_Angeles
                        
# 2024-06-17 22:53:12  0.00B 定义构建参数
ARG AUTOSCALER=autoscaler
                        
# 2024-06-17 22:53:12  0.00B 定义构建参数
ARG BASE_IMAGE
                        
# 2023-11-10 15:16:58  2.37GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 15:16:58  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.6.50
                        
# 2023-11-10 15:16:58  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 15:16:58  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 15:16:58  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8
                        
# 2023-11-10 15:16:58  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8
                        
# 2023-11-10 15:16:58  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 15:16:58  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.6.50
                        
# 2023-11-10 14:55:34  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 14:55:34  377.32KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:55:29  4.71GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     libtinfo5 libncursesw5     cuda-cudart-dev-11-8=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-8=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-8=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-8=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-8=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-8=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:55:29  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:55:29  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.16.2-1+cuda11.8
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.16.2-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.16.2-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.8.87-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.8.86-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.8.89-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:43:29  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 14:43:29  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 14:43:29  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 14:43:29  258.26KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:43:29  2.42GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-8=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-8=${NV_NVTX_VERSION}     libcusparse-11-8=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:43:29  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:43:29  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.16.2-1+cuda11.8
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.16.2-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.16.2-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.8.86-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:37:17  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 14:37:17  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 14:37:17  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 14:37:17  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 14:37:17  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 14:37:17  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 14:37:17  150.68MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-8=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:03  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.8.0
                        
# 2023-11-10 14:37:03  18.32MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:03  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:37:03  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:37:03  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8
                        
# 2023-11-10 14:37:03  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.8.89-1
                        
# 2023-11-10 14:37:03  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
                        
# 2023-11-10 14:37:03  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-03 18:45:52  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-03 18:45:51  72.79MB 
/bin/sh -c #(nop) ADD file:4809da414c2d478b4d991cbdaa2df457f2b3d07d0ff6cf673f09a66f90833e81 in / 
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=20.04
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:0328e7e2dfd28cae48fde833e36f7df20f27e0e70a5a2f7f4d2b46bb39b3d726",
    "RepoTags": [
        "rayproject/ray-ml:2.30.0-py310-gpu",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.30.0-py310-gpu"
    ],
    "RepoDigests": [
        "rayproject/ray-ml@sha256:b8195c738237d762c95ea2d92898128a85d3f66b8efeba342c61d79210952c83",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml@sha256:b8195c738237d762c95ea2d92898128a85d3f66b8efeba342c61d79210952c83"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-06-20T20:06:17.51366237Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "1000",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.8 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471",
            "NV_CUDA_CUDART_VERSION=11.8.89-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8",
            "CUDA_VERSION=11.8.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.8.0-1",
            "NV_NVTX_VERSION=11.8.86-1",
            "NV_LIBNPP_VERSION=11.8.0.86-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1",
            "NV_LIBCUSPARSE_VERSION=11.7.5.86-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8",
            "NV_LIBCUBLAS_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.16.2-1",
            "NCCL_VERSION=2.16.2-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.16.2-1+cuda11.8",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=11.8.89-1",
            "NV_NVML_DEV_VERSION=11.8.86-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1",
            "NV_LIBNPP_DEV_VERSION=11.8.0.86-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1",
            "NV_NVPROF_VERSION=11.8.87-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.16.2-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.16.2-1+cuda11.8",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.9.6.50",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8",
            "TZ=America/Los_Angeles",
            "LC_ALL=C.UTF-8",
            "LANG=C.UTF-8",
            "HOME=/home/ray"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home/ray",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.6.50",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "20.04"
        },
        "Shell": [
            "/bin/bash",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 21876451043,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/5b7171ad671c94440263636b7a00da0bf09c59a12af93d1e97c361071e42967a/diff:/var/lib/docker/overlay2/174b5138f0a36526d0c09fde11a52e65bcd308c3dc1d1d6380cf5f5155aad337/diff:/var/lib/docker/overlay2/0030b3f0c75c14f1cb5d724c8309302e13f926891a8e2b9272bc6d52548f98fb/diff:/var/lib/docker/overlay2/2c6acd5ec2823c3cb3d8003ce573ca06456c738be0bdd0585860866b7ab3fb3c/diff:/var/lib/docker/overlay2/c17e8549d3716a109b4ad9faf87624d8f2f0d66e0b5b24ccf4b487ac93e74b7a/diff:/var/lib/docker/overlay2/d4146f7ab2383f231afa7c308482427b757b65fbd84d9eae429b02a0eb59d0b4/diff:/var/lib/docker/overlay2/7871c8eb387f53dbbb7f7db7e010fad6a318462adf462c512e864a96b5259460/diff:/var/lib/docker/overlay2/02fad23ee40fc1c4ff86d1e6f2b8bcbfa471892f1599274428223e2ae7a46bb6/diff:/var/lib/docker/overlay2/396b609c0d417096bfee61eb411491174e9e76a0d2acf665e6d5c83fe6832adb/diff:/var/lib/docker/overlay2/4f49868a8861918161446bfc4a16e2b3fabfdc6d484321a223cc46b360785990/diff:/var/lib/docker/overlay2/b791dafb43ff8e5c06297113aa00edf214742bbeb4c1b9672858b045a26d7018/diff:/var/lib/docker/overlay2/06a390252208f26da2bdd59795b6372ffcd3ac62741db3d0f0013c005a3d7f50/diff:/var/lib/docker/overlay2/e4aa2aba3b13fffbaf92d6ef796fbbfa1ffa137ef9a4f357b304e1a7ce4ddaa3/diff:/var/lib/docker/overlay2/cfafd1f04a6a2bd163113c8afb68b278ad0e48344c778df1fae766708d39ca6b/diff:/var/lib/docker/overlay2/11848a093729c7f4980961e35070508054d90aabe4d67b3eccb2b2e6895ea92e/diff:/var/lib/docker/overlay2/f73adc0c059092d0118b5f3752fc3d71396b2ac72ac5955b86a28f2b42c2cc82/diff:/var/lib/docker/overlay2/f2944f1c8bdd00d7d3f3e961127c95e8aa3dfbf7d92cc1d8336f3bd5f6711f65/diff:/var/lib/docker/overlay2/2f4be7d2dea5f89ec82e005d6af726545d044f6f2761a7f4b355a296adb09acc/diff:/var/lib/docker/overlay2/5abe2411c89136e9c5ccf93f21956a622e29b721c4dd0abf4bfffeaf378ff19b/diff:/var/lib/docker/overlay2/9190157ea096c49fbfba75ef3e6c1cadfbb313f14201f4e2d8413427597eaf60/diff:/var/lib/docker/overlay2/274a801851c75b6ceff755bb8a6d5fc0002ce9e15a51de5fd22652dfcba1007e/diff:/var/lib/docker/overlay2/d52b6f242cbe46501d62921bef0e35e852c7304c4653bdd5fef9a1b4f9ffef33/diff:/var/lib/docker/overlay2/4259a7a04045f84b579b7167391dd8f27f4f62444ef7cbd69a4d72cbcf955c6f/diff:/var/lib/docker/overlay2/800386c78d87949025de4f9acfaf2b381cc5065caba9fd012cea1bd8dc46b266/diff:/var/lib/docker/overlay2/5408abd3ec726f4d055e10fddd8f488a8839c8a355fe1fb064cdc9fee660e07b/diff",
            "MergedDir": "/var/lib/docker/overlay2/45f1b567bd74186e99ae322f918269458d6f061954b53c021cf5095d664bf72f/merged",
            "UpperDir": "/var/lib/docker/overlay2/45f1b567bd74186e99ae322f918269458d6f061954b53c021cf5095d664bf72f/diff",
            "WorkDir": "/var/lib/docker/overlay2/45f1b567bd74186e99ae322f918269458d6f061954b53c021cf5095d664bf72f/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:6c3e7df31590f02f10cb71fc4eb27653e9b428df2e6e5421a455b062bd2e39f9",
            "sha256:851dfeb181928f7e34d874b04c1bf8995798ca1aaaf0319ce0e453a73d998ac8",
            "sha256:33e57ea5b30a49e661305472f1a9677269b397f6e2435f27b53c1aaa9b7074c5",
            "sha256:86f0cc586e78639fddbe58d8f2ea17756020502a874270e6e8eb9d137d19cbde",
            "sha256:f344b08ff6c5121d786112e0f588c627da349e4289e409d1fde1b3ad8845fa66",
            "sha256:dbd5b7f451e30b5b69fc545ed2fde7b81415f3684230617594825bb84042fe2e",
            "sha256:980eb7f7bcb0a7b55a3274767f792e6db838a5ed454805c241f8edec8a6bfcc9",
            "sha256:63296bbbf98bdc530d0ef6529abca4d2301abb76b206c1fdc332be31a7ecf9c2",
            "sha256:8a741f0ee5177975fd861b1d837acb151cc52d373b0851409711ad01ffb713b5",
            "sha256:1a7b944dac2534334f8a2439c614990c039c861787aaffb49a61b917a403a889",
            "sha256:b63c7fe2d89fe3b04ae50c035f1063926883b4bf4999d223b6b975edf74f0b03",
            "sha256:d93d20af701b3a2a25817ff5a17a22606757a025e3f408228e1c5df01f189ba3",
            "sha256:98f8d72ffb28f4753b63b7431d715e77017f6f12df20b041974165da7e758ec1",
            "sha256:aa7ac56d0bc6418e79916421ae4030aef03b3f5548c96ecbc19abfd770f613fd",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:fef65a88e031563586b586430e8ede905b0f1e6c696ad7ac2f69c953d82bd8b7",
            "sha256:101b39374c0da18f8641772a2042f5800280ca8395c45488091524d3456906fa",
            "sha256:afddc104def5e22bfd566414a330847facb81eae38e69b31c8a273be9b8385a5",
            "sha256:b08f7d7520fef6cf847310a0478abc77b0a3fa879eb9d3ac6a6c968ddfa9b07f",
            "sha256:8bc22d814b90ff4ea354c920aaa40b579c07a25db5e1c911c1cce116b53683e9",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:76d0839622eb14fd380ad4b22acee8487e21b31224f0d314bfd325cc9e8e2639",
            "sha256:7410c6b2069d585b583e640c10fef7252e0fe7a49d330849ce1bea8d7d2e288e",
            "sha256:115c9fa79d8cb000a545e5f52bfd948fc1a9eb4bd661697ec379e8a7bfc245c1",
            "sha256:c250a959dff284c8ec01673dfa4a6a53f88d0deedd55b7a642503bddcbdb9fa2",
            "sha256:55766846de2b979d7ce9c4c6a43f11b6d5e2387478343ba236e39ebdedb4d6c3"
        ]
    },
    "Metadata": {
        "LastTagTime": "2024-09-27T00:30:02.699629271+08:00"
    }
}

更多版本

docker.io/rayproject/ray-ml:2.30.0-py310-gpu

linux/amd64 docker.io21.88GB2024-09-27 00:30
146