docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4 linux/amd64

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4 - 国内下载镜像源 浏览次数:5

PaddlePaddle是中国最大的开源深度学习框架。它可以实现各种常见的机器学习算法,并支持多种编程语言,如Python、Java和C++。该镜像包含了PaddlePaddle的所有依赖包和预建环境,使您能够直接在容器中运行PaddlePaddle应用程序。

源镜像 docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4
镜像ID sha256:46ed8cbdcb07b8f69e468ab096ba448e1fab330f28b2742e30c3e6720ccd5c01
镜像TAG 2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4
大小 21.14GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /home
OS/平台 linux/amd64
浏览量 5 次
贡献者 20******6@qq.com
镜像创建 2024-09-13T07:24:45.368440848Z
同步时间 2025-06-19 14:58
更新时间 2025-06-20 00:51
开放端口
22/tcp
环境变量
PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-8.2/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin:/root/gopath/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 NV_CUDA_CUDART_VERSION=11.7.99-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7 CUDA_VERSION=11.7.1 LD_LIBRARY_PATH=/usr/local/TensorRT-8.4.2.4/lib:/usr/local/cuda-11.7/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.7.1-1 NV_NVTX_VERSION=11.7.91-1 NV_LIBNPP_VERSION=11.7.4.75-1 NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.4.75-1 NV_LIBCUSPARSE_VERSION=11.7.4.91-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7 NV_LIBCUBLAS_VERSION=11.10.3.66-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.3.66-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1 NCCL_VERSION=2.13.4-1 NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=11.7.99-1 NV_NVML_DEV_VERSION=11.7.91-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.4.91-1 NV_LIBNPP_DEV_VERSION=11.7.4.75-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.4.75-1 NV_LIBCUBLAS_DEV_VERSION=11.10.3.66-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.3.66-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=11.7.1-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-7=11.7.1-1 NV_NVPROF_VERSION=11.7.101-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.101-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.5.0.96 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7 WITH_GPU=ON WITH_AVX=ON DEBIAN_FRONTEND=noninteractive HOME=/root CUDNN_VERSION=8.4.1 GOROOT=/usr/local/go GOPATH=/root/gopath
镜像标签
8.5.0.96: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 20.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4  docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4  docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4

Shell快速替换命令

sed -i 's#paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4  docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4  docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4'

镜像构建历史


# 2024-09-13 15:24:45  54.90KB 
/bin/sh -c ldconfig
                        
# 2024-09-13 15:24:40  0.00B 
/bin/sh -c #(nop)  ENV LD_LIBRARY_PATH=/usr/local/TensorRT-8.4.2.4/lib:/usr/local/cuda-11.7/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-09-13 15:24:37  0.00B 
/bin/sh -c pip cache purge
                        
# 2024-09-13 15:24:31  3.74GB 
/bin/sh -c python -m pip install https://paddle-whl.bj.bcebos.com/stable/cu117/paddlepaddle-gpu/paddlepaddle_gpu-2.6.2.post117-cp310-cp310-linux_x86_64.whl
                        
# 2024-09-13 15:22:43  11.61MB 
/bin/sh -c pip install -U pip -i https://pypi.tuna.tsinghua.edu.cn/simple
                        
# 2023-11-14 15:34:15  0.00B 声明容器运行时监听的端口
EXPOSE map[22/tcp:{}]
                        
# 2023-11-14 15:34:15  754.26MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget https://paddle-ci.cdn.bcebos.com/clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz &&     tar xf clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz && cd clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-16.04 &&     cp -rn * /usr/local && cd .. && rm -rf clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-16.04 && rm -rf clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz # buildkit
                        
# 2023-11-14 15:33:55  46.76MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget -q https://paddle-ci.gz.bcebos.com/ccache-4.8.2.tar.gz &&     tar xf ccache-4.8.2.tar.gz && mkdir /usr/local/ccache-4.8.2 && cd ccache-4.8.2 &&     mkdir build && cd build &&     cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local/ccache-4.8.2 .. &&     make -j8 && make install &&     ln -s /usr/local/ccache-4.8.2/bin/ccache /usr/local/bin/ccache &&     cd ../../ && rm -rf ccache-4.8.2.tar.gz # buildkit
                        
# 2023-11-14 15:32:50  88.53MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c pip3.10 --no-cache-dir install -r /root/requirements.txt # buildkit
                        
# 2023-11-14 15:31:16  164.00B 复制新文件或目录到容器中
COPY ./python/requirements.txt /root/ # buildkit
                        
# 2023-11-14 15:31:16  44.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm -f /usr/local/bin/pip && ln -s /usr/local/bin/pip3.10 /usr/local/bin/pip &&     rm -f /usr/local/bin/pip3 && ln -s /usr/local/bin/pip3.10 /usr/local/bin/pip3 # buildkit
                        
# 2023-11-14 15:31:15  6.19MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c localedef -i en_US -f UTF-8 en_US.UTF-8 # buildkit
                        
# 2023-11-14 15:31:13  649.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c git config --global credential.helper store # buildkit
                        
# 2023-11-14 15:31:13  9.12MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-get install -y golang-glide # buildkit
                        
# 2023-11-14 15:31:05  0.00B 设置环境变量 PATH
ENV PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-8.2/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin:/root/gopath/bin
                        
# 2023-11-14 15:31:05  0.00B 设置环境变量 GOROOT GOPATH
ENV GOROOT=/usr/local/go GOPATH=/root/gopath
                        
# 2023-11-14 15:31:05  407.78MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget --no-check-certificate -qO- https://paddle-ci.gz.bcebos.com/go1.17.2.linux-amd64.tar.gz |     tar -xz -C /usr/local &&     mkdir /root/gopath &&     mkdir /root/gopath/bin &&     mkdir /root/gopath/src # buildkit
                        
# 2023-11-14 15:31:00  140.48MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget -q https://ftp.gnu.org/gnu/binutils/binutils-2.33.1.tar.gz &&     tar -xzf binutils-2.33.1.tar.gz &&     cd binutils-2.33.1 &&     ./configure && make -j && make install && cd .. && rm -rf binutils-2.33.1 binutils-2.33.1.tar.gz # buildkit
                        
# 2023-11-14 15:21:18  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm setuptools-68.2.2.tar.gz pip-23.3.1.tar.gz &&     rm -r setuptools-68.2.2 pip-23.3.1 # buildkit
                        
# 2023-11-14 15:21:18  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2023-11-14 15:21:18  23.36MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c python3.10 setup.py install # buildkit
                        
# 2023-11-14 15:21:14  0.00B 设置工作目录为/home/pip-23.3.1
WORKDIR /home/pip-23.3.1
                        
# 2023-11-14 15:21:14  9.91MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget https://files.pythonhosted.org/packages/1f/7f/4da15e07ccd11c84c1ccc8f6e24288d5e76c99441bf80e315b33542db951/pip-23.3.1.tar.gz && tar -zxf pip-23.3.1.tar.gz # buildkit
                        
# 2023-11-14 15:21:08  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2023-11-14 15:21:08  10.89MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c python3.10 setup.py build && python3.10 setup.py install # buildkit
                        
# 2023-11-14 15:21:06  0.00B 设置工作目录为/home/setuptools-68.2.2
WORKDIR /home/setuptools-68.2.2
                        
# 2023-11-14 15:21:06  8.86MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget https://files.pythonhosted.org/packages/ef/cc/93f7213b2ab5ed383f98ce8020e632ef256b406b8569606c3f160ed8e1c9/setuptools-68.2.2.tar.gz && tar xf setuptools-68.2.2.tar.gz # buildkit
                        
# 2023-11-14 15:20:59  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2023-11-14 15:20:59  56.86MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-get update &&   apt-get install -y python3.10 python3.10-dev python3.10-distutils &&   apt-get install python-is-python3 &&   rm /usr/bin/python && ln -s /usr/bin/python3.10 /usr/bin/python &&   rm /usr/bin/python3 && ln -s /usr/bin/python3.10 /usr/bin/python3 # buildkit
                        
# 2023-11-14 15:16:27  0.00B 设置环境变量 PATH
ENV PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-8.2/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-14 15:16:27  112.87MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget -q https://cmake.org/files/v3.18/cmake-3.18.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.18.0-Linux-x86_64.tar.gz && rm cmake-3.18.0-Linux-x86_64.tar.gz # buildkit
                        
# 2023-11-14 15:09:34  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2023-11-14 15:09:34  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm -rf /build_script # buildkit
                        
# 2023-11-14 15:09:34  0.00B 设置环境变量 CUDNN_VERSION
ENV CUDNN_VERSION=8.4.1
                        
# 2023-11-14 15:09:34  2.70GB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_cudnn.sh cudnn841 # buildkit
                        
# 2023-11-14 15:07:50  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/gcc-8.2/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-14 15:07:50  26.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++ # buildkit
                        
# 2023-11-14 15:07:50  26.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc # buildkit
                        
# 2023-11-14 15:07:50  26.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++ # buildkit
                        
# 2023-11-14 15:07:49  26.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc # buildkit
                        
# 2023-11-14 15:07:49  2.32MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++ # buildkit
                        
# 2023-11-14 15:07:49  1.54GB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_gcc.sh gcc82 # buildkit
                        
# 2023-11-14 14:24:39  3.63MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_patchelf.sh # buildkit
                        
# 2023-11-14 14:24:20  3.30GB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_trt.sh trt8424 # buildkit
                        
# 2023-11-14 14:23:41  37.26KB 复制新文件或目录到容器中
COPY tools/dockerfile/build_scripts /build_scripts # buildkit
                        
# 2023-11-14 14:23:41  0.00B 设置工作目录为/usr/bin
WORKDIR /usr/bin
                        
# 2023-11-14 14:23:41  504.50MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-get update --allow-unauthenticated &&   apt-get install -y software-properties-common &&   add-apt-repository ppa:deadsnakes/ppa &&   apt-get update &&   apt-get install -y curl wget vim git unzip unrar tar xz-utils libssl-dev bzip2 gzip     coreutils ntp language-pack-zh-hans libsm6 libxext6 libxrender-dev libgl1-mesa-glx     bison graphviz libjpeg-dev zlib1g-dev automake locales swig net-tools libtool kmod # buildkit
                        
# 2023-11-14 14:20:33  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-key adv --fetch-keys https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu2004/x86_64/3bf863cc.pub # buildkit
                        
# 2023-11-14 14:20:32  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm /etc/apt/sources.list.d/* # buildkit
                        
# 2023-11-14 14:20:32  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-key del 7fa2af80 # buildkit
                        
# 2023-11-14 14:20:31  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c chmod 777 /tmp # buildkit
                        
# 2023-11-14 14:20:31  1.29KB 复制新文件或目录到容器中
COPY paddle/scripts/docker/root/ /root/ # buildkit
                        
# 2023-11-14 14:20:31  0.00B 设置环境变量 HOME
ENV HOME=/root
                        
# 2023-11-14 14:20:31  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/cuda-11.7/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-14 14:20:31  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2023-11-14 14:20:31  0.00B 设置环境变量 WITH_AVX
ENV WITH_AVX=ON
                        
# 2023-11-14 14:20:31  0.00B 设置环境变量 WITH_GPU
ENV WITH_GPU=ON
                        
# 2023-11-14 14:20:31  0.00B 定义构建参数
ARG WITH_AVX
                        
# 2023-11-14 14:20:31  0.00B 定义构建参数
ARG WITH_GPU
                        
# 2023-11-14 14:20:31  0.00B 
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
                        
# 2023-11-10 15:42:08  1.94GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 15:42:08  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.5.0.96
                        
# 2023-11-10 15:42:08  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 15:42:08  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 15:42:08  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7
                        
# 2023-11-10 15:42:08  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7
                        
# 2023-11-10 15:42:08  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 15:42:08  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.5.0.96
                        
# 2023-11-10 15:18:37  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 15:18:37  376.68KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 15:18:36  3.70GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     libtinfo5 libncursesw5     cuda-cudart-dev-11-7=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-7=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-7=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-7=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-7=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-7=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 15:18:36  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 15:18:36  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.13.4-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.101-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.7.101-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-7=11.7.1-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=11.7.1-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.3.66-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.10.3.66-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.4.75-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.7.4.75-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.4.91-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.7.91-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.7.99-1
                        
# 2023-11-10 15:18:36  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.7.1-1
                        
# 2023-11-10 15:08:54  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 15:08:54  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 15:08:54  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 15:08:54  258.27KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 15:08:54  1.82GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-7=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-7=${NV_NVTX_VERSION}     libcusparse-11-7=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 15:08:54  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 15:08:54  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.13.4-1
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.3.66-1
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.10.3.66-1
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.4.91-1
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.4.75-1
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.7.4.75-1
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.7.91-1
                        
# 2023-11-10 15:08:54  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.7.1-1
                        
# 2023-11-10 15:04:06  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 15:04:06  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 15:04:06  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 15:04:06  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 15:04:06  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 15:04:06  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 15:04:06  119.68MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-7=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 15:03:48  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.7.1
                        
# 2023-11-10 15:03:48  18.32MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 15:03:48  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 15:03:48  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 15:03:48  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7
                        
# 2023-11-10 15:03:48  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.7.99-1
                        
# 2023-11-10 15:03:48  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
                        
# 2023-11-10 15:03:48  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-03 18:45:52  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-03 18:45:51  72.79MB 
/bin/sh -c #(nop) ADD file:4809da414c2d478b4d991cbdaa2df457f2b3d07d0ff6cf673f09a66f90833e81 in / 
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=20.04
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:46ed8cbdcb07b8f69e468ab096ba448e1fab330f28b2742e30c3e6720ccd5c01",
    "RepoTags": [
        "paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4"
    ],
    "RepoDigests": [
        "paddlepaddle/paddle@sha256:5e663372ad4d2b88ec3067592fa29cf763d350da7815d6ba2fc2a4890455538b",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle@sha256:102bb5873bcfbc58771e4f22a44b355def124a60c73ae58dd325e11c3266a139"
    ],
    "Parent": "",
    "Comment": "",
    "Created": "2024-09-13T07:24:45.368440848Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "20.10.23",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "22/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-8.2/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin:/root/gopath/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.7 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471",
            "NV_CUDA_CUDART_VERSION=11.7.99-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7",
            "CUDA_VERSION=11.7.1",
            "LD_LIBRARY_PATH=/usr/local/TensorRT-8.4.2.4/lib:/usr/local/cuda-11.7/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.7.1-1",
            "NV_NVTX_VERSION=11.7.91-1",
            "NV_LIBNPP_VERSION=11.7.4.75-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.4.75-1",
            "NV_LIBCUSPARSE_VERSION=11.7.4.91-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7",
            "NV_LIBCUBLAS_VERSION=11.10.3.66-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.3.66-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1",
            "NCCL_VERSION=2.13.4-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=11.7.99-1",
            "NV_NVML_DEV_VERSION=11.7.91-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.4.91-1",
            "NV_LIBNPP_DEV_VERSION=11.7.4.75-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.4.75-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.10.3.66-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.3.66-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=11.7.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-7=11.7.1-1",
            "NV_NVPROF_VERSION=11.7.101-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.101-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.5.0.96",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7",
            "WITH_GPU=ON",
            "WITH_AVX=ON",
            "DEBIAN_FRONTEND=noninteractive",
            "HOME=/root",
            "CUDNN_VERSION=8.4.1",
            "GOROOT=/usr/local/go",
            "GOPATH=/root/gopath"
        ],
        "Cmd": null,
        "Image": "sha256:dfd2d61bbf203a1fbd5151133ce68f2ee4bd7db40ae6bd339fe840ff927776c2",
        "Volumes": null,
        "WorkingDir": "/home",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.5.0.96",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "20.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 21144736835,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/6d533ca2149896a051ed0845d3efd8f74f2b8b709892a15a0864b412d34020a3/diff:/var/lib/docker/overlay2/c1850ba9045ea7da9894a7cd70eb7f368b6bfbce67d31c22f82e8b6cc3d2d6ce/diff:/var/lib/docker/overlay2/852487671fb231c636941d48c498aada410e6c329eb24388e845101edd726baa/diff:/var/lib/docker/overlay2/70bc91a1ddc0d661c86364158d17be032584c47de5949a41dab0fdaca5dacf2a/diff:/var/lib/docker/overlay2/8addb08399be85990dca16fe36baca3682cd2df1715d259ee473b4121655adef/diff:/var/lib/docker/overlay2/92bcdb7f9819402246ee5034f8c13c94614c83b4160c5736e63c96d25dbc0bb0/diff:/var/lib/docker/overlay2/305b24e8ba3f303a1af9bd0f578950ca5a5d80b5bdd3564fc664216442ba91ea/diff:/var/lib/docker/overlay2/249a50f7b6f0e3da856229b036b2c07fa80ade1c10c472e0222c9534a4c9700f/diff:/var/lib/docker/overlay2/ff9af0d83f388c8fb861a60de046643f90f0d81b6d211fc76a6a39a3e76a5e52/diff:/var/lib/docker/overlay2/7e40132d77174155ff2aa6e8d413bf5a8b8de350542f9e3e18e95d60cf7f0473/diff:/var/lib/docker/overlay2/953eb658d9cafa4177717be31d5c5543a5dd1f25f535b6fbc3bfec2cee84d4e2/diff:/var/lib/docker/overlay2/91e238ed2463743e4ac7480f84dc35139f43b3edda185c0702df98bdc34ccbe7/diff:/var/lib/docker/overlay2/9eb142be0d2ef706b96e897375f0668c42097f6cda8fb7c52e5925cb2b5754e7/diff:/var/lib/docker/overlay2/ad6a4d011c3c7bdf5f291084ae40630b44ce2e1c8fcddc7f437bb5fdd89bdfca/diff:/var/lib/docker/overlay2/b96f15a3aa9cc6111f0dfdccbec7bcaec2b684e6a8aeec1412616ef4ad4af898/diff:/var/lib/docker/overlay2/4fbdf17fffbacf21113ba0176014054948a6733d68caf6fa6f9967c8916647f1/diff:/var/lib/docker/overlay2/5d507c77b0c7168c606687bcd270e40b1a8cec314b512f96b774c24e60b80f5b/diff:/var/lib/docker/overlay2/17d0df370e44e549303b5ac15ae009f2cf88e5439617eee53687a8b45c896339/diff:/var/lib/docker/overlay2/cc85229124339b06092043a2f6c29669394843668e0ec7ef081c9d29e889e4b5/diff:/var/lib/docker/overlay2/1142606d043f32848b2fece0716226b897aad596f6d15a08f4f41d2730ffe845/diff:/var/lib/docker/overlay2/b7b4cc8269940d1e40e4619c493338ad1f6879bddf0bafd247af3742e01d737c/diff:/var/lib/docker/overlay2/887ec5d60f2e5b322daadb3d7dd18118fcd0136c1ebf5112e4c7fc33a15e3d8e/diff:/var/lib/docker/overlay2/c3485a0a2ebb2e7f65217ca917dd28c5e530acc5f99439b6f381aef9ac22fbe3/diff:/var/lib/docker/overlay2/71e855bb30e95706a862acf444b224f94c814bb8b5e628f3ccfc4896c3f464da/diff:/var/lib/docker/overlay2/05e4e5602bf8508c01fbb0c93acd74f3a544417e3d9e9f7e166dff49012cc421/diff:/var/lib/docker/overlay2/fdc31957c2133fc42de9e9b5f2ae251399c5d045f7f577617bca57ca79c7bf7b/diff:/var/lib/docker/overlay2/5c94e48f479ed25f4150cfe1cd24110504d910bbcaf6aab569522fd144260576/diff:/var/lib/docker/overlay2/4ad358025c9e86c78a8da50c8efe1904f121faf62ccaf33b1b887066d635bd9c/diff:/var/lib/docker/overlay2/a8a60e1b6662409249c57192c3dce509e1463c9caea3b04e52ae057a48f6005a/diff:/var/lib/docker/overlay2/3cd3d8d63e050168ef9c12db09ab7beb46d08873a64967e1990f7ed6e2521b75/diff:/var/lib/docker/overlay2/359e7e1cd23ca8ce34540a85d3533348504843c32b1711aecf6c1769559fe4c6/diff:/var/lib/docker/overlay2/0b296700e20febdfd3d97923901f26ea0bbd8620564d894862582088debc2117/diff:/var/lib/docker/overlay2/e7f00eae7235e902d0ea840fd8aec7d4ff8270473d25b62ead16a98a53fcf422/diff:/var/lib/docker/overlay2/c8b033e8a897ab146e23fb6b34df3a909b8ca54b396bf73bd0a09328b793aecd/diff:/var/lib/docker/overlay2/8e3ef7ca55597e22bc119d4894b21920a00e367601ae26ff173fecfc77e57e72/diff:/var/lib/docker/overlay2/ae6d24b7bde59ec3a49ef8380aa11e9d55640ac23debdc1b604ceaec94a25dfb/diff:/var/lib/docker/overlay2/d91e8853817673f0a14ecc4f34b7fc2a5fb2fbbe212360f8e83143e888d97f96/diff:/var/lib/docker/overlay2/93c07dd449b154890aa38ddad59a26b29d2abe130734074a8023d2566946fb32/diff:/var/lib/docker/overlay2/8f5ca0e0835ee5b0115ea5fda33d71496ab66934e4de2710fec1d0c0cef1eb39/diff:/var/lib/docker/overlay2/1f30cf2c16b991e143e05483eb7eccebc0f9ae1a95cd2dc090b7099ac1dd65e8/diff:/var/lib/docker/overlay2/2eb9b5714c83b498c05ae5e5e7fde9905a14a10b63b54204c9f04a181c4e27bc/diff:/var/lib/docker/overlay2/e82e499afc0ef4fe7a783f512dda993f094a2e40fb39f38e90bd893ccbb95fcb/diff:/var/lib/docker/overlay2/7bccef4101d111ea7a1a70076f0419870a82a659b204534dba753a179c4940e8/diff:/var/lib/docker/overlay2/1559912544bf6cadcee4a54159f0410971dcec52fdd57e3e3f34477bf7ba348d/diff:/var/lib/docker/overlay2/d08a355d49ea080768c5008687007cb710491e7ab38b0f8da043b0d198909574/diff:/var/lib/docker/overlay2/15ffff2794f59da0fd9c74d72a79302b07b4ede0923b88438526556bde8edd83/diff:/var/lib/docker/overlay2/57e7ba237392b132bba2ce854cb4db63012e6ad39b3a22bdad29b05fc64e84de/diff:/var/lib/docker/overlay2/c107ee8fa33b7868e6f1f9b8992ebb49f0e93ef76be64ba23522875243e51e04/diff:/var/lib/docker/overlay2/d01b9070bb0c9d49648b060ce88242b0d8bdd66ac4b10c8b282dc45985d0d5e0/diff:/var/lib/docker/overlay2/bc992853975b5b8a7c6c02605cb984a60ee652918c9ede0b44e96adb5d58ad3e/diff:/var/lib/docker/overlay2/fa22920706d99eb40213694858292b93d5fed38fdc4ed7ac37a64299a99bc67d/diff:/var/lib/docker/overlay2/460fdeb6dc67427ea8a8fdb70dbd9fe4dd7c65034405ffa63675af95227ce225/diff:/var/lib/docker/overlay2/5395b59158f0ff3549d571e4977feca20458009e68b10e0f7842c42ecf084596/diff:/var/lib/docker/overlay2/96d0eb10681dc75f9d8aa7ec10068a63ebd6f29b2d959a73702930de871e454a/diff:/var/lib/docker/overlay2/95e0b75dc025f58308507d9fcd0367b9873a92c58ebcc82dfaca6a6c1e892982/diff:/var/lib/docker/overlay2/5408abd3ec726f4d055e10fddd8f488a8839c8a355fe1fb064cdc9fee660e07b/diff",
            "MergedDir": "/var/lib/docker/overlay2/29bca8190f9a9131b4fadbf1ff164e24b2bb700d9b3a2fce96a4b9db469f6452/merged",
            "UpperDir": "/var/lib/docker/overlay2/29bca8190f9a9131b4fadbf1ff164e24b2bb700d9b3a2fce96a4b9db469f6452/diff",
            "WorkDir": "/var/lib/docker/overlay2/29bca8190f9a9131b4fadbf1ff164e24b2bb700d9b3a2fce96a4b9db469f6452/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:6c3e7df31590f02f10cb71fc4eb27653e9b428df2e6e5421a455b062bd2e39f9",
            "sha256:b1d31bd8950cdcce4594837702f2686c779958b3ccfc037561f949ca62bbb73e",
            "sha256:01b2ce3312d7b635d0bc840c8c9eaaba429eaca3224543051b101ca40ad19096",
            "sha256:74b8bb426725d8da132fa6f0cb76f85b6b273bafbd6b77be696c59338296ca39",
            "sha256:55faa0189df114f1929fe4f61ed8be40b52d7433d74e734fc238b707b01d8981",
            "sha256:f20f722b82d6584f1bcfacca653fa0fd3985e8a081b6c4e03ef274f1cb8479fa",
            "sha256:ffcd7d36d2822e2c02fd03d14c4863fb2d0c87ec7218889005b872a0c15b65f4",
            "sha256:7969e8475f4c39051f8694c656d6d93781f96bdb1ddae0eaf8300f10d4e13ef8",
            "sha256:515b7ea03888c763e6931ffa4277c2c409451aa5a77101d33ec0e267b9480964",
            "sha256:118b4d0f225ea4282168b0e71b4998c021aa4176d4ce3f3975abb19b78afb713",
            "sha256:e237baae0e47449471cf29da2b3da61ed64493d8c310042dfdbb9511e45a1ba0",
            "sha256:9a8df03de1bb38ff1458d12e43b2d6b1df0f3210696e98c33acf967989531a67",
            "sha256:061e424a1090558b4f1bad1d7c49cb57ef4f759e3825583ab882655c6008b8e1",
            "sha256:1a637586bab3853c083160605a091efd610a1b086cfe1b29d9195cc393038f03",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:2fef8c2cb6c2535c0a57bea7bf3ef252220f48da435c9e43c15d1303f5855bc4",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:6b291f489a793ea10ff51bbe1a64cb1f46a3d66cc02a021ee2205d8ee52fe35f",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:7d4cebd2f484b4f2d990fa915f5066bc147fce7d57c0544e74f60ba3c337b32c",
            "sha256:48ae51c359dc860d8afa02487ff0d21472db8f77aba7977a0a8f7618f087a5c2",
            "sha256:f3d25de23fbb82f8e22d36aaa57820537f9aae173591313a4d946a606690e624",
            "sha256:b13350e350709779e4e6ce58e13d152ca18ef3eb0634a9ad88a224e7dcd48f67",
            "sha256:a2eae695859c3cf885e0f5f01462fdd778854fae6c967c1d812ba6deb078f064",
            "sha256:fbfcc666f863aae62a0d81888b26efc14dbd927ac1bd732f5a5588727edd77da",
            "sha256:800eab53527ebf3e78d65563cdd1e68dce0979574051137d48a02eefe08426a8",
            "sha256:aa795c1f0f881e8f265c3be8a9b449fb86aeac2347cd62862c2b328e7070b0f1",
            "sha256:4c51bae963b60b2af9155fb064384e68a4093a053ecd4fea27f4b893373839af",
            "sha256:44b2849a59eee01cb9e3c8d797334bdc55651d43774fafd36946544735e3c29b",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:1829b4a8c7d33e89018db8cfccc9b6a74748222aefb669fa00884cf4b7c0654e",
            "sha256:a4fb2d8e79f830583edf6797bcae3e9a8ef2ac76371a0862e1c2b03aa9db424b",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:f245ad5e2a77b71ee2e388c62b4aaa77257665b6994ae14ffd6cc1be66b2c59e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:66a201c7425b2a4b05b4a72899d2372a0807f7e085068cdcd8f9484e0ec28c30",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:6f3a8f96d3fb96bc0db2441423e4c295efe3fd95524bb5b2afcbce58f87e9a17",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:04afcfe77f34dbf475dd32c6944756a7678ecc302aa92b592efa4294dbf5ab76",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:dd5174671349ad107a3ec847e62ed49d7bc8856f40d81404fee6517b1227ffde",
            "sha256:e50fe6b35ac34c35e557a680f1da6fb6bf70a7a58b6dd9279c40222ff7daf85a",
            "sha256:84f43ca73ac1d0b48deffdd6079b8a91f483a4119e38f998590c2beadad6ada7",
            "sha256:cb87a0a5d6a4de3dc28645b68a858a19aae1b5fb18c24bba09c5e7d1c6333d3a",
            "sha256:63b02f33996388565f0cb26a7023da2e86121453762e645d70d56d55384514cf",
            "sha256:5e3e21e6771d16b4d9f34b5d0ecf3b5ce083d68ab1bc621fb4019b919a1ca495",
            "sha256:c5766b9e687664b3f9c091e368372c04be5407f9350e42d6940013dd52c40f49",
            "sha256:db27f863258786926e6d25c718ca159b30fb78cfeda4adce8b61e5360a728c81",
            "sha256:6b7e3b1acd45a099f7d58162e48126cdbad3ef58aa46bad05276133aad79cff4",
            "sha256:44d91b9fde488371ffe961d248167ea02151881f880348a2d7e411a8265d76e1",
            "sha256:85a9e3578a47f2aaf4cf66bb279e44cbaf41434fe7f9ba0f0e982b10706b864a",
            "sha256:64f640c7a8499facfc5cebc3526b97560369a2a6cffa87fca24649164ff02b8b",
            "sha256:65b3c7dacb1ecacfbefe5d861abe37c8f6f2aca4c6a09dedc807b2eb82194ccf",
            "sha256:806a85f4dec0b005b34e74a0b68ff584f0173d1b251ee9e526c3bf0b469df094",
            "sha256:38b1336c7c6bc065c7b625a5abcd9eb00ca1d726fcfad5394286c24dc70249c9"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-06-19T14:45:23.135829732+08:00"
    }
}

更多版本

docker.io/paddlepaddle/paddle:2.4.1-gpu-cuda11.7-cudnn8.4-trt8.4

linux/amd64 docker.io17.30GB2024-10-11 19:56
261

docker.io/paddlepaddle/paddle:2.5.0-gpu-cuda12.0-cudnn8.9-trt8.6

linux/amd64 docker.io22.04GB2025-01-17 01:39
210
186

docker.io/paddlepaddle/paddle:2.6.1

linux/amd64 docker.io4.66GB2025-04-13 21:10
191

docker.io/paddlepaddle/paddle:2.2.2-gpu-cuda10.2-cudnn7

linux/amd64 docker.io9.38GB2025-05-29 16:34
49

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.2-cudnn8.2-trt8.0

linux/amd64 docker.io21.56GB2025-06-19 14:18
6

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4

linux/amd64 docker.io21.14GB2025-06-19 14:58
4

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6

linux/amd64 docker.io34.04GB2025-06-20 02:33
2

docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda12.6-cudnn9.5-trt10.5

linux/amd64 docker.io43.07GB2025-06-20 04:33
1

docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6

linux/amd64 docker.io30.76GB2025-06-20 05:04
1