镜像构建历史
# 2025-05-30 05:41:16 0.00B 设置默认要执行的命令
CMD ["bash" "start.sh"]
# 2025-05-30 05:41:16 0.00B 设置环境变量 DOCKER
ENV DOCKER=true
# 2025-05-30 05:41:16 0.00B 设置环境变量 WEBUI_BUILD_VERSION
ENV WEBUI_BUILD_VERSION=53764fe64884da147359e54ed6d9607fe57f1600
# 2025-05-30 05:41:16 0.00B 定义构建参数
ARG BUILD_HASH=53764fe64884da147359e54ed6d9607fe57f1600
# 2025-05-30 05:41:16 0.00B 指定运行容器时使用的用户
USER 0:0
# 2025-05-30 05:41:16 0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"] "0s" "0s" "0s" "0s" '\x00'}
# 2025-05-30 05:41:16 0.00B 声明容器运行时监听的端口
EXPOSE map[8080/tcp:{}]
# 2025-05-30 05:41:16 70.32MB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend . # buildkit
# 2025-05-30 05:41:15 4.40KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/package.json /app/package.json # buildkit
# 2025-05-30 05:41:15 187.17KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/CHANGELOG.md /app/CHANGELOG.md # buildkit
# 2025-05-30 05:41:15 313.84MB 复制新文件或目录到容器中
COPY --chown=0:0 /app/build /app/build # buildkit
# 2025-05-27 06:29:48 3.32GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c pip3 install --no-cache-dir uv && if [ "$USE_CUDA" = "true" ]; then pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; else pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; fi; chown -R $UID:$GID /app/backend/data/ # buildkit
# 2025-05-27 06:28:46 2.42KB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend/requirements.txt ./requirements.txt # buildkit
# 2025-05-27 06:28:46 1.02GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ "$USE_OLLAMA" = "true" ]; then apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && apt-get install -y --no-install-recommends curl jq && curl -fsSL https://ollama.com/install.sh | sh && rm -rf /var/lib/apt/lists/*; else apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && rm -rf /var/lib/apt/lists/*; fi # buildkit
# 2025-05-27 06:28:03 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c chown -R $UID:$GID /app $HOME # buildkit
# 2025-05-27 06:28:03 36.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id # buildkit
# 2025-05-27 06:28:03 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c mkdir -p $HOME/.cache/chroma # buildkit
# 2025-05-27 06:28:03 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ $UID -ne 0 ]; then if [ $GID -ne 0 ]; then addgroup --gid $GID app; fi; adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; fi # buildkit
# 2025-05-27 06:28:03 0.00B 设置环境变量 HOME
ENV HOME=/root
# 2025-05-27 06:28:03 0.00B 设置工作目录为/app/backend
WORKDIR /app/backend
# 2025-05-27 06:28:03 0.00B 设置环境变量 HF_HOME
ENV HF_HOME=/app/backend/data/cache/embedding/models
# 2025-05-27 06:28:03 0.00B 设置环境变量 TIKTOKEN_ENCODING_NAME TIKTOKEN_CACHE_DIR
ENV TIKTOKEN_ENCODING_NAME=cl100k_base TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken
# 2025-05-27 06:28:03 0.00B 设置环境变量 RAG_EMBEDDING_MODEL RAG_RERANKING_MODEL SENTENCE_TRANSFORMERS_HOME
ENV RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 RAG_RERANKING_MODEL= SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models
# 2025-05-27 06:28:03 0.00B 设置环境变量 WHISPER_MODEL WHISPER_MODEL_DIR
ENV WHISPER_MODEL=base WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models
# 2025-05-27 06:28:03 0.00B 设置环境变量 OPENAI_API_KEY WEBUI_SECRET_KEY SCARF_NO_ANALYTICS DO_NOT_TRACK ANONYMIZED_TELEMETRY
ENV OPENAI_API_KEY= WEBUI_SECRET_KEY= SCARF_NO_ANALYTICS=true DO_NOT_TRACK=true ANONYMIZED_TELEMETRY=false
# 2025-05-27 06:28:03 0.00B 设置环境变量 OLLAMA_BASE_URL OPENAI_API_BASE_URL
ENV OLLAMA_BASE_URL=/ollama OPENAI_API_BASE_URL=
# 2025-05-27 06:28:03 0.00B 设置环境变量 ENV PORT USE_OLLAMA_DOCKER USE_CUDA_DOCKER USE_CUDA_DOCKER_VER USE_EMBEDDING_MODEL_DOCKER USE_RERANKING_MODEL_DOCKER
ENV ENV=prod PORT=8080 USE_OLLAMA_DOCKER=false USE_CUDA_DOCKER=false USE_CUDA_DOCKER_VER=cu128 USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL_DOCKER=
# 2025-05-27 06:28:03 0.00B 定义构建参数
ARG GID=0
# 2025-05-27 06:28:03 0.00B 定义构建参数
ARG UID=0
# 2025-05-27 06:28:03 0.00B 定义构建参数
ARG USE_RERANKING_MODEL=
# 2025-05-27 06:28:03 0.00B 定义构建参数
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
# 2025-05-27 06:28:03 0.00B 定义构建参数
ARG USE_CUDA_VER=cu128
# 2025-05-27 06:28:03 0.00B 定义构建参数
ARG USE_OLLAMA=false
# 2025-05-27 06:28:03 0.00B 定义构建参数
ARG USE_CUDA=false
# 2025-05-09 06:27:23 0.00B 设置默认要执行的命令
CMD ["python3"]
# 2025-05-09 06:27:23 36.00B 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; for src in idle3 pip3 pydoc3 python3 python3-config; do dst="$(echo "$src" | tr -d 3)"; [ -s "/usr/local/bin/$src" ]; [ ! -e "/usr/local/bin/$dst" ]; ln -svT "$src" "/usr/local/bin/$dst"; done # buildkit
# 2025-05-09 06:27:23 45.81MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; savedAptMark="$(apt-mark showmanual)"; apt-get update; apt-get install -y --no-install-recommends dpkg-dev gcc gnupg libbluetooth-dev libbz2-dev libc6-dev libdb-dev libffi-dev libgdbm-dev liblzma-dev libncursesw5-dev libreadline-dev libsqlite3-dev libssl-dev make tk-dev uuid-dev wget xz-utils zlib1g-dev ; wget -O python.tar.xz "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"; echo "$PYTHON_SHA256 *python.tar.xz" | sha256sum -c -; wget -O python.tar.xz.asc "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"; GNUPGHOME="$(mktemp -d)"; export GNUPGHOME; gpg --batch --keyserver hkps://keys.openpgp.org --recv-keys "$GPG_KEY"; gpg --batch --verify python.tar.xz.asc python.tar.xz; gpgconf --kill all; rm -rf "$GNUPGHOME" python.tar.xz.asc; mkdir -p /usr/src/python; tar --extract --directory /usr/src/python --strip-components=1 --file python.tar.xz; rm python.tar.xz; cd /usr/src/python; gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"; ./configure --build="$gnuArch" --enable-loadable-sqlite-extensions --enable-optimizations --enable-option-checking=fatal --enable-shared $(test "$gnuArch" != 'riscv64-linux-musl' && echo '--with-lto') --with-ensurepip ; nproc="$(nproc)"; EXTRA_CFLAGS="$(dpkg-buildflags --get CFLAGS)"; LDFLAGS="$(dpkg-buildflags --get LDFLAGS)"; LDFLAGS="${LDFLAGS:--Wl},--strip-all"; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:-}" ; rm python; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:--Wl},-rpath='\$\$ORIGIN/../lib'" python ; make install; cd /; rm -rf /usr/src/python; find /usr/local -depth \( \( -type d -a \( -name test -o -name tests -o -name idle_test \) \) -o \( -type f -a \( -name '*.pyc' -o -name '*.pyo' -o -name 'libpython*.a' \) \) \) -exec rm -rf '{}' + ; ldconfig; apt-mark auto '.*' > /dev/null; apt-mark manual $savedAptMark; find /usr/local -type f -executable -not \( -name '*tkinter*' \) -exec ldd '{}' ';' | awk '/=>/ { so = $(NF-1); if (index(so, "/usr/local/") == 1) { next }; gsub("^/(usr/)?", "", so); printf "*%s\n", so }' | sort -u | xargs -r dpkg-query --search | cut -d: -f1 | sort -u | xargs -r apt-mark manual ; apt-get purge -y --auto-remove -o APT::AutoRemove::RecommendsImportant=false; rm -rf /var/lib/apt/lists/*; export PYTHONDONTWRITEBYTECODE=1; python3 --version; pip3 install --disable-pip-version-check --no-cache-dir --no-compile 'setuptools==65.5.1' 'wheel<0.46' ; pip3 --version # buildkit
# 2025-05-09 06:27:23 0.00B 设置环境变量 PYTHON_SHA256
ENV PYTHON_SHA256=849da87af4df137710c1796e276a955f7a85c9f971081067c8f565d15c352a09
# 2025-05-09 06:27:23 0.00B 设置环境变量 PYTHON_VERSION
ENV PYTHON_VERSION=3.11.12
# 2025-05-09 06:27:23 0.00B 设置环境变量 GPG_KEY
ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D
# 2025-05-09 06:27:23 9.24MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates netbase tzdata ; rm -rf /var/lib/apt/lists/* # buildkit
# 2025-05-09 06:27:23 0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
# 2025-05-09 06:27:23 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2025-05-09 06:27:23 74.81MB
# debian.sh --arch 'amd64' out/ 'bookworm' '@1747699200'
镜像信息
{
"Id": "sha256:f446ff063ea260433f29da605b0f4fc7bdf91cd56ff5794e85a36892928cc012",
"RepoTags": [
"ghcr.io/open-webui/open-webui:v0.6.13",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui:v0.6.13"
],
"RepoDigests": [
"ghcr.io/open-webui/open-webui@sha256:ddc64d14ec933e8c1caf017df8a0068bece3e35acbc59e4aa4971e5aa4176a72",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui@sha256:78d8a61fb7f4038d5e1314d8c6abf24ddbbba8e3d8b3cbaf0e71a38a8334c7a6"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2025-05-29T21:41:16.047198515Z",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "0:0",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"ExposedPorts": {
"8080/tcp": {}
},
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"LANG=C.UTF-8",
"GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D",
"PYTHON_VERSION=3.11.12",
"PYTHON_SHA256=849da87af4df137710c1796e276a955f7a85c9f971081067c8f565d15c352a09",
"ENV=prod",
"PORT=8080",
"USE_OLLAMA_DOCKER=false",
"USE_CUDA_DOCKER=false",
"USE_CUDA_DOCKER_VER=cu128",
"USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2",
"USE_RERANKING_MODEL_DOCKER=",
"OLLAMA_BASE_URL=/ollama",
"OPENAI_API_BASE_URL=",
"OPENAI_API_KEY=",
"WEBUI_SECRET_KEY=",
"SCARF_NO_ANALYTICS=true",
"DO_NOT_TRACK=true",
"ANONYMIZED_TELEMETRY=false",
"WHISPER_MODEL=base",
"WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models",
"RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2",
"RAG_RERANKING_MODEL=",
"SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models",
"TIKTOKEN_ENCODING_NAME=cl100k_base",
"TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken",
"HF_HOME=/app/backend/data/cache/embedding/models",
"HOME=/root",
"WEBUI_BUILD_VERSION=53764fe64884da147359e54ed6d9607fe57f1600",
"DOCKER=true"
],
"Cmd": [
"bash",
"start.sh"
],
"Healthcheck": {
"Test": [
"CMD-SHELL",
"curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"
]
},
"ArgsEscaped": true,
"Image": "",
"Volumes": null,
"WorkingDir": "/app/backend",
"Entrypoint": null,
"OnBuild": null,
"Labels": {
"org.opencontainers.image.created": "2025-05-29T21:38:14.456Z",
"org.opencontainers.image.description": "User-friendly AI Interface (Supports Ollama, OpenAI API, ...)",
"org.opencontainers.image.licenses": "NOASSERTION",
"org.opencontainers.image.revision": "53764fe64884da147359e54ed6d9607fe57f1600",
"org.opencontainers.image.source": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.title": "open-webui",
"org.opencontainers.image.url": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.version": "0.6.13"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 4855977247,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/207632b9c51260d8b051842237f9f76df342a85ea671d2af0b09abf417d90955/diff:/var/lib/docker/overlay2/9d7c28dfd8de280f859c310c06e7ad98ae30d9e25a899d70a58538fd70c85381/diff:/var/lib/docker/overlay2/d1d25e117cb6ff74ac16c62b9f03cf1550554ab7c9c9bc6600286f215d1441b4/diff:/var/lib/docker/overlay2/f9a0e8ee4811bbe5998f295eaf5773df9a0bb83e1e3e98d8a789d62e4854143d/diff:/var/lib/docker/overlay2/c4880b74a3a491847cbd812f07187cffbee6ef85b7fcc11f4ad317ae2f3dcf2e/diff:/var/lib/docker/overlay2/d8653b722b628872833bda6375f281abf4ee2c7be0c5a745ec5d51c6ddb1c83c/diff:/var/lib/docker/overlay2/aafc06db95ba796912911e4d867fac9534338cbe0cc63794533295377d736496/diff:/var/lib/docker/overlay2/da42f9f052eaecb3d70a1c8825139cfcc1ac4cd56fa7edc90554a3e1a840e415/diff:/var/lib/docker/overlay2/ebe1ce0f1f5aa290d7e0eb16826db25152388095cf492e5f236ed4e42fdda15b/diff:/var/lib/docker/overlay2/697488bd0d62c296d509fca68d582ff5f3aa33d2b45ee7c60e6af7c9c12cba04/diff:/var/lib/docker/overlay2/97fc710a5c3cb90fc3a6d39092dd8bf1b1072706756bb077eb2ee13725a97d8e/diff:/var/lib/docker/overlay2/9713ee652bafbf13f1eaa385083a03ea74691dc15aca1f1a963a8fe5f6d4a21a/diff:/var/lib/docker/overlay2/269b881b4fa0b5cd689d0f03b5c38aa6abfff97019ee72c8527eae8c94f45fb2/diff:/var/lib/docker/overlay2/6801a073348e3d733536266e8584527751c3c5189bfc2f1da3b660495577ef6b/diff:/var/lib/docker/overlay2/8c3c6d49a286695292ca02f68a749f8d298963491e7b19bc618e55f67bd4bdd3/diff",
"MergedDir": "/var/lib/docker/overlay2/f485682b35ec252c7dcccb9a7a6a87ecff69560e93713f8bd0bce48862b40454/merged",
"UpperDir": "/var/lib/docker/overlay2/f485682b35ec252c7dcccb9a7a6a87ecff69560e93713f8bd0bce48862b40454/diff",
"WorkDir": "/var/lib/docker/overlay2/f485682b35ec252c7dcccb9a7a6a87ecff69560e93713f8bd0bce48862b40454/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:ace34d1d784c01e3f9d156687089e8f58f786e23ccd097bdbbf337d6d28b3783",
"sha256:b1e89496ceb6bd14987f2b91c4bcaeada8262314d119afd356340e0dea1466e1",
"sha256:16b1c710f703741b24a3f97ddd9bf163c494d535364d9408ee9c06defe8518f1",
"sha256:be1d64b620bf5a773ec3c6f6ed665485929705447b845254a3299b7491a15533",
"sha256:34159f553fd58aa0f4ce4083c5c343b81379aa3b93b4b204329bc03364e49d7b",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:6cd2c15ab2dd5ecc8f5c8c30ad8a9dcd8c57ae795b438645eedf15e14a1cd4e0",
"sha256:460e4311e783465ace38734b89b75389afa59becf79461bfed479d38260c8b41",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:da0c6b16568ee066834126b6cb2136f28e3dc59bbbde92dbdc49a99bfdd27cf6",
"sha256:9283ce2c10d30e1734dd62a2eaff573e210351e0bd46a63e74588be8b0c2d7a9",
"sha256:f8a6a36e01baaa13d5941ff473e939d1ac29e5047e26c5a6cd55dfea55cebf3d",
"sha256:c0636f40b4825cd5c8798eb221c89fcbf3b716d630dd3b2dc96cdc3814541b21",
"sha256:d75cd409d90243aa67e8f7d4e6426bd8263ef1665b380fbfa1e7eac23c243c5b",
"sha256:ae445aeef96e8f739f00d1aa415bec8696c3abccca626fd5944d3241f138c3b7",
"sha256:c54526d4a3c8ceb8be2b864affd61d58a84997de931677e78492832720b6a8ae"
]
},
"Metadata": {
"LastTagTime": "2025-05-30T10:32:25.134376538+08:00"
}
}