docker.io/rayproject/ray-ml:2.33.0.914af0-py311 linux/amd64

docker.io/rayproject/ray-ml:2.33.0.914af0-py311 - 国内下载镜像源 浏览次数:87
你想知道这个镜像的描述信息是啥? 😊

Ray ML

基于Apache Ray的机器学习框架。支持分布式训练、在线服务和批处理预测等场景,提供高性能、高并发性和易用性的机器学习体验。

源镜像 docker.io/rayproject/ray-ml:2.33.0.914af0-py311
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311
镜像ID sha256:61feeac8814edc3f406d9a29a2ee0c3ed71ea2f3c60d3bace48950c1ff588742
镜像TAG 2.33.0.914af0-py311
大小 23.01GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /home/ray
OS/平台 linux/amd64
浏览量 87 次
贡献者 69******0@qq.com
镜像创建 2024-07-23T07:17:56.910532179Z
同步时间 2025-03-10 04:27
更新时间 2025-06-08 15:04
环境变量
PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 NV_CUDA_CUDART_VERSION=11.8.89-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8 CUDA_VERSION=11.8.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.8.0-1 NV_NVTX_VERSION=11.8.86-1 NV_LIBNPP_VERSION=11.8.0.86-1 NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1 NV_LIBCUSPARSE_VERSION=11.7.5.86-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8 NV_LIBCUBLAS_VERSION=11.11.3.6-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1 NCCL_VERSION=2.15.5-1 NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=11.8.89-1 NV_NVML_DEV_VERSION=11.8.86-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1 NV_LIBNPP_DEV_VERSION=11.8.0.86-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1 NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1 NV_NVPROF_VERSION=11.8.87-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.9.6.50 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8 TZ=America/Los_Angeles LC_ALL=C.UTF-8 LANG=C.UTF-8 HOME=/home/ray
镜像标签
8.9.6.50: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311  docker.io/rayproject/ray-ml:2.33.0.914af0-py311

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311  docker.io/rayproject/ray-ml:2.33.0.914af0-py311

Shell快速替换命令

sed -i 's#rayproject/ray-ml:2.33.0.914af0-py311#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311  docker.io/rayproject/ray-ml:2.33.0.914af0-py311'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311  docker.io/rayproject/ray-ml:2.33.0.914af0-py311'

镜像构建历史


# 2024-07-23 15:17:56  10.75KB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.33.0-cp311-cp311-manylinux2014_x86_64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip freeze > /home/ray/pip-freeze.txt # buildkit
                        
# 2024-07-23 15:17:55  349.75MB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.33.0-cp311-cp311-manylinux2014_x86_64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip --no-cache-dir install -c $CONSTRAINTS_FILE     `basename $WHEEL_PATH`[all]     --find-links $FIND_LINKS_PATH && sudo rm `basename $WHEEL_PATH` # buildkit
                        
# 2024-07-23 15:17:35  92.69MB 复制新文件或目录到容器中
COPY .whl .whl # buildkit
                        
# 2024-07-23 15:17:34  64.96MB 复制新文件或目录到容器中
COPY .whl/ray-2.33.0-cp311-cp311-manylinux2014_x86_64.whl . # buildkit
                        
# 2024-07-23 15:17:33  63.11KB 复制新文件或目录到容器中
COPY requirements_compiled.txt ./ # buildkit
                        
# 2024-07-23 15:17:33  0.00B 定义构建参数
ARG CONSTRAINTS_FILE=requirements_compiled.txt
                        
# 2024-07-23 15:17:33  0.00B 定义构建参数
ARG FIND_LINKS_PATH=.whl
                        
# 2024-07-23 15:17:33  0.00B 定义构建参数
ARG WHEEL_PATH
                        
# 2024-07-22 17:30:41  0.00B 执行命令并创建新的镜像层
RUN /bin/bash -c python -c "import tensorflow_probability" # buildkit
                        
# 2024-07-22 17:30:40  10.60KB 执行命令并创建新的镜像层
RUN /bin/bash -c $HOME/anaconda3/bin/pip freeze > /home/ray/pip-freeze.txt # buildkit
                        
# 2024-07-22 17:30:39  11.41GB 执行命令并创建新的镜像层
RUN /bin/bash -c sudo chmod +x install-ml-docker-requirements.sh     && ./install-ml-docker-requirements.sh # buildkit
                        
# 2024-07-22 17:21:33  1.98KB 复制新文件或目录到容器中
COPY *install-ml-docker-requirements.sh docker/ray-ml/*install-ml-docker-requirements.sh ./ # buildkit
                        
# 2024-07-22 17:21:33  63.11KB 复制新文件或目录到容器中
COPY *requirements_compiled.txt python/*requirements_compiled.txt ./ # buildkit
                        
# 2024-07-22 17:21:33  6.68KB 复制新文件或目录到容器中
COPY *requirements.txt python/*requirements.txt python/requirements/ml/*requirements.txt python/requirements/docker/*requirements.txt ./ # buildkit
                        
# 2024-07-22 17:17:19  0.00B 设置工作目录为/home/ray
WORKDIR /home/ray
                        
# 2024-07-22 17:17:19  1.35GB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.11 HOSTTYPE=x86_64 RAY_UID=1000 RAY_GID=100 /bin/bash -c sudo apt-get update -y && sudo apt-get upgrade -y     && sudo apt-get install -y         git         libjemalloc-dev         wget         cmake         g++         zlib1g-dev         $(if [ "$AUTOSCALER" = "autoscaler" ]; then echo         tmux         screen         rsync         netbase         openssh-client         gnupg; fi)     && wget --quiet         "https://repo.anaconda.com/miniconda/Miniconda3-py311_24.4.0-0-Linux-${HOSTTYPE}.sh"         -O /tmp/miniconda.sh     && /bin/bash /tmp/miniconda.sh -b -u -p $HOME/anaconda3     && $HOME/anaconda3/bin/conda init     && echo 'export PATH=$HOME/anaconda3/bin:$PATH' >> /home/ray/.bashrc     && rm /tmp/miniconda.sh      && $HOME/anaconda3/bin/conda install -y libgcc-ng python=$PYTHON_VERSION     && $HOME/anaconda3/bin/conda install -y -c conda-forge libffi=3.4.2     && $HOME/anaconda3/bin/conda clean -y --all     && $HOME/anaconda3/bin/pip install --no-cache-dir         flatbuffers         cython==0.29.37         numpy\>=1.20         psutil     && $HOME/anaconda3/bin/pip uninstall -y dask     && sudo apt-get autoremove -y cmake zlib1g-dev         $(if [[ "$BASE_IMAGE" == "ubuntu:22.04" && "$HOSTTYPE" == "x86_64" ]]; then echo         g++; fi)     && sudo rm -rf /var/lib/apt/lists/*     && sudo apt-get clean     && (if [ "$AUTOSCALER" = "autoscaler" ];         then $HOME/anaconda3/bin/pip --no-cache-dir install         "redis>=3.5.0,<4.0.0"         "six==1.13.0"         "boto3==1.26.76"         "pyOpenSSL==22.1.0"         "cryptography==38.0.1"         "google-api-python-client==1.7.8"         "google-oauth"         "azure-cli-core==2.40.0"         "azure-identity==1.10.0"         "azure-mgmt-compute==23.1.0"         "azure-mgmt-network==19.0.0"         "azure-mgmt-resource==20.0.0"         "msrestazure==0.6.4";     fi;) # buildkit
                        
# 2024-07-22 17:15:54  0.00B 
SHELL [/bin/bash -c]
                        
# 2024-07-22 17:15:54  0.00B 设置环境变量 HOME
ENV HOME=/home/ray
                        
# 2024-07-22 17:15:54  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2024-07-22 17:15:54  7.20MB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.11 HOSTTYPE=x86_64 RAY_UID=1000 RAY_GID=100 /bin/sh -c apt-get update -y     && apt-get install -y sudo tzdata     && useradd -ms /bin/bash -d /home/ray ray --uid $RAY_UID --gid $RAY_GID     && usermod -aG sudo ray     && echo 'ray ALL=NOPASSWD: ALL' >> /etc/sudoers     && rm -rf /var/lib/apt/lists/*     && apt-get clean # buildkit
                        
# 2024-07-22 17:15:54  0.00B 定义构建参数
ARG RAY_GID=100
                        
# 2024-07-22 17:15:54  0.00B 定义构建参数
ARG RAY_UID=1000
                        
# 2024-07-22 17:15:54  0.00B 定义构建参数
ARG HOSTTYPE=x86_64
                        
# 2024-07-22 17:15:54  0.00B 定义构建参数
ARG PYTHON_VERSION=3.8.16
                        
# 2024-07-22 17:15:54  0.00B 定义构建参数
ARG DEBIAN_FRONTEND=noninteractive
                        
# 2024-07-22 17:15:54  0.00B 设置环境变量 PATH
ENV PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-07-22 17:15:54  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2024-07-22 17:15:54  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-07-22 17:15:54  0.00B 设置环境变量 TZ
ENV TZ=America/Los_Angeles
                        
# 2024-07-22 17:15:54  0.00B 定义构建参数
ARG AUTOSCALER=autoscaler
                        
# 2024-07-22 17:15:54  0.00B 定义构建参数
ARG BASE_IMAGE
                        
# 2023-11-10 15:16:45  2.37GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 15:16:45  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.6.50
                        
# 2023-11-10 15:16:45  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 15:16:45  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 15:16:45  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8
                        
# 2023-11-10 15:16:45  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8
                        
# 2023-11-10 15:16:45  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 15:16:45  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.6.50
                        
# 2023-11-10 14:55:21  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 14:55:21  383.52KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:55:17  4.72GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-11-8=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-8=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-8=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-8=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-8=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-8=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:55:17  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:55:17  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.8.87-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.8.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.8.89-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:42:37  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 14:42:37  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 14:42:37  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 14:42:37  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 14:42:37  260.16KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:42:36  2.41GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-8=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-8=${NV_NVTX_VERSION}     libcusparse-11-8=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:42:36  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:42:36  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.8.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 14:37:16  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 14:37:16  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 14:37:16  150.67MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-8=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.8.0
                        
# 2023-11-10 14:37:01  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:01  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:37:01  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.8.89-1
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:61feeac8814edc3f406d9a29a2ee0c3ed71ea2f3c60d3bace48950c1ff588742",
    "RepoTags": [
        "rayproject/ray-ml:2.33.0.914af0-py311",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml:2.33.0.914af0-py311"
    ],
    "RepoDigests": [
        "rayproject/ray-ml@sha256:b58d530020601ae694bfb87b6fa9a479e9bdbbdae4d0e605cb36d2608600041f",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray-ml@sha256:b58d530020601ae694bfb87b6fa9a479e9bdbbdae4d0e605cb36d2608600041f"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-07-23T07:17:56.910532179Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "1000",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.8 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471",
            "NV_CUDA_CUDART_VERSION=11.8.89-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8",
            "CUDA_VERSION=11.8.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.8.0-1",
            "NV_NVTX_VERSION=11.8.86-1",
            "NV_LIBNPP_VERSION=11.8.0.86-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1",
            "NV_LIBCUSPARSE_VERSION=11.7.5.86-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8",
            "NV_LIBCUBLAS_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1",
            "NCCL_VERSION=2.15.5-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=11.8.89-1",
            "NV_NVML_DEV_VERSION=11.8.86-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1",
            "NV_LIBNPP_DEV_VERSION=11.8.0.86-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1",
            "NV_NVPROF_VERSION=11.8.87-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.9.6.50",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8",
            "TZ=America/Los_Angeles",
            "LC_ALL=C.UTF-8",
            "LANG=C.UTF-8",
            "HOME=/home/ray"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home/ray",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.6.50",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        },
        "Shell": [
            "/bin/bash",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 23007834384,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/ae2e9f58d46ba6f289a442f933689a9b018a998d453bf05c4ab70a01b4bbacfe/diff:/var/lib/docker/overlay2/d2ce2be9b4219e4b51af52bd0945c0fbacc4a1198af0446f79cebb845ea569d8/diff:/var/lib/docker/overlay2/15c9d91adf38c5b9610f33a682c54b1ca28d27c516ddf61779bc27184158cd36/diff:/var/lib/docker/overlay2/73931523abd64c149413a3180b6c57ae3f0b6f7cc34835ea6777078965b3c873/diff:/var/lib/docker/overlay2/dba95015243f1733d848e587d7a8223af171a4dffc2f983219a5aeda4ac51b4d/diff:/var/lib/docker/overlay2/b24a32bb110aea7f6a488766c2029b44b2e89f214c882c21c711f8fcba7cb6ee/diff:/var/lib/docker/overlay2/042ca775c3712492358745f3f5e72583e97a25df7412a9b537de48a7a99f6f86/diff:/var/lib/docker/overlay2/af2afe860c140cce1c614e97363bd4e59d561e277ac03771d28d82ac9a75da65/diff:/var/lib/docker/overlay2/eb9029a6fe4d43a8b21450e8c3dba9b6a5302ce56267f4e7cc62705da0394b49/diff:/var/lib/docker/overlay2/593c43d2db8a4050f8702270106cd9817a14205e4cf184fc339e437bc9022df7/diff:/var/lib/docker/overlay2/2bb1eb470e7d263231139ce2d486ee164959eac82903573447a722adcab8d4f5/diff:/var/lib/docker/overlay2/d06fa42243630303472a08385b56cf0dc4b06c957569f0a3cfe2c5c4a6479da6/diff:/var/lib/docker/overlay2/72201abffa20c6326e071d85e73b6950a8d286345369cea5b71b0da040bef46c/diff:/var/lib/docker/overlay2/2c79f6c85547b642dce8e978e087bf8ccdd4e5983dae961d157d31d540c3e343/diff:/var/lib/docker/overlay2/44d6a6ae980e7a4c67255da699d56fc29f7ebc83c75b2858db0b97818ecba435/diff:/var/lib/docker/overlay2/1ee9c942556b53ccc5829846bfebd808a06fa1323ab31565b9b60ed202c25f37/diff:/var/lib/docker/overlay2/52330250e037efe3ff35204af9c02e9c029bbd500b69d78be541d06222fe006f/diff:/var/lib/docker/overlay2/6e1a607fec937e9cbb86bb692421071c379ce3dd1b98bc7e0027638ff6674df9/diff:/var/lib/docker/overlay2/7128c79124678525e2b3bc72a306866e399a50ed12580185ec03a4f96b3739b2/diff:/var/lib/docker/overlay2/12ea18f19e0381de7e691b86b5553f008c7570576a8946f8db858a95140bb8d9/diff:/var/lib/docker/overlay2/13bbb9b434b41c1a2355bcc89dae0c9b9edd7045ee2dab9ac856eb9c385d8e4c/diff:/var/lib/docker/overlay2/b0f21458bb6efefd61dff3edab768d991bea26342e9d5bd39a599f6a68efd65f/diff:/var/lib/docker/overlay2/3027aa0b1e3d9df3c24f7d3ec45d28ab08ac69f4bcfb8d387ef295dd7bb6164d/diff:/var/lib/docker/overlay2/b26417e84fff37266103bd73b4ff1206295f1c70efe3e76a834a0482bdc732a4/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/6cab866e924cddeba62c806794e2e0e4bbee4e27a5567ff503f7a47ef2098ab9/merged",
            "UpperDir": "/var/lib/docker/overlay2/6cab866e924cddeba62c806794e2e0e4bbee4e27a5567ff503f7a47ef2098ab9/diff",
            "WorkDir": "/var/lib/docker/overlay2/6cab866e924cddeba62c806794e2e0e4bbee4e27a5567ff503f7a47ef2098ab9/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:e6c05e83c163d632918d1c4906ee088b1e0d93a5bb3acfc6a268da52e76cc945",
            "sha256:d6b19a46b795f8b562888c6e2826a6b11f744ab98543268b4d45ee1af05ed1cf",
            "sha256:c0e21dcee62311c36e1f025307b3186a4b4a034f0b52011704402b39623b6587",
            "sha256:498bbcc60d01b2080fd6fc35117cb82c80ddd4eb8a654ee330dd91587b7ec90b",
            "sha256:bc352a27a0e47d42df7bc06e702351a4f3102d20016484c9613644dba63239e0",
            "sha256:399d155a03b034314cd9ea52e4e1feca44be4cf92ae172ba9c6ce14f5897f0a2",
            "sha256:dcb0f55f81ad931bb976c65730e4bafe7a03936d1fd1bd0fec6a9bcfde23561d",
            "sha256:345cfa465206a6d1cc0812481df7edbc4553b64a26c63ccda0e5b11b0f2bf81b",
            "sha256:23d753990c8d9e30e33dc706e188972e17fd21ae60b51bbce058d6d74aa08d29",
            "sha256:64758552f6fa927694d06ecab82c2a3d1f55e6bfb09c715b6d37f2963eaaa62c",
            "sha256:383e6312d4f952e0c59b0d42d00c8f4b6da63721e10ad4de2d8e7d26581c1391",
            "sha256:3e86941177d985d7ea06c8d4d280b6da3a2c1a5b3b36fbc22e0fa2c802c1aec1",
            "sha256:9f33e3491966ef33033e566e1f287951ccf62f46b92684fe172a811d686b48cc",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:71342ad758b6d6c569b2ff3b4270e5c5382d7d2e9d04122b4211d9f5e3ce9116",
            "sha256:8b8eeec6270646b5807956f1555a73179d338d5fc8f43322b78fb87b87630152",
            "sha256:8b6f57613999610c7ca81125a6ef8746079a8d0eaa6182f43ca76b343b6c4473",
            "sha256:43f00139cf533795262bb3b52d240c947c64cafa3c03d2b445c556e38189c6d1",
            "sha256:2f7816b9936ebe1436bc27a0091da7bdd746968bdd85389d7e6c13f736bc7790",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:b1b94a4a8bdff9dfa7699bc51a0b39b7dfbe11ca5891900685729459a24ce886",
            "sha256:14e37002f588c156c0eb2112a4c32f1b36239a0bc3122904af76c5f6c26fc7ce",
            "sha256:f7f8943577de38e9de33e3006180ea207de6959742be6665d18ca0f4d5c0b379",
            "sha256:b3f0997db1a20414dc0b799da2257095fd76a8d69129d461404444a46f4353de",
            "sha256:fe217d8ba0c64bd641e5d40426363bc10aa3527a648093c5191b4ab746e61f06"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-03-10T04:15:09.289844492+08:00"
    }
}

更多版本

docker.io/rayproject/ray-ml:2.30.0-py310-gpu

linux/amd64 docker.io21.88GB2024-09-27 00:30
302

docker.io/rayproject/ray-ml:2.33.0.914af0-py311

linux/amd64 docker.io23.01GB2025-03-10 04:27
86