docker.io/nvcr.io/nvidia/pytorch:24.12-py3 linux/amd64

docker.io/nvcr.io/nvidia/pytorch:24.12-py3 - 国内下载镜像源 浏览次数:242
这里是镜像的描述信息: NVIDIA PyTorch Docker Image

这是一个基于PyTorch框架的Docker容器镜像,提供了一个完整的深度学习环境。该镜像包含了PyTorch 1.x版本,以及其他必需的依赖包,如CUDA、cuDNN等。

使用这个镜像,您可以轻松地在本地环境中搭建一个深度学习工作站,进行各种机器学习和计算机视觉任务的实验和开发。

此外,该镜像还支持GPU加速,通过NVIDIA的CUDA和cuDNN技术,可以显著提高PyTorch的性能和效率。

源镜像 docker.io/nvcr.io/nvidia/pytorch:24.12-py3
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3
镜像ID sha256:eec0906cea584c98e8868d694341bd716df5cc98077b2c9ba34e7aa52f2da8c7
镜像TAG 24.12-py3
大小 21.66GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 242 次
贡献者
镜像创建 2024-12-05T23:07:36.864927016Z
同步时间 2025-04-11 02:13
更新时间 2025-05-14 17:13
开放端口
6006/tcp 8888/tcp
环境变量
PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin CUDA_VERSION=12.6.3.004 CUDA_DRIVER_VERSION=560.35.05 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS= _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0 NCCL_VERSION=2.23.4 CUBLAS_VERSION=12.6.4.1 CUFFT_VERSION=11.3.0.4 CURAND_VERSION=10.3.7.77 CUSPARSE_VERSION=12.5.4.2 CUSPARSELT_VERSION=0.6.3.2 CUSOLVER_VERSION=11.7.1.2 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.54 NVJPEG_VERSION=12.3.3.54 CUDNN_VERSION=9.6.0.74 CUDNN_FRONTEND_VERSION=1.8.0 TRT_VERSION=10.7.0.23 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2024.7.1.84 NSIGHT_COMPUTE_VERSION=2024.3.2.3 DALI_VERSION=1.44.0 DALI_BUILD=20402542 POLYGRAPHY_VERSION=0.49.13 TRANSFORMER_ENGINE_VERSION=1.13 MODEL_OPT_VERSION=0.21.0 LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video NVIDIA_PRODUCT_NAME=PyTorch GDRCOPY_VERSION=2.4.1 HPCX_VERSION=2.21 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.18.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0 EFA_VERSION=1.34.0 AWS_OFI_NCCL_VERSION=1.12.1 OPAL_PREFIX=/opt/hpcx/ompi OMPI_MCA_coll_hcoll_enable=0 LIBRARY_PATH=/usr/local/cuda/lib64/stubs: PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 PYTORCH_VERSION=2.6.0a0+df5bbc0 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.12 NVFUSER_BUILD_VERSION=0d33366 NVFUSER_VERSION=0d33366 PIP_BREAK_SYSTEM_PACKAGES=1 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python NVPL_LAPACK_MATH_MODE=PEDANTIC PYTHONIOENCODING=utf-8 LC_ALL=C.UTF-8 PIP_DEFAULT_TIMEOUT=100 JUPYTER_PORT=8888 TENSORBOARD_PORT=6006 UCC_CL_BASIC_TLS=^sharp TORCH_CUDA_ARCH_LIST=7.0 7.5 8.0 8.6 9.0+PTX PYTORCH_HOME=/opt/pytorch/pytorch CUDA_HOME=/usr/local/cuda TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1 COCOAPI_VERSION=2.0+nv0.8.1 TORCH_CUDNN_V8_API_ENABLED=1 CUDA_MODULE_LOADING=LAZY NVIDIA_BUILD_ID=126674149
镜像标签
126674149: com.nvidia.build.id 36e6c838d631e94a47406a4e952221247afcabc0: com.nvidia.build.ref 12.6.4.1: com.nvidia.cublas.version 9.0: com.nvidia.cuda.version 9.6.0.74: com.nvidia.cudnn.version 11.3.0.4: com.nvidia.cufft.version 10.3.7.77: com.nvidia.curand.version 11.7.1.2: com.nvidia.cusolver.version 12.5.4.2: com.nvidia.cusparse.version 0.6.3.2: com.nvidia.cusparselt.version 2.0.2.5: com.nvidia.cutensor.version 2.23.4: com.nvidia.nccl.version 12.3.1.54: com.nvidia.npp.version 2024.3.2.3: com.nvidia.nsightcompute.version 2024.7.1.84: com.nvidia.nsightsystems.version 12.3.3.54: com.nvidia.nvjpeg.version 2.6.0a0+df5bbc0: com.nvidia.pytorch.version 10.7.0.23: com.nvidia.tensorrt.version : com.nvidia.tensorrtoss.version nvidia_driver: com.nvidia.volumes.needed ubuntu: org.opencontainers.image.ref.name 24.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3  docker.io/nvcr.io/nvidia/pytorch:24.12-py3

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3  docker.io/nvcr.io/nvidia/pytorch:24.12-py3

Shell快速替换命令

sed -i 's#nvcr.io/nvidia/pytorch:24.12-py3#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3  docker.io/nvcr.io/nvidia/pytorch:24.12-py3'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3  docker.io/nvcr.io/nvidia/pytorch:24.12-py3'

镜像构建历史


# 2024-12-06 07:07:36  0.00B 添加元数据标签
LABEL com.nvidia.build.ref=36e6c838d631e94a47406a4e952221247afcabc0
                        
# 2024-12-06 07:07:36  0.00B 定义构建参数
ARG NVIDIA_BUILD_REF=36e6c838d631e94a47406a4e952221247afcabc0
                        
# 2024-12-06 07:07:36  0.00B 添加元数据标签
LABEL com.nvidia.build.id=126674149
                        
# 2024-12-06 07:07:36  0.00B 设置环境变量 NVIDIA_BUILD_ID
ENV NVIDIA_BUILD_ID=126674149
                        
# 2024-12-06 07:07:36  0.00B 定义构建参数
ARG NVIDIA_BUILD_ID=126674149
                        
# 2024-12-06 07:07:36  719.00B 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2024-12-06 07:07:36  83.49KB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c ln -sf ${_CUDA_COMPAT_PATH}/lib.real ${_CUDA_COMPAT_PATH}/lib  && echo ${_CUDA_COMPAT_PATH}/lib > /etc/ld.so.conf.d/00-cuda-compat.conf  && ldconfig  && rm -f ${_CUDA_COMPAT_PATH}/lib # buildkit
                        
# 2024-12-06 07:07:36  0.00B 设置环境变量 CUDA_MODULE_LOADING
ENV CUDA_MODULE_LOADING=LAZY
                        
# 2024-12-06 07:07:36  0.00B 设置环境变量 TORCH_CUDNN_V8_API_ENABLED
ENV TORCH_CUDNN_V8_API_ENABLED=1
                        
# 2024-12-06 07:07:36  404.19MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Transformer Engine in iGPU container until Version variable is set"; else      NVTE_BUILD_THREADS_PER_JOB=8 pip install --no-cache-dir --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@release_v${TRANSFORMER_ENGINE_VERSION}; fi # buildkit
                        
# 2024-12-06 07:02:42  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin
                        
# 2024-12-06 07:02:42  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-12-06 07:02:42  401.28MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Flash Attention in iGPU as it is a requirement for Transformer Engine"; else     pip install --no-cache-dir /opt/pytorch/flash_attn*.whl; fi # buildkit
                        
# 2024-12-06 07:02:38  45.21MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir /opt/pytorch/torch_tensorrt/dist/*.whl # buildkit
                        
# 2024-12-06 07:02:37  508.17MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir /opt/pytorch/apex/dist/*.whl # buildkit
                        
# 2024-12-06 06:38:52  0.00B 定义构建参数
ARG PYVER=3.12
                        
# 2024-12-06 06:38:52  153.51MB 复制新文件或目录到容器中
COPY torch_tensorrt/ /opt/pytorch/torch_tensorrt/ # buildkit
                        
# 2024-12-06 06:38:51  55.27MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip --version && python -c 'import sys; print(sys.platform)'     && pip install --no-cache-dir nvidia-pyindex     && pip install --extra-index-url https://urm.nvidia.com/artifactory/api/pypi/sw-tensorrt-pypi/simple --no-cache-dir "polygraphy==${POLYGRAPHY_VERSION}"     && pip install --extra-index-url https://pypi.nvidia.com "nvidia-modelopt[torch]==${MODEL_OPT_VERSION}" # buildkit
                        
# 2024-12-06 06:38:38  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin
                        
# 2024-12-06 06:38:38  6.91MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c set -x  && URL=$(VERIFY=1 /nvidia/build-scripts/installTRT.sh | sed -n "s/^.*\(http.*\)tar.*$/\1/p")tar  && FILE=$(wget -O - $URL | sed -n 's/^.*href="\(TensorRT[^"]*\)".*$/\1/p' | egrep -v "internal|safety")  && wget -q $URL/$FILE -O - | tar -xz  && PY=$(python -c 'import sys; print(str(sys.version_info[0])+str(sys.version_info[1]))')  && pip install TensorRT-*/python/tensorrt-*-cp$PY*.whl  && mv /usr/src/tensorrt /opt  && ln -s /opt/tensorrt /usr/src/tensorrt  && rm -r TensorRT-* # buildkit
                        
# 2024-12-06 06:37:31  35.04MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c chmod -R a+w . # buildkit
                        
# 2024-12-06 06:37:31  34.89MB 复制新文件或目录到容器中
COPY tutorials tutorials # buildkit
                        
# 2024-12-06 06:37:31  2.07KB 复制新文件或目录到容器中
COPY docker-examples docker-examples # buildkit
                        
# 2024-12-06 06:37:31  2.05KB 复制新文件或目录到容器中
COPY NVREADME.md README.md # buildkit
                        
# 2024-12-06 06:37:31  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-12-06 06:37:31  3.74GB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c if [ "${L4T}" = "1" ]; then     echo "Not installing rapids for L4T build." ; else     find /rapids  -name "*-Linux.tar.gz" -exec     tar -C /usr --exclude="*.a" --exclude="bin/xgboost" --strip-components=1 -xvf {} \;  && find /rapids -name "*.whl"     ! -name "tornado-*"     ! -name "Pillow-*"     ! -name "certifi-*"     ! -name "protobuf-*" -exec     pip install --no-cache-dir {} + ; pip install numpy==1.26.4; fi # buildkit
                        
# 2024-12-06 06:36:40  224.07KB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir --disable-pip-version-check tabulate # buildkit
                        
# 2024-12-06 06:36:39  173.41MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c ( cd fuser && pip install -r requirements.txt &&  python setup.py -version-tag=a0+${NVFUSER_VERSION} install && python setup.py clean && cp $(find /usr/local/lib/python${PYVER}/dist-packages/ -name libnvfuser_codegen.so)  /usr/local/lib/python${PYVER}/dist-packages/torch/lib/ )  && ( cd lightning-thunder && python setup.py install && rm -rf build)  && ( cd lightning-thunder && mkdir tmp && cd tmp && git clone -b v${CUDNN_FRONTEND_VERSION} --recursive --single-branch https://github.com/NVIDIA/cudnn-frontend.git cudnn_frontend && cd cudnn_frontend && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . && cd ../../ && rm -rf tmp )  && ( cd pytorch/third_party/onnx && pip uninstall typing -y && CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . ) # buildkit
                        
# 2024-12-06 06:29:48  2.21KB 复制新文件或目录到容器中
COPY singularity/ /.singularity.d/ # buildkit
                        
# 2024-12-06 06:29:48  69.32MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c export COCOAPI_TAG=$(echo ${COCOAPI_VERSION} | sed 's/^.*+n//')  && pip install --disable-pip-version-check --no-cache-dir git+https://github.com/nvidia/cocoapi.git@${COCOAPI_TAG}#subdirectory=PythonAPI # buildkit
                        
# 2024-12-06 06:29:17  0.00B 设置环境变量 COCOAPI_VERSION
ENV COCOAPI_VERSION=2.0+nv0.8.1
                        
# 2024-12-06 06:29:17  699.93MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c if [ -z "${DALI_VERSION}" ] ; then   echo "Not Installing DALI for L4T Build." ; else   export DALI_PKG_SUFFIX="cuda${CUDA_VERSION%%.*}0"   && pip install --disable-pip-version-check --no-cache-dir                 --extra-index-url https://developer.download.nvidia.com/compute/redist                 --extra-index-url http://sqrl/dldata/pip-dali${DALI_URL_SUFFIX:-} --trusted-host sqrl         nvidia-dali-${DALI_PKG_SUFFIX}==${DALI_VERSION}; fi # buildkit
                        
# 2024-12-06 06:29:08  586.17MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir /tmp/dist/*.whl # buildkit
                        
# 2024-12-06 06:29:03  8.60MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c cd pytorch && pip install --no-cache-dir -v -r /opt/pytorch/pytorch/requirements.txt # buildkit
                        
# 2024-12-06 06:29:02  11.25MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c patchelf --set-rpath '$ORIGIN:/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torchvision/' /usr/local/lib/libtorchvision.so && patchelf --set-soname libjpeg.so.62 --output /usr/local/lib/libjpeg.so.62 $(readlink -f $(ldd /usr/local/lib/python3.12/dist-packages/torchvision/image.so | grep libjpeg | awk '{print $3}')) # buildkit
                        
# 2024-12-06 06:29:02  0.00B 复制新文件或目录到容器中
COPY /usr/local/lib64/libjpeg* /usr/local/lib/ # buildkit
                        
# 2024-12-06 06:29:02  10.02MB 复制新文件或目录到容器中
COPY /usr/local/lib64/libtorchvision.so /usr/local/lib/libtorchvision.so # buildkit
                        
# 2024-12-06 06:29:02  405.57KB 复制新文件或目录到容器中
COPY /usr/local/include/torchvision/ /usr/local/include/torchvision/ # buildkit
                        
# 2024-12-06 06:29:02  8.90KB 复制新文件或目录到容器中
COPY /usr/local/share/cmake/TorchVision/ /usr/local/share/cmake/TorchVision/ # buildkit
                        
# 2024-12-06 06:29:01  1.79GB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install /opt/transfer/torch*.whl     && patchelf --set-rpath '/usr/local/lib' /usr/local/lib/python${PYVER}/dist-packages/torch/lib/libtorch_global_deps.so # buildkit
                        
# 2024-12-06 06:28:37  0.00B 设置环境变量 TORCH_ALLOW_TF32_CUBLAS_OVERRIDE
ENV TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
                        
# 2024-12-06 06:28:37  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2024-12-06 06:28:37  0.00B 设置环境变量 PYTORCH_HOME
ENV PYTORCH_HOME=/opt/pytorch/pytorch
                        
# 2024-12-06 06:28:37  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=7.0 7.5 8.0 8.6 9.0+PTX
                        
# 2024-12-06 06:28:37  0.00B 设置环境变量 UCC_CL_BASIC_TLS
ENV UCC_CL_BASIC_TLS=^sharp
                        
# 2024-12-06 06:28:37  65.56MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c OPENCV_VERSION=4.10.0 &&     cd / &&     wget -q -O - https://github.com/opencv/opencv/archive/${OPENCV_VERSION}.tar.gz | tar -xzf - &&     cd /opencv-${OPENCV_VERSION} &&     cmake -GNinja -Bbuild -H.           -DWITH_CUDA=OFF -DWITH_1394=OFF           -DPYTHON3_PACKAGES_PATH="/usr/local/lib/python${PYVER}/dist-packages"           -DBUILD_opencv_cudalegacy=OFF -DBUILD_opencv_stitching=OFF -DWITH_IPP=OFF -DWITH_PROTOBUF=OFF &&     cmake --build build --target install &&     cd modules/python/package &&     pip install --no-cache-dir --disable-pip-version-check -v . &&     rm -rf /opencv-${OPENCV_VERSION} # buildkit
                        
# 2024-12-06 06:23:42  0.00B 声明容器运行时监听的端口
EXPOSE map[6006/tcp:{}]
                        
# 2024-12-06 06:23:42  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2024-12-06 06:23:42  0.00B 设置环境变量 TENSORBOARD_PORT
ENV TENSORBOARD_PORT=6006
                        
# 2024-12-06 06:23:42  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2024-12-06 06:23:42  248.00B 复制新文件或目录到容器中
COPY jupyter_config/settings.jupyterlab-settings /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/ # buildkit
                        
# 2024-12-06 06:23:42  236.00B 复制新文件或目录到容器中
COPY jupyter_config/manager.jupyterlab-settings /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/ # buildkit
                        
# 2024-12-06 06:23:42  554.00B 复制新文件或目录到容器中
COPY jupyter_config/jupyter_notebook_config.py /usr/local/etc/jupyter/ # buildkit
                        
# 2024-12-06 06:23:42  14.19MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir /opt/pytorch/jupyterlab_tensorboard_pro_wheel/*.whl     jupytext black isort  && mkdir -p /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/  && jupyter lab clean  && rm -rf /opt/pytorch/jupyterlab_tensorboard_pro_wheel # buildkit
                        
# 2024-12-06 06:23:40  2.11MB 复制新文件或目录到容器中
COPY /builder/jupyterlab_tensorboard_pro/dist /opt/pytorch/jupyterlab_tensorboard_pro_wheel # buildkit
                        
# 2024-12-06 06:22:57  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2024-12-06 06:22:57  27.81KB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c PATCHED_FILE=$(python -c "from tensorboard.plugins.core import core_plugin as _; print(_.__file__)") &&     sed -i 's/^\( *"--bind_all",\)$/\1 default=True,/' "$PATCHED_FILE" &&     test $(grep '^ *"--bind_all", default=True,$' "$PATCHED_FILE" | wc -l) -eq 1 # buildkit
                        
# 2024-12-06 06:22:57  245.15MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c git config --global url."https://github".insteadOf git://github &&     pip install --no-cache-dir 'jupyterlab>=4.1.0,<5.0.0a0' notebook tensorboard==2.16.2     jupyterlab_code_formatter python-hostlist # buildkit
                        
# 2024-12-06 06:22:45  2.19GB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir         numpy==1.26.4         scipy==1.11.3         "PyYAML>=5.4.1"         astunparse         typing_extensions         cffi         spacy==3.7.5         mock         tqdm         librosa==0.10.1         expecttest==0.1.3         hypothesis==5.35.1         xdoctest==1.0.2         pytest==8.1.1         pytest-xdist         pytest-rerunfailures         pytest-shard         pytest-flakefinder         pybind11         Cython         "regex>=2020.1.8"         protobuf==4.24.4 &&         six==1.16.0 &&     if [[ $TARGETARCH = "amd64" ]] ; then pip install --no-cache-dir mkl==2021.1.1 mkl-include==2021.1.1 mkl-devel==2021.1.1 ;     find /usr/local/lib -maxdepth 1 -type f -regex '.*\/lib\(tbb\|mkl\).*\.so\($\|\.[0-9]*\.[0-9]*\)' -exec rm -v {} + ; fi # buildkit
                        
# 2024-12-06 06:22:02  0.00B 设置环境变量 PIP_DEFAULT_TIMEOUT
ENV PIP_DEFAULT_TIMEOUT=100
                        
# 2024-12-06 06:22:02  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-12-06 06:22:02  0.00B 设置环境变量 PYTHONIOENCODING
ENV PYTHONIOENCODING=utf-8
                        
# 2024-12-06 06:22:02  1.34GB 复制新文件或目录到容器中
COPY . . # buildkit
                        
# 2024-12-06 06:21:53  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2024-12-06 06:21:53  0.00B 设置环境变量 NVPL_LAPACK_MATH_MODE
ENV NVPL_LAPACK_MATH_MODE=PEDANTIC
                        
# 2024-12-06 06:21:53  0.00B 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c if [ $TARGETARCH = "arm64" ]; then cd /opt &&     curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/nvpl_slim_24.04/sbsa/nvpl_slim_24.04.tar" --output nvpl_slim_24.04.tar &&     tar -xf nvpl_slim_24.04.tar &&     cp -r nvpl_slim_24.04/lib/* /usr/local/lib &&     cp -r nvpl_slim_24.04/include/* /usr/local/include &&     rm -rf nvpl_slim_24.04.tar nvpl_slim_24.04 ; fi # buildkit
                        
# 2024-12-06 06:21:52  46.71MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/OpenBLAS/0.3.24-$(uname -m)/OpenBLAS-0.3.24-$(uname -m).tar.gz" --output OpenBLAS.tar.gz &&     tar -xf OpenBLAS.tar.gz -C /usr/local/ &&     rm OpenBLAS.tar.gz # buildkit
                        
# 2024-12-06 06:21:52  74.55MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir pip 'setuptools<71' &&     pip install --no-cache-dir cmake # buildkit
                        
# 2024-12-06 06:21:48  12.79MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c DEBIAN_FRONTEND=noninteractive apt remove -y --force-yes python3-pip &&    curl -O https://bootstrap.pypa.io/get-pip.py &&     python get-pip.py &&     rm get-pip.py # buildkit
                        
# 2024-12-06 06:21:44  0.00B 设置环境变量 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION
ENV PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
                        
# 2024-12-06 06:21:44  230.31MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=24.12 PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 NVFUSER_BUILD_VERSION=0d33366 TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c export PYSFX=`echo "${PYVER}" | cut -c1-1` &&     export DEBIAN_FRONTEND=noninteractive &&     apt-get update &&     apt-get install -y --no-install-recommends         python$PYVER-dev         python$PYSFX         python$PYSFX-dev         python$PYSFX-venv         python-is-python$PYSFX         autoconf         automake         libatlas-base-dev         libgoogle-glog-dev         libbz2-dev         libc-ares2         libre2-dev         libleveldb-dev         liblmdb-dev         libprotobuf-dev         libsnappy-dev         libtool         nasm         protobuf-compiler         pkg-config         unzip         sox         libsndfile1         libpng-dev         libhdf5-dev         gfortran         rapidjson-dev         ninja-build         libedit-dev         build-essential         patchelf     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-12-06 06:21:44  0.00B 定义构建参数
ARG L4T=0
                        
# 2024-12-06 06:21:44  0.00B 设置环境变量 PIP_BREAK_SYSTEM_PACKAGES
ENV PIP_BREAK_SYSTEM_PACKAGES=1
                        
# 2024-12-06 06:21:44  0.00B 定义构建参数
ARG PYVER_MAJMIN=312
                        
# 2024-12-06 06:21:44  0.00B 定义构建参数
ARG PYVER=3.12
                        
# 2024-12-06 06:21:44  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
# 2024-12-06 06:21:44  0.00B 添加元数据标签
LABEL com.nvidia.pytorch.version=2.6.0a0+df5bbc0
                        
# 2024-12-06 06:21:44  0.00B 设置环境变量 NVFUSER_BUILD_VERSION NVFUSER_VERSION
ENV NVFUSER_BUILD_VERSION=0d33366 NVFUSER_VERSION=0d33366
                        
# 2024-12-06 06:21:44  0.00B 设置环境变量 PYTORCH_BUILD_VERSION PYTORCH_VERSION PYTORCH_BUILD_NUMBER NVIDIA_PYTORCH_VERSION
ENV PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0 PYTORCH_VERSION=2.6.0a0+df5bbc0 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.12
                        
# 2024-12-06 06:21:44  0.00B 定义构建参数
ARG NVFUSER_BUILD_VERSION=0d33366
                        
# 2024-12-06 06:21:44  0.00B 定义构建参数
ARG PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0
                        
# 2024-12-06 06:21:44  0.00B 定义构建参数
ARG NVIDIA_PYTORCH_VERSION=24.12
                        
# 2024-12-06 06:21:44  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=PyTorch
                        
# 2024-12-06 05:25:02  39.59KB 执行命令并创建新的镜像层
RUN |9 GDRCOPY_VERSION=2.4.1 HPCX_VERSION=2.21 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.18.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.34.0 AWS_OFI_NCCL_VERSION=1.12.1 TARGETARCH=amd64 /bin/sh -c if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then            echo "/opt/amazon/aws-ofi-nccl/lib" > /etc/ld.so.conf.d/aws-ofi-nccl.conf       && ldconfig;                                                 fi # buildkit
                        
# 2024-12-06 05:25:02  934.87KB 复制新文件或目录到容器中
COPY /opt/amazon/aws-ofi-nccl /opt/amazon/aws-ofi-nccl # buildkit
                        
# 2024-12-06 05:24:49  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:
                        
# 2024-12-06 05:24:49  1.01GB 执行命令并创建新的镜像层
RUN |9 GDRCOPY_VERSION=2.4.1 HPCX_VERSION=2.21 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.18.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.34.0 AWS_OFI_NCCL_VERSION=1.12.1 TARGETARCH=amd64 /bin/sh -c export DEVEL=1 BASE=0  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUDA.sh  && /nvidia/build-scripts/installLIBS.sh  && if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then /nvidia/build-scripts/installNCCL.sh; fi  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installCUSPARSELT.sh  && if [ -f "/tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch" ]; then patch -p0 < /tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch; fi  && rm -f /tmp/cuda-*.patch # buildkit
                        
# 2024-12-06 05:22:26  1.49KB 复制新文件或目录到容器中
COPY cuda-*.patch /tmp # buildkit
                        
# 2024-12-06 05:22:26  0.00B 设置环境变量 OMPI_MCA_coll_hcoll_enable
ENV OMPI_MCA_coll_hcoll_enable=0
                        
# 2024-12-06 05:22:26  0.00B 设置环境变量 OPAL_PREFIX PATH
ENV OPAL_PREFIX=/opt/hpcx/ompi PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin
                        
# 2024-12-06 05:22:26  226.69MB 执行命令并创建新的镜像层
RUN |9 GDRCOPY_VERSION=2.4.1 HPCX_VERSION=2.21 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.18.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.34.0 AWS_OFI_NCCL_VERSION=1.12.1 TARGETARCH=amd64 /bin/sh -c cd /nvidia  && ( export DEBIAN_FRONTEND=noninteractive        && apt-get update                            && apt-get install -y --no-install-recommends              libibverbs1                                  libibverbs-dev                               librdmacm1                                   librdmacm-dev                                libibumad3                                   libibumad-dev                                ibverbs-utils                                ibverbs-providers                     && rm -rf /var/lib/apt/lists/*               && rm $(dpkg-query -L                                    libibverbs-dev                               librdmacm-dev                                libibumad-dev                            | grep "\(\.so\|\.a\)$")          )                                            && ( cd opt/gdrcopy/                              && dpkg -i libgdrapi_*.deb                   )                                         && ( cp -r opt/hpcx /opt/                                         && cp etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/          && ln -sf /opt/hpcx/ompi /usr/local/mpi                      && ln -sf /opt/hpcx/ucx  /usr/local/ucx                      && sed -i 's/^\(hwloc_base_binding_policy\) = core$/\1 = none/' /opt/hpcx/ompi/etc/openmpi-mca-params.conf         && sed -i 's/^\(btl = self\)$/#\1/'                             /opt/hpcx/ompi/etc/openmpi-mca-params.conf       )                                                         && ( if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then           cd opt/amazon/efa/                                           && dpkg -i libfabric*.deb                                    && rm /opt/amazon/efa/lib/libfabric.a                        && echo "/opt/amazon/efa/lib" > /etc/ld.so.conf.d/efa.conf;         fi                                                         )                                                         && ldconfig # buildkit
                        
# 2024-12-06 05:22:26  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
# 2024-12-06 05:22:26  0.00B 设置环境变量 GDRCOPY_VERSION HPCX_VERSION MOFED_VERSION OPENUCX_VERSION OPENMPI_VERSION RDMACORE_VERSION EFA_VERSION AWS_OFI_NCCL_VERSION
ENV GDRCOPY_VERSION=2.4.1 HPCX_VERSION=2.21 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.18.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0 EFA_VERSION=1.34.0 AWS_OFI_NCCL_VERSION=1.12.1
                        
# 2024-12-06 05:22:26  0.00B 定义构建参数
ARG AWS_OFI_NCCL_VERSION=1.12.1
                        
# 2024-12-06 05:22:26  0.00B 定义构建参数
ARG EFA_VERSION=1.34.0
                        
# 2024-12-06 05:22:26  0.00B 定义构建参数
ARG OPENMPI_VERSION=4.1.7
                        
# 2024-12-06 05:22:26  0.00B 定义构建参数
ARG OPENUCX_VERSION=1.18.0
                        
# 2024-12-06 05:22:26  0.00B 定义构建参数
ARG MOFED_VERSION=5.4-rdmacore39.0
                        
# 2024-12-06 05:22:26  0.00B 定义构建参数
ARG RDMACORE_VERSION=39.0
                        
# 2024-12-06 05:22:26  0.00B 定义构建参数
ARG HPCX_VERSION=2.21
                        
# 2024-12-06 05:22:26  0.00B 定义构建参数
ARG GDRCOPY_VERSION=2.4.1
                        
# 2024-12-06 05:22:18  101.49MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         build-essential         git         libglib2.0-0         less         libhwloc15         libnl-route-3-200         libnl-3-dev         libnl-route-3-dev         libnuma-dev         libnuma1         libpmi2-0-dev         nano         numactl         openssh-client         vim         wget  && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-12-06 04:58:22  148.72KB 复制新文件或目录到容器中
COPY NVIDIA_Deep_Learning_Container_License.pdf /workspace/ # buildkit
                        
# 2024-12-06 04:58:22  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2024-12-06 04:58:22  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2024-12-06 04:58:22  16.12KB 复制新文件或目录到容器中
COPY entrypoint/ /opt/nvidia/ # buildkit
                        
# 2024-12-06 04:58:22  0.00B 设置环境变量 PATH LD_LIBRARY_PATH NVIDIA_VISIBLE_DEVICES NVIDIA_DRIVER_CAPABILITIES
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
                        
# 2024-12-06 04:58:22  0.00B 定义构建参数
ARG _LIBPATH_SUFFIX=
                        
# 2024-12-06 04:58:22  46.00B 执行命令并创建新的镜像层
RUN |24 CUDA_VERSION=12.6.3.004 CUDA_DRIVER_VERSION=560.35.05 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.23.4 CUBLAS_VERSION=12.6.4.1 CUFFT_VERSION=11.3.0.4 CURAND_VERSION=10.3.7.77 CUSPARSE_VERSION=12.5.4.2 CUSOLVER_VERSION=11.7.1.2 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.54 NVJPEG_VERSION=12.3.3.54 CUDNN_VERSION=9.6.0.74 CUDNN_FRONTEND_VERSION=1.8.0 TRT_VERSION=10.7.0.23 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2024.7.1.84 NSIGHT_COMPUTE_VERSION=2024.3.2.3 CUSPARSELT_VERSION=0.6.3.2 DALI_VERSION=1.44.0 DALI_BUILD=20402542 POLYGRAPHY_VERSION=0.49.13 TRANSFORMER_ENGINE_VERSION=1.13 MODEL_OPT_VERSION=0.21.0 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf  && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2024-12-06 04:58:22  13.39KB 复制文件或目录到容器中
ADD docs.tgz / # buildkit
                        
# 2024-12-06 04:58:22  0.00B 设置环境变量 DALI_VERSION DALI_BUILD POLYGRAPHY_VERSION TRANSFORMER_ENGINE_VERSION MODEL_OPT_VERSION
ENV DALI_VERSION=1.44.0 DALI_BUILD=20402542 POLYGRAPHY_VERSION=0.49.13 TRANSFORMER_ENGINE_VERSION=1.13 MODEL_OPT_VERSION=0.21.0
                        
# 2024-12-06 04:58:22  0.00B 定义构建参数
ARG MODEL_OPT_VERSION=0.21.0
                        
# 2024-12-06 04:58:22  0.00B 定义构建参数
ARG TRANSFORMER_ENGINE_VERSION=1.13
                        
# 2024-12-06 04:58:22  0.00B 定义构建参数
ARG POLYGRAPHY_VERSION=0.49.13
                        
# 2024-12-06 04:58:22  0.00B 定义构建参数
ARG DALI_BUILD=20402542
                        
# 2024-12-06 04:58:22  0.00B 定义构建参数
ARG DALI_VERSION=1.44.0
                        
# 2024-12-06 04:58:22  0.00B 添加元数据标签
LABEL com.nvidia.nccl.version=2.23.4 com.nvidia.cublas.version=12.6.4.1 com.nvidia.cufft.version=11.3.0.4 com.nvidia.curand.version=10.3.7.77 com.nvidia.cusparse.version=12.5.4.2 com.nvidia.cusparselt.version=0.6.3.2 com.nvidia.cusolver.version=11.7.1.2 com.nvidia.cutensor.version=2.0.2.5 com.nvidia.npp.version=12.3.1.54 com.nvidia.nvjpeg.version=12.3.3.54 com.nvidia.cudnn.version=9.6.0.74 com.nvidia.tensorrt.version=10.7.0.23 com.nvidia.tensorrtoss.version= com.nvidia.nsightsystems.version=2024.7.1.84 com.nvidia.nsightcompute.version=2024.3.2.3
                        
# 2024-12-06 04:58:22  6.50GB 执行命令并创建新的镜像层
RUN |19 CUDA_VERSION=12.6.3.004 CUDA_DRIVER_VERSION=560.35.05 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.23.4 CUBLAS_VERSION=12.6.4.1 CUFFT_VERSION=11.3.0.4 CURAND_VERSION=10.3.7.77 CUSPARSE_VERSION=12.5.4.2 CUSOLVER_VERSION=11.7.1.2 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.54 NVJPEG_VERSION=12.3.3.54 CUDNN_VERSION=9.6.0.74 CUDNN_FRONTEND_VERSION=1.8.0 TRT_VERSION=10.7.0.23 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2024.7.1.84 NSIGHT_COMPUTE_VERSION=2024.3.2.3 CUSPARSELT_VERSION=0.6.3.2 /bin/sh -c /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installCUSPARSELT.sh  && if [ -z "${JETPACK_HOST_MOUNTS}" ]; then       /nvidia/build-scripts/installNCCL.sh;     fi; # buildkit
                        
# 2024-12-06 04:57:31  0.00B 设置环境变量 NCCL_VERSION CUBLAS_VERSION CUFFT_VERSION CURAND_VERSION CUSPARSE_VERSION CUSPARSELT_VERSION CUSOLVER_VERSION CUTENSOR_VERSION NPP_VERSION NVJPEG_VERSION CUDNN_VERSION CUDNN_FRONTEND_VERSION TRT_VERSION TRTOSS_VERSION NSIGHT_SYSTEMS_VERSION NSIGHT_COMPUTE_VERSION
ENV NCCL_VERSION=2.23.4 CUBLAS_VERSION=12.6.4.1 CUFFT_VERSION=11.3.0.4 CURAND_VERSION=10.3.7.77 CUSPARSE_VERSION=12.5.4.2 CUSPARSELT_VERSION=0.6.3.2 CUSOLVER_VERSION=11.7.1.2 CUTENSOR_VERSION=2.0.2.5 NPP_VERSION=12.3.1.54 NVJPEG_VERSION=12.3.3.54 CUDNN_VERSION=9.6.0.74 CUDNN_FRONTEND_VERSION=1.8.0 TRT_VERSION=10.7.0.23 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2024.7.1.84 NSIGHT_COMPUTE_VERSION=2024.3.2.3
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG CUSPARSELT_VERSION=0.6.3.2
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG NSIGHT_COMPUTE_VERSION=2024.3.2.3
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG NSIGHT_SYSTEMS_VERSION=2024.7.1.84
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG TRTOSS_VERSION=
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG TRT_VERSION=10.7.0.23
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG CUDNN_FRONTEND_VERSION=1.8.0
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG CUDNN_VERSION=9.6.0.74
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG NVJPEG_VERSION=12.3.3.54
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG NPP_VERSION=12.3.1.54
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG CUTENSOR_VERSION=2.0.2.5
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG CUSOLVER_VERSION=11.7.1.2
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG CUSPARSE_VERSION=12.5.4.2
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG CURAND_VERSION=10.3.7.77
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG CUFFT_VERSION=11.3.0.4
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG CUBLAS_VERSION=12.6.4.1
                        
# 2024-12-06 04:57:31  0.00B 定义构建参数
ARG NCCL_VERSION=2.23.4
                        
# 2024-12-06 04:57:31  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver com.nvidia.cuda.version=9.0
                        
# 2024-12-06 04:57:31  0.00B 设置环境变量 _CUDA_COMPAT_PATH ENV BASH_ENV SHELL NVIDIA_REQUIRE_CUDA
ENV _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0
                        
# 2024-12-06 04:57:31  59.18KB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.6.3.004 CUDA_DRIVER_VERSION=560.35.05 JETPACK_HOST_MOUNTS= /bin/sh -c cp -vprd /nvidia/. /  &&  patch -p0 < /etc/startup_scripts.patch  &&  rm -f /etc/startup_scripts.patch # buildkit
                        
# 2024-12-06 04:57:31  460.11MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.6.3.004 CUDA_DRIVER_VERSION=560.35.05 JETPACK_HOST_MOUNTS= /bin/sh -c /nvidia/build-scripts/installCUDA.sh # buildkit
                        
# 2024-12-06 04:57:24  0.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.6.3.004 CUDA_DRIVER_VERSION=560.35.05 JETPACK_HOST_MOUNTS= /bin/sh -c if [ -n "${JETPACK_HOST_MOUNTS}" ]; then        echo "/usr/lib/aarch64-linux-gnu/tegra" > /etc/ld.so.conf.d/nvidia-tegra.conf     && echo "/usr/lib/aarch64-linux-gnu/tegra-egl" >> /etc/ld.so.conf.d/nvidia-tegra.conf;     fi # buildkit
                        
# 2024-12-06 04:57:24  0.00B 设置环境变量 CUDA_VERSION CUDA_DRIVER_VERSION CUDA_CACHE_DISABLE NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS
ENV CUDA_VERSION=12.6.3.004 CUDA_DRIVER_VERSION=560.35.05 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
                        
# 2024-12-06 04:57:24  0.00B 定义构建参数
ARG JETPACK_HOST_MOUNTS=
                        
# 2024-12-06 04:57:24  0.00B 定义构建参数
ARG CUDA_DRIVER_VERSION=560.35.05
                        
# 2024-12-06 04:57:24  0.00B 定义构建参数
ARG CUDA_VERSION=12.6.3.004
                        
# 2024-12-06 04:57:24  330.91MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         apt-utils         build-essential         ca-certificates         curl         libncurses6         libncursesw6         patch         wget         rsync         unzip         jq         gnupg         libtcmalloc-minimal4  && rm -rf /var/lib/apt/lists/*  && echo "hsts=0" > /root/.wgetrc # buildkit
                        
# 2024-11-20 01:29:25  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2024-11-20 01:29:25  78.12MB 
/bin/sh -c #(nop) ADD file:bcebbf0fddcba5b864d5d267b68dd23bcfb01275e6ec7bcab69bf8b56af14804 in / 
                        
# 2024-11-20 01:29:23  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=24.04
                        
# 2024-11-20 01:29:23  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2024-11-20 01:29:23  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2024-11-20 01:29:23  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:eec0906cea584c98e8868d694341bd716df5cc98077b2c9ba34e7aa52f2da8c7",
    "RepoTags": [
        "nvcr.io/nvidia/pytorch:24.12-py3",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.12-py3"
    ],
    "RepoDigests": [
        "nvcr.io/nvidia/pytorch@sha256:4ff5b72c183f056b7dbb173309534b4d2d9c000cda963259b38f75f87babbb87",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch@sha256:5d877e572892a0ac295ea0fd1d3ef2f875df180992170baca23221fb768d6976"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-12-05T23:07:36.864927016Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "6006/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin",
            "CUDA_VERSION=12.6.3.004",
            "CUDA_DRIVER_VERSION=560.35.05",
            "CUDA_CACHE_DISABLE=1",
            "NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=",
            "_CUDA_COMPAT_PATH=/usr/local/cuda/compat",
            "ENV=/etc/shinit_v2",
            "BASH_ENV=/etc/bash.bashrc",
            "SHELL=/bin/bash",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=9.0",
            "NCCL_VERSION=2.23.4",
            "CUBLAS_VERSION=12.6.4.1",
            "CUFFT_VERSION=11.3.0.4",
            "CURAND_VERSION=10.3.7.77",
            "CUSPARSE_VERSION=12.5.4.2",
            "CUSPARSELT_VERSION=0.6.3.2",
            "CUSOLVER_VERSION=11.7.1.2",
            "CUTENSOR_VERSION=2.0.2.5",
            "NPP_VERSION=12.3.1.54",
            "NVJPEG_VERSION=12.3.3.54",
            "CUDNN_VERSION=9.6.0.74",
            "CUDNN_FRONTEND_VERSION=1.8.0",
            "TRT_VERSION=10.7.0.23",
            "TRTOSS_VERSION=",
            "NSIGHT_SYSTEMS_VERSION=2024.7.1.84",
            "NSIGHT_COMPUTE_VERSION=2024.3.2.3",
            "DALI_VERSION=1.44.0",
            "DALI_BUILD=20402542",
            "POLYGRAPHY_VERSION=0.49.13",
            "TRANSFORMER_ENGINE_VERSION=1.13",
            "MODEL_OPT_VERSION=0.21.0",
            "LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility,video",
            "NVIDIA_PRODUCT_NAME=PyTorch",
            "GDRCOPY_VERSION=2.4.1",
            "HPCX_VERSION=2.21",
            "MOFED_VERSION=5.4-rdmacore39.0",
            "OPENUCX_VERSION=1.18.0",
            "OPENMPI_VERSION=4.1.7",
            "RDMACORE_VERSION=39.0",
            "EFA_VERSION=1.34.0",
            "AWS_OFI_NCCL_VERSION=1.12.1",
            "OPAL_PREFIX=/opt/hpcx/ompi",
            "OMPI_MCA_coll_hcoll_enable=0",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs:",
            "PYTORCH_BUILD_VERSION=2.6.0a0+df5bbc0",
            "PYTORCH_VERSION=2.6.0a0+df5bbc0",
            "PYTORCH_BUILD_NUMBER=0",
            "NVIDIA_PYTORCH_VERSION=24.12",
            "NVFUSER_BUILD_VERSION=0d33366",
            "NVFUSER_VERSION=0d33366",
            "PIP_BREAK_SYSTEM_PACKAGES=1",
            "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python",
            "NVPL_LAPACK_MATH_MODE=PEDANTIC",
            "PYTHONIOENCODING=utf-8",
            "LC_ALL=C.UTF-8",
            "PIP_DEFAULT_TIMEOUT=100",
            "JUPYTER_PORT=8888",
            "TENSORBOARD_PORT=6006",
            "UCC_CL_BASIC_TLS=^sharp",
            "TORCH_CUDA_ARCH_LIST=7.0 7.5 8.0 8.6 9.0+PTX",
            "PYTORCH_HOME=/opt/pytorch/pytorch",
            "CUDA_HOME=/usr/local/cuda",
            "TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1",
            "COCOAPI_VERSION=2.0+nv0.8.1",
            "TORCH_CUDNN_V8_API_ENABLED=1",
            "CUDA_MODULE_LOADING=LAZY",
            "NVIDIA_BUILD_ID=126674149"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.build.id": "126674149",
            "com.nvidia.build.ref": "36e6c838d631e94a47406a4e952221247afcabc0",
            "com.nvidia.cublas.version": "12.6.4.1",
            "com.nvidia.cuda.version": "9.0",
            "com.nvidia.cudnn.version": "9.6.0.74",
            "com.nvidia.cufft.version": "11.3.0.4",
            "com.nvidia.curand.version": "10.3.7.77",
            "com.nvidia.cusolver.version": "11.7.1.2",
            "com.nvidia.cusparse.version": "12.5.4.2",
            "com.nvidia.cusparselt.version": "0.6.3.2",
            "com.nvidia.cutensor.version": "2.0.2.5",
            "com.nvidia.nccl.version": "2.23.4",
            "com.nvidia.npp.version": "12.3.1.54",
            "com.nvidia.nsightcompute.version": "2024.3.2.3",
            "com.nvidia.nsightsystems.version": "2024.7.1.84",
            "com.nvidia.nvjpeg.version": "12.3.3.54",
            "com.nvidia.pytorch.version": "2.6.0a0+df5bbc0",
            "com.nvidia.tensorrt.version": "10.7.0.23",
            "com.nvidia.tensorrtoss.version": "",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "24.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 21661268799,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/9d9c038bdeffb0e0643bf14db8c3662a4005c247f68d1c84fc330e6490e8007a/diff:/var/lib/docker/overlay2/60b1d078d5afe55be67b60920787797a9ca17d46ec214d429abd71d89df77e37/diff:/var/lib/docker/overlay2/7595c32893255ca7c2d2236c1ae85db9aec0380b770aee574f2d00f5e57fe1a2/diff:/var/lib/docker/overlay2/7dd68cc5f930454538497e1e097a28b7566f4b51a04bb60e4dac6feb405d3ac8/diff:/var/lib/docker/overlay2/df3efb1cf009ddb8c29ac087f0585318f5b9acac8718b620364f2ac594c55676/diff:/var/lib/docker/overlay2/16882014b37f4f195d4db1ddf94a6adf0833d1bd8a93a6875879be4afba376cc/diff:/var/lib/docker/overlay2/15bf9c7f0c02c8d1c633098e00d2674cda360642869069895df89168d013d9a2/diff:/var/lib/docker/overlay2/96e4d3a8e60309efa492de41ca9de17effd0bafd3e225e27c3193b5b700b45db/diff:/var/lib/docker/overlay2/982adb2386a38ef24f2f5e95cbe8e8959e49bf383d70f6742d3a7053dfaa3ef0/diff:/var/lib/docker/overlay2/06857ad46feabafa9a1e214a5d40d81b07064d07c3d901a0381361a7e113c7ea/diff:/var/lib/docker/overlay2/853b08147a59423885cb08daea01ca67e629b7f711424f9a4d6fec7c2d9f8492/diff:/var/lib/docker/overlay2/04387e70da6d41293fb147ee565a4ec00b14d208f108190b35395f272056f5ca/diff:/var/lib/docker/overlay2/173936a78a99e1a8ca9e4e64db5d214c833bb2262323090e145dde6c8d74318f/diff:/var/lib/docker/overlay2/de9911537d747e555cac39fe4cbc8cf923252e613e7c143179a239231166cd3d/diff:/var/lib/docker/overlay2/e53b1701feacb774b1fe7d395c8c13f64f1a220a2ea0f18aa7e404c0e74444a4/diff:/var/lib/docker/overlay2/726631a8b7e773bf58f3099ba8f77756c91026e27e1801f2600d4c303cbccbc9/diff:/var/lib/docker/overlay2/0873c11c30fc92d477852b70703d7f34630e3ee56a9d04352b5059af8c65ba22/diff:/var/lib/docker/overlay2/d2a927867224c3cc415cc40823f76b08f2091bab6773817d42594fdd0e2122f6/diff:/var/lib/docker/overlay2/cb2340355d399990d5a24afcd99123ead52f628ee5f4994d14a8fe09310f8270/diff:/var/lib/docker/overlay2/85a94b8f6bc8b65702d171565e84765a3dccf8ee036a8a6195b4e421842180cd/diff:/var/lib/docker/overlay2/a83ffe949796565b5afbdaf4fa32cf68e4864ebdfae64b891518448f5eb7b824/diff:/var/lib/docker/overlay2/ca8f1bf58c3d73442693c5994cf3e6ccaf77325e9be59af99b49d9506a283aa9/diff:/var/lib/docker/overlay2/a69ebc74691354246a37fe2625da530c2ecfdbfbbfddd9fadca66ecc011f55e9/diff:/var/lib/docker/overlay2/fde4e1734f81a6fb46540d81437bd3fd01781ae00964e5adf1edf047745c9aaf/diff:/var/lib/docker/overlay2/315186d502e8e748068e7e09f51cbc234d39b19dfe0910693ef60e37c5008a77/diff:/var/lib/docker/overlay2/e1e2eb4153c2de0c23ecd4c693a130d3d1d3d1502d99762da7d2740c4e9658c5/diff:/var/lib/docker/overlay2/a569e6257c181611e82fa7f4a1c97493dcc2f490065d38923be338b1ba1818ce/diff:/var/lib/docker/overlay2/c3fe399db1aeaaa9fbb07027453569e81fe787f1dcc979728dbe77bd20f8c036/diff:/var/lib/docker/overlay2/e0f4b1ad325f242a51701a2ebeb371a9a0c51fc162d83b29c30ceff28a002936/diff:/var/lib/docker/overlay2/405ee06dbfa6b36949153b2066636eb7a21d784f68eaa9f5b9551ddc923ff101/diff:/var/lib/docker/overlay2/e5896ef7e3585269492441f58c727385f806446a79dbf8e3f5dc7eef436b4a76/diff:/var/lib/docker/overlay2/94d7e44fa74a4cb3bafab82e14a6106210826ef5ca1f452881602b944c2bb757/diff:/var/lib/docker/overlay2/3230092026d283677e28465ae6ed542c28c19f9383bb1c79b5bf01172d1b5ac8/diff:/var/lib/docker/overlay2/b6036c9c602fa3c105b7074461f8ed33fab7d6d9d98bb370c40ce396ed4c29d9/diff:/var/lib/docker/overlay2/6a282e3ff165bb0bed561949fb07770a2da6adf5e5f02364f8e3369f08678567/diff:/var/lib/docker/overlay2/3e7006f505924ddc02561d3c0106eaf0e5459c56f62d9c79e01fbb416c9c5a53/diff:/var/lib/docker/overlay2/fedaba2c7c8f633e9f7884e0f58679ebfa67cf5635d17a1a1d8846b9f4a118b0/diff:/var/lib/docker/overlay2/9747b5d13bf63a1df162ab6c8c5f71c5fefaf8b05c4255a0951c3f599a0127de/diff:/var/lib/docker/overlay2/101106294ca7e82a2e784a41b87523d0383e4381f3ca4b9e9f4f9cb290c7ad61/diff:/var/lib/docker/overlay2/6422c70394b4bcde71e75f1026c15714ab8f854e730c24e05037d0efebe30ec8/diff:/var/lib/docker/overlay2/c7f50b11f90145d75e08455afdd70bea78bd2f9a4c5262641b0c4535127d128f/diff:/var/lib/docker/overlay2/9cd74d0c24cb846c96928378d5a804d50dbb8d144b2b5e2fad187004d330ac03/diff:/var/lib/docker/overlay2/33e5ba1f6ee127d9f911d8349a1f10f5ceb54de464431e576d6e2e5c13df88ae/diff:/var/lib/docker/overlay2/e8ae235066413fc8a4c41a0e99ce7c20407e057f436c8a4a462f582868d93569/diff:/var/lib/docker/overlay2/940848f295f0fae8d1cced5c2e257e3e38f55c0b24199e1fdf835d65533d02cf/diff:/var/lib/docker/overlay2/397b55e161ef0a1133b1028f4c21d5155a847af21b2d1a5cda1a86480bcf1545/diff:/var/lib/docker/overlay2/a9e240e79c1743e5865db25266acc4c6af010edb48c7463b04ac3e385beb0300/diff:/var/lib/docker/overlay2/4328e9c98cc6333de7125898e9133a2ad5bd15ddf91deb81e29438cd1ecf6381/diff:/var/lib/docker/overlay2/bcf8841affae663bcabfc1733273d894c68f711e760de7e5128d63fd23482e6e/diff:/var/lib/docker/overlay2/b5d2727444eb30715a23a5e876349c327436df88bbc6db384046991e05cd1da5/diff:/var/lib/docker/overlay2/c8f72f097bb9f7208af91cb24a005350b8c79ef09d6a676c88b5b64adf70628b/diff:/var/lib/docker/overlay2/ac5f0bd5d30644e11ca342bbba15803e07d9defb785c77cc62cb93e849f4a7f1/diff:/var/lib/docker/overlay2/c1e6fd30a729834d14b101c03d8fe64ce4646f1bc2a2e566ee54ab427b8020f6/diff:/var/lib/docker/overlay2/9c66c50b3b66ff9cfebb601d887e8f9c697f31a7837b8a605a0182a4a6b5330f/diff:/var/lib/docker/overlay2/965bb73c93bd158fd30fc8dc16046c8bba540b79560f8a89c225d75668474945/diff:/var/lib/docker/overlay2/fd88cf550448249507cf7de9d681c64713703f48c8981ea16df3e43b5c308d4a/diff:/var/lib/docker/overlay2/39f09e07f12772395582a4edd2b1cde4a84de873b2005eb6cbbd5ec3afac36d0/diff:/var/lib/docker/overlay2/c92963e2f4058a4aa319f9d97fd595d5b7cfe62289f1f5e0af4d98d4bcfee63a/diff:/var/lib/docker/overlay2/7591930da9df76fe4da7ee4725aa154e3f41f9f231f775c9c5608b663d69bf13/diff:/var/lib/docker/overlay2/dd9c6c06cee7cbeacd7427404922c280abf5a7156d6a8d1736426b0776ed9b6a/diff",
            "MergedDir": "/var/lib/docker/overlay2/2ade153ab59de9be3b0a69cb8ab02f84731b3369663827b36bac302b09037a69/merged",
            "UpperDir": "/var/lib/docker/overlay2/2ade153ab59de9be3b0a69cb8ab02f84731b3369663827b36bac302b09037a69/diff",
            "WorkDir": "/var/lib/docker/overlay2/2ade153ab59de9be3b0a69cb8ab02f84731b3369663827b36bac302b09037a69/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:687d50f2f6a697da02e05f2b2b9cb05c1d551f37c404ebe55fdec44b0ae8aa5c",
            "sha256:848710b02cfac11193d2f858a532044bd3b91e93300d2590270333e5dbfff321",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:694033a2640c200cfca94b5ad9522b2a8756cf37b9c8ab0adf2951fba468eaba",
            "sha256:dd17c91c0976b2f160182959a8e3e8f9c2cf53d84c4146d464cb153a16d334a8",
            "sha256:df8f033310cbd6e137cb94edb3f6695bed7e8a3a4d098abdb78669f83000d919",
            "sha256:348072403951b32e7ed7aaf2d272ada063f7e182b7afc07fc67b4d1a271cfcff",
            "sha256:c75ea3db9d3b05ddc5df5a0e9317a0367f924197520052e73cc4136ffb38f7c2",
            "sha256:70890287410728d293af1af88db1d6940f79bbaccf67b46fae025c9c62e876db",
            "sha256:2833a9ed8909a9f7ca551ba9716eee9d530b1325d9c3ece19fcef2acf1055939",
            "sha256:c9de9e6c0fca7950ec0e23d785c732bfc127e5a06d55152707d1594d0cbdea36",
            "sha256:0e7ddee23f9d85b013d347e9d95caff6fc8bfdd19a697fca4a2c17e566f14d8f",
            "sha256:e7b96c277e9352986ab267c9d08d70fd7a007703842dc54e21c9a76886d57e4f",
            "sha256:0f64f43e64b2279b6b23e4eab5cc511e2c98a75c25093e13054fbe7a7bbf9d0d",
            "sha256:ba656594add8e5692492157ba09e3dab570e9fb573e54bdfb4e8e92c8dac7069",
            "sha256:f966316f5b2d61f9213dfad88b4a02d82527b715de5ad10fb1bf0de3daaa1add",
            "sha256:07ffe7e7f3e1d004efecf95bf0314a0c61d52dd60dfa0a39a287b32298e2da44",
            "sha256:cfc1d4830c90bb91b1fb29de49d5930205a1ec0ed73a65aba653dac9deb7267a",
            "sha256:10408ccbc5a42d6a7b7091c178f79cc701f477764be6a55499c62573279c09f0",
            "sha256:468d8839e65a4450d4e4cb8fa8cd3a83267dc7905fac54a9307b3bb1cba7c5a9",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:b557fc9270a7571a61c3a6f68d1de4d0eab4c80af5b7467e351ade8ca2c849cf",
            "sha256:9057b9bbfc129d17ac0ccf5a8595dda006bb5bdad5d896956b23c820e144501e",
            "sha256:1ebc815678262ba97394299abbb1903cc271f8757358acac3df70a2c3289c692",
            "sha256:f89443e8e3411fcb820095e58a4568bb6504ac2215ebe427ee1a9d7022771bcd",
            "sha256:6dc0ffd881372d64234f98f7bb820c674858d76b475ebf7921408394677e6cf9",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:a77610bd34f2b396f0ffcdb21900295341da8be6fff74da366b5d708e2c24749",
            "sha256:70781e5985937380e51a573f88442de67dfc1992ad31bdea50e2c5ea4916c745",
            "sha256:db279282c0d2dbfa8c564c20773164e2af8e1c487cb5ecdbc3f4f75da430da7a",
            "sha256:be33a8b45740e744a488ba8f2c43787e66e221736f1fef22daebe22f75791314",
            "sha256:fd78deecd136e62a4900d0090803b0b6416baec13cb84c76cf1a29feae66e486",
            "sha256:4edfcb455ffb9fe4284f0ca4a5aa37fbe377d80ac37306ee94c3468174b530d2",
            "sha256:4cb8dc4f90b584b13cf2985474f5c93f536e1ba63d59cad6ac51c47062f5cc55",
            "sha256:fa166ed9a8464b78eb79741ea2421d54e4efd5fd17fd6ec29d26f49f83ec59d4",
            "sha256:91b43eeb9b3d7f9b209322bd44de92431074dec631899d4f4370dc5c5ec39ea9",
            "sha256:f77a0136fcd498bb792d00121c10f3cd4e7a48b99cf3a0646b96e02ec0d37b5e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:37886b5f6c14b9eaefccd546b38ac7ae9f7e2e2ea288241e9c6a223bc42d6fd5",
            "sha256:1bb2d9ade57c590d7246ccb47567fa368e08d48bc9317d5ad9818a7a9e0088fa",
            "sha256:366334e21196dcea2bbd0743c348cf6a8bff475e85560d267a7c9d90f308f4b8",
            "sha256:050288ad7fe10516cc6b54c1793450d9904a132c59f533d3fff5a7864d8a36a3",
            "sha256:4c6c9a2f7c2cf046189a454a46477b6fb11800fc547fba38b68f00f094a64563",
            "sha256:007aae7f46e6aed019b09fd566f5240e4e7d7411e2a2f0311709ca0a742fc279",
            "sha256:3275a90083ea03c4aed86b82efd237ebb5d91f41f312693d9316570db3313f56",
            "sha256:a41fb67dd6e3573dd79a21d0fc7b7a8d1e5a710aaffeefe59e970ca23e07f228",
            "sha256:f9053d4b955169d7517ae2a341cdc00cc4be39f6120ba6f93b24cfaf6a87d703",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:344571c219032a56a7f4aaa79f9ed9cd68058efd456b966afdf08ffa4fb6bd60",
            "sha256:30b7eba96a74e992622d1bc3b01c0b3cb271f421d487c4b2c5c6e47d9ef7ea2d",
            "sha256:c0000f43d250ff3d33f2ae05517ffc2450716cde46a3cf5467f4a7d90e83c8d1",
            "sha256:a43b7fea931d852075d06b801c10541693b7c27af587be3863c8df1a55424c1b",
            "sha256:22bb6b3c67f38b45f6d0da97ad3c2715e98b1bdf646ac0a402cd645da373b0a4",
            "sha256:c7d2d18455a66e46ad7c94af1a603fae8f142abcebe5f689247b04252169b75b",
            "sha256:a2abdb728e545c4871afe2d51b900a32fb2d51b9e87e5a9fb754b34e0215427e",
            "sha256:83e5291a8569d260fc5965c99a541f427bcb2e492c5556df206d69631dc3a2be",
            "sha256:eac7799cba29228bae31c636ed058b52a5856085d7e4f559e541edd993491df7",
            "sha256:8f494912c58d161d38bffac1b837e2295980f6c2b277457196456498c98457cb",
            "sha256:97999d223a1792d5e7d15fd4fd0374ccac27ce6f5a3971f093ceebc708ad5d4c",
            "sha256:b82ad79d7ebc5f508a08e5a28079aa1d82c8c50564617d250273355548c2c10f",
            "sha256:475ef66c6035d9b5346be97223098ecef35ec8d2862ec12be15e94a9493c51aa"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-04-11T01:49:49.276952773+08:00"
    }
}

更多版本

docker.io/nvcr.io/nvidia/pytorch:24.01-py3

linux/amd64 docker.io22.02GB2024-09-20 00:38
957

docker.io/nvcr.io/nvidia/pytorch:22.12-py3

linux/amd64 docker.io18.27GB2024-10-17 00:56
564

docker.io/nvcr.io/nvidia/pytorch:23.04-py3

linux/amd64 docker.io20.38GB2024-10-18 01:26
468

docker.io/nvcr.io/nvidia/pytorch:24.06-py3

linux/amd64 docker.io19.15GB2024-10-22 00:29
580

docker.io/nvcr.io/nvidia/pytorch:21.11-py3

linux/amd64 docker.io14.47GB2024-10-22 10:38
492

docker.io/nvcr.io/nvidia/pytorch:24.07-py3

linux/amd64 docker.io20.19GB2025-01-09 00:29
622

docker.io/nvcr.io/nvidia/pytorch:24.02-py3

linux/amd64 docker.io22.21GB2025-02-23 20:44
798

docker.io/nvcr.io/nvidia/pytorch:24.05-py3

linux/amd64 docker.io18.78GB2025-03-18 01:37
174

docker.io/nvcr.io/nvidia/pytorch:24.11-py3

linux/amd64 docker.io21.77GB2025-04-04 03:43
166

docker.io/nvcr.io/nvidia/pytorch:24.10-py3

linux/amd64 docker.io21.03GB2025-04-04 03:50
150

docker.io/nvcr.io/nvidia/pytorch:24.12-py3

linux/amd64 docker.io21.66GB2025-04-11 02:13
241