docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6 linux/amd64

docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6 - 国内下载镜像源 浏览次数:6

PaddlePaddle是中国最大的开源深度学习框架。它可以实现各种常见的机器学习算法,并支持多种编程语言,如Python、Java和C++。该镜像包含了PaddlePaddle的所有依赖包和预建环境,使您能够直接在容器中运行PaddlePaddle应用程序。

源镜像 docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6
镜像ID sha256:e3bb80f2368c8120c4481aac4e75e6e6d5ef7770325588d645518427f520144b
镜像TAG 3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6
大小 30.76GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /home
OS/平台 linux/amd64
浏览量 6 次
贡献者 20******6@qq.com
镜像创建 2025-04-21T15:53:56.553936611+08:00
同步时间 2025-06-20 05:04
更新时间 2025-06-20 08:03
开放端口
22/tcp
环境变量
PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-8.2/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin:/root/gopath/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 NV_CUDA_CUDART_VERSION=11.8.89-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8 CUDA_VERSION=11.8.0 LD_LIBRARY_PATH=/usr/local/TensorRT-8.5.3.1/lib:/usr/local/cuda-11.8/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.8.0-1 NV_NVTX_VERSION=11.8.86-1 NV_LIBNPP_VERSION=11.8.0.86-1 NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1 NV_LIBCUSPARSE_VERSION=11.7.5.86-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8 NV_LIBCUBLAS_VERSION=11.11.3.6-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.16.2-1 NCCL_VERSION=2.16.2-1 NV_LIBNCCL_PACKAGE=libnccl2=2.16.2-1+cuda11.8 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=11.8.89-1 NV_NVML_DEV_VERSION=11.8.86-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1 NV_LIBNPP_DEV_VERSION=11.8.0.86-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1 NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1 NV_NVPROF_VERSION=11.8.87-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.16.2-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.16.2-1+cuda11.8 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.9.6.50 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8 WITH_GPU=ON WITH_AVX=ON DEBIAN_FRONTEND=noninteractive HOME=/root CUDNN_VERSION=8.9.7 GOROOT=/usr/local/go GOPATH=/root/gopath
镜像标签
8.9.6.50: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 20.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6  docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6  docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6

Shell快速替换命令

sed -i 's#paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6  docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6  docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6'

镜像构建历史


# 2025-04-21 15:53:56  60.07KB 执行命令并创建新的镜像层
RUN /bin/sh -c ldconfig # buildkit
                        
# 2025-04-21 15:53:56  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/TensorRT-8.5.3.1/lib:/usr/local/cuda-11.8/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2025-04-21 15:53:55  0.00B 执行命令并创建新的镜像层
RUN /bin/sh -c pip cache purge # buildkit
                        
# 2025-04-21 15:53:55  5.74GB 执行命令并创建新的镜像层
RUN /bin/sh -c python -m pip install --no-deps paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/ # buildkit
                        
# 2025-04-21 15:52:59  37.24KB 执行命令并创建新的镜像层
RUN /bin/sh -c python -m pip install -r requirements.txt && rm -rf requirements.txt # buildkit
                        
# 2025-04-21 15:52:58  400.00B 执行命令并创建新的镜像层
RUN /bin/sh -c wget https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/python/requirements.txt # buildkit
                        
# 2025-04-21 15:50:47  11.83MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install -U pip -i https://pypi.tuna.tsinghua.edu.cn/simple # buildkit
                        
# 2025-04-02 15:05:55  0.00B 声明容器运行时监听的端口
EXPOSE map[22/tcp:{}]
                        
# 2025-04-02 15:05:55  510.50MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-get update &&    apt install -y clang-12 # buildkit
                        
# 2025-04-02 15:04:28  46.76MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget -q https://paddle-ci.gz.bcebos.com/ccache-4.8.2.tar.gz &&     tar xf ccache-4.8.2.tar.gz && mkdir /usr/local/ccache-4.8.2 && cd ccache-4.8.2 &&     mkdir build && cd build &&     cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local/ccache-4.8.2 .. &&     make -j8 && make install &&     ln -s /usr/local/ccache-4.8.2/bin/ccache /usr/local/bin/ccache &&     cd ../../ && rm -rf ccache-4.8.2.tar.gz # buildkit
                        
# 2025-04-02 15:03:17  147.35MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c pip3.10 --no-cache-dir install -r /root/requirements.txt # buildkit
                        
# 2025-04-02 15:02:41  103.00B 复制新文件或目录到容器中
COPY ./python/requirements.txt /root/ # buildkit
                        
# 2025-04-02 15:02:41  44.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm -f /usr/local/bin/pip && ln -s /usr/local/bin/pip3.10 /usr/local/bin/pip &&     rm -f /usr/local/bin/pip3 && ln -s /usr/local/bin/pip3.10 /usr/local/bin/pip3 # buildkit
                        
# 2025-04-02 15:02:40  6.19MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c localedef -i en_US -f UTF-8 en_US.UTF-8 # buildkit
                        
# 2025-04-02 15:02:38  649.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c git config --global credential.helper store # buildkit
                        
# 2025-04-02 15:02:38  9.12MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-get install -y golang-glide # buildkit
                        
# 2025-04-02 15:02:31  0.00B 设置环境变量 PATH
ENV PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-8.2/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin:/root/gopath/bin
                        
# 2025-04-02 15:02:31  0.00B 设置环境变量 GOROOT GOPATH
ENV GOROOT=/usr/local/go GOPATH=/root/gopath
                        
# 2025-04-02 15:02:31  407.78MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget --no-check-certificate -qO- https://paddle-ci.gz.bcebos.com/go1.17.2.linux-amd64.tar.gz |     tar -xz -C /usr/local &&     mkdir /root/gopath &&     mkdir /root/gopath/bin &&     mkdir /root/gopath/src # buildkit
                        
# 2025-04-02 14:57:38  140.48MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget -q https://ftp.gnu.org/gnu/binutils/binutils-2.33.1.tar.gz &&     tar -xzf binutils-2.33.1.tar.gz &&     cd binutils-2.33.1 &&     ./configure && make -j && make install && cd .. && rm -rf binutils-2.33.1 binutils-2.33.1.tar.gz # buildkit
                        
# 2025-04-02 14:53:02  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm setuptools-68.2.2.tar.gz pip-23.3.1.tar.gz &&     rm -r setuptools-68.2.2 pip-23.3.1 # buildkit
                        
# 2025-04-02 14:53:02  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2025-04-02 14:53:02  23.36MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c python3.10 setup.py install # buildkit
                        
# 2025-04-02 14:52:58  0.00B 设置工作目录为/home/pip-23.3.1
WORKDIR /home/pip-23.3.1
                        
# 2025-04-02 14:52:58  9.91MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget https://files.pythonhosted.org/packages/1f/7f/4da15e07ccd11c84c1ccc8f6e24288d5e76c99441bf80e315b33542db951/pip-23.3.1.tar.gz && tar -zxf pip-23.3.1.tar.gz # buildkit
                        
# 2025-04-02 14:52:53  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2025-04-02 14:52:53  10.89MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c python3.10 setup.py build && python3.10 setup.py install # buildkit
                        
# 2025-04-02 14:52:51  0.00B 设置工作目录为/home/setuptools-68.2.2
WORKDIR /home/setuptools-68.2.2
                        
# 2025-04-02 14:52:51  8.86MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget https://files.pythonhosted.org/packages/ef/cc/93f7213b2ab5ed383f98ce8020e632ef256b406b8569606c3f160ed8e1c9/setuptools-68.2.2.tar.gz && tar xf setuptools-68.2.2.tar.gz # buildkit
                        
# 2025-04-02 14:52:47  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2025-04-02 14:52:47  67.95MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-get update &&   apt-get install -y python3.10 python3.10-dev python3.10-distutils &&   apt-get install python-is-python3 &&   rm /usr/bin/python && ln -s /usr/bin/python3.10 /usr/bin/python &&   rm /usr/bin/python3 && ln -s /usr/bin/python3.10 /usr/bin/python3 # buildkit
                        
# 2025-04-02 14:51:49  0.00B 设置环境变量 PATH
ENV PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-8.2/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-04-02 14:51:49  112.87MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget -q https://cmake.org/files/v3.18/cmake-3.18.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.18.0-Linux-x86_64.tar.gz && rm cmake-3.18.0-Linux-x86_64.tar.gz # buildkit
                        
# 2025-04-02 14:48:10  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2025-04-02 14:48:10  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm -rf /build_script # buildkit
                        
# 2025-04-02 14:48:10  6.98GB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_trt.sh trt8616 # buildkit
                        
# 2025-04-02 14:46:56  0.00B 设置环境变量 CUDNN_VERSION
ENV CUDNN_VERSION=8.9.7
                        
# 2025-04-02 14:46:56  4.73GB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_cudnn.sh cudnn897 # buildkit
                        
# 2025-04-02 14:43:44  3.42MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_patchelf.sh # buildkit
                        
# 2025-04-02 14:43:28  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/gcc-8.2/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-04-02 14:43:28  26.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++ # buildkit
                        
# 2025-04-02 14:43:27  26.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc # buildkit
                        
# 2025-04-02 14:43:27  26.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++ # buildkit
                        
# 2025-04-02 14:43:26  26.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc # buildkit
                        
# 2025-04-02 14:43:26  2.32MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++ # buildkit
                        
# 2025-04-02 14:43:26  1.54GB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_gcc.sh gcc82 # buildkit
                        
# 2025-04-02 10:54:12  39.59KB 复制新文件或目录到容器中
COPY tools/dockerfile/build_scripts /build_scripts # buildkit
                        
# 2025-04-02 10:54:12  0.00B 设置工作目录为/usr/bin
WORKDIR /usr/bin
                        
# 2025-04-02 10:54:12  519.45MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-get update --allow-unauthenticated &&   apt-get install -y software-properties-common &&   add-apt-repository ppa:deadsnakes/ppa &&   apt-get update &&   apt-get install -y curl wget vim git unzip unrar tar xz-utils libssl-dev bzip2 gzip     coreutils ntp language-pack-zh-hans libsm6 libxext6 libxrender-dev libgl1-mesa-glx     bison graphviz libjpeg-dev zlib1g-dev automake locales swig net-tools libtool kmod # buildkit
                        
# 2025-03-05 09:34:22  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm /etc/apt/sources.list.d/* # buildkit
                        
# 2025-03-05 09:34:22  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-key del 7fa2af80 # buildkit
                        
# 2025-03-05 09:34:21  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c chmod 777 /tmp # buildkit
                        
# 2025-03-05 09:34:21  1.29KB 复制新文件或目录到容器中
COPY paddle/scripts/docker/root/ /root/ # buildkit
                        
# 2025-03-05 09:34:21  0.00B 设置环境变量 HOME
ENV HOME=/root
                        
# 2025-03-05 09:34:21  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/cuda-11.8/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2025-03-05 09:34:21  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2025-03-05 09:34:21  0.00B 设置环境变量 WITH_AVX
ENV WITH_AVX=ON
                        
# 2025-03-05 09:34:21  0.00B 设置环境变量 WITH_GPU
ENV WITH_GPU=ON
                        
# 2025-03-05 09:34:21  0.00B 定义构建参数
ARG WITH_AVX
                        
# 2025-03-05 09:34:21  0.00B 定义构建参数
ARG WITH_GPU
                        
# 2025-03-05 09:34:21  0.00B 
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
                        
# 2023-11-10 15:16:58  2.37GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 15:16:58  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.6.50
                        
# 2023-11-10 15:16:58  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 15:16:58  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 15:16:58  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8
                        
# 2023-11-10 15:16:58  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8
                        
# 2023-11-10 15:16:58  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 15:16:58  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.6.50
                        
# 2023-11-10 14:55:34  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 14:55:34  377.32KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:55:29  4.71GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     libtinfo5 libncursesw5     cuda-cudart-dev-11-8=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-8=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-8=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-8=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-8=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-8=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:55:29  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:55:29  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.16.2-1+cuda11.8
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.16.2-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.16.2-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.8.87-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.8.86-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.8.89-1
                        
# 2023-11-10 14:55:29  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:43:29  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 14:43:29  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 14:43:29  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 14:43:29  258.26KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:43:29  2.42GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-8=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-8=${NV_NVTX_VERSION}     libcusparse-11-8=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:43:29  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:43:29  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.16.2-1+cuda11.8
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.16.2-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.16.2-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.8.86-1
                        
# 2023-11-10 14:43:29  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:37:17  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 14:37:17  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 14:37:17  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 14:37:17  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 14:37:17  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 14:37:17  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 14:37:17  150.68MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-8=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:03  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.8.0
                        
# 2023-11-10 14:37:03  18.32MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:03  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:37:03  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:37:03  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8
                        
# 2023-11-10 14:37:03  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.8.89-1
                        
# 2023-11-10 14:37:03  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
                        
# 2023-11-10 14:37:03  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-03 18:45:52  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-03 18:45:51  72.79MB 
/bin/sh -c #(nop) ADD file:4809da414c2d478b4d991cbdaa2df457f2b3d07d0ff6cf673f09a66f90833e81 in / 
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=20.04
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:e3bb80f2368c8120c4481aac4e75e6e6d5ef7770325588d645518427f520144b",
    "RepoTags": [
        "paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6"
    ],
    "RepoDigests": [
        "paddlepaddle/paddle@sha256:2bd8830dafd258501e7313b320fa1bcc946c70318b3081647b90bc70182e7360",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle@sha256:2bd8830dafd258501e7313b320fa1bcc946c70318b3081647b90bc70182e7360"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-04-21T15:53:56.553936611+08:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "PaddlePaddle Authors \u003cpaddle-dev@baidu.com\u003e",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "22/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-8.2/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin:/root/gopath/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.8 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471",
            "NV_CUDA_CUDART_VERSION=11.8.89-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8",
            "CUDA_VERSION=11.8.0",
            "LD_LIBRARY_PATH=/usr/local/TensorRT-8.5.3.1/lib:/usr/local/cuda-11.8/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.8.0-1",
            "NV_NVTX_VERSION=11.8.86-1",
            "NV_LIBNPP_VERSION=11.8.0.86-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1",
            "NV_LIBCUSPARSE_VERSION=11.7.5.86-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8",
            "NV_LIBCUBLAS_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.16.2-1",
            "NCCL_VERSION=2.16.2-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.16.2-1+cuda11.8",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=11.8.89-1",
            "NV_NVML_DEV_VERSION=11.8.86-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1",
            "NV_LIBNPP_DEV_VERSION=11.8.0.86-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1",
            "NV_NVPROF_VERSION=11.8.87-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.16.2-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.16.2-1+cuda11.8",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.9.6.50",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.6.50-1+cuda11.8",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.6.50-1+cuda11.8",
            "WITH_GPU=ON",
            "WITH_AVX=ON",
            "DEBIAN_FRONTEND=noninteractive",
            "HOME=/root",
            "CUDNN_VERSION=8.9.7",
            "GOROOT=/usr/local/go",
            "GOPATH=/root/gopath"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.6.50",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "20.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 30756885497,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/a87dcd247c0598a86afb77d4a7278a22fce56f7e3602f01230bf6d8e94f818d9/diff:/var/lib/docker/overlay2/3c9152d05b5ffbef92cc0c504667971c59761d86d63d0a2f5443a93f755721ab/diff:/var/lib/docker/overlay2/1bae790fb31c0c14d0fae4b66e3c3dcf088b7ebeaf3bfed2df692f1b257c4da3/diff:/var/lib/docker/overlay2/5373d53f79db36fe18f4fa12e295d08945ffb568a6d4775ab523097b217c03ad/diff:/var/lib/docker/overlay2/bc77147fbb2058504d28dd14be7864c8700e13b59b7de99779127526e1a13ac5/diff:/var/lib/docker/overlay2/cc2349ef0a8bd6f2e750b8d3f03a74b2f27903cb7b2a005d136402f93bf09e98/diff:/var/lib/docker/overlay2/9caa60838b2525ba916348e1204dd2a7fc895cdbb953da9e57c46086aed4cdf2/diff:/var/lib/docker/overlay2/19e9836cb0cf2315e6b72d2e8af1f797be7a5ef64f656c51e1e107964943b667/diff:/var/lib/docker/overlay2/9fed2174f6900ee55d717a6ff01b42b456cb3abaf473d9ea98ee414f5237f952/diff:/var/lib/docker/overlay2/e2bfa48b7ce42dd9ddddb5a5b3023710afd7cd590bbf255746bb9d531e447054/diff:/var/lib/docker/overlay2/efa776495513edc525d320a88bb6869b3b38783b6d51665cfe20814f79befbe2/diff:/var/lib/docker/overlay2/6f4b151cfe035f51c1f1b685052a1af45f9e3cc4ed9c29f353e5c08c5cdf2d75/diff:/var/lib/docker/overlay2/8b3f273b9b33d79103b30d59381860d1fe813ca718cf8846e8864921bc7b9252/diff:/var/lib/docker/overlay2/96c5fc8ca2d2f287cc1650bece2a2a487977bb3e52543a2d6418cfa07069df4c/diff:/var/lib/docker/overlay2/867c628e43282d93428bf7afe2aca9dcd0b179ef4a107dd639d7c4896c88e34d/diff:/var/lib/docker/overlay2/f1da8502a4de716b88013de65dd146abb3d3548b5036d4d51127c429812540d0/diff:/var/lib/docker/overlay2/8c920274de6f1f8881af2689ca232b3a8aedc4a1f9a09dfe6ac5dd20a8908a75/diff:/var/lib/docker/overlay2/e781423aec7e26f588d0aafa242b05de07021faa06c382ebb1c7152010ba5564/diff:/var/lib/docker/overlay2/7d65b501fa2bdfce5b8f45933e134ec0a7422f001d5480f979dc64eae2095491/diff:/var/lib/docker/overlay2/4e1d58f8a1756d8b8ab9c98922dbf4d05fcbdde625e8552364bef7f805610d73/diff:/var/lib/docker/overlay2/2f4ded0a2fbfb8a12b1a972adc26fd0b0b05e6436948513704c03ee618988760/diff:/var/lib/docker/overlay2/01e7d204712f4fd30dfeb86f74dd5186f4dc3fd1c47305b30b3fcee2a3cc7782/diff:/var/lib/docker/overlay2/c743bbdac1a0892721011a45768e841887251ebcbf43fd1505e9eea48a3990c7/diff:/var/lib/docker/overlay2/5d4f10268b3e57742972a5815b09632f22428da1e31bdb0f7c49f5b578c81992/diff:/var/lib/docker/overlay2/79c11ab84783b46d98dd372c86daa3e9f4545178f8a360abcebfe98ca6c5cfd8/diff:/var/lib/docker/overlay2/dafb5a4ed5a0e02f47780d7c99148a3ee4b2f4d0a7a299d68bc44801bf238944/diff:/var/lib/docker/overlay2/e22da8b53b23f52314c68470c4f94e75ee34a35fb786b2fff546dbea3fec82f9/diff:/var/lib/docker/overlay2/1458cfe77a7ba7d16664c0b78060e11ff50de9939e4d87b60bb7d9d1ebecbbb1/diff:/var/lib/docker/overlay2/f6056ba4bad6fdbfd5a23abde874b24ba5182e09204a052bfe837c00f6c25f90/diff:/var/lib/docker/overlay2/9c38db31547959fe6603cef47b20f88cee7cd65976e7730a30676db0970c6321/diff:/var/lib/docker/overlay2/a604f37000738fdd2b15203ee1a4055cefbe57c053e1eb1402d1e403282286b2/diff:/var/lib/docker/overlay2/ca27b45ff349eec89003f1f76d5b09aa39de7461426bebb7b014f9595edaf3dd/diff:/var/lib/docker/overlay2/e16da1d785459719db525201933bfe16274c59a594aab0a25321b542a9119c70/diff:/var/lib/docker/overlay2/aad952b84ba3ec9f4f8d47ac58818ccf0bed52c7fa837cbadc8ba64bbf78ca55/diff:/var/lib/docker/overlay2/3677d1d3da1f746dcf08d4c74344c38797c3dcdcb6b2465394484f9e8e1ea59c/diff:/var/lib/docker/overlay2/52a2775f52f5fd02c11982938ca46dbe5edf7dda1b1ea5f44e32fb7f17f5a081/diff:/var/lib/docker/overlay2/ff3ebd6f17a4641cf8cf4dfc84ad1632020d54617c1d27bd0d30e1051128d66a/diff:/var/lib/docker/overlay2/4075f5eef21d4241e8e979cafc01b1d1cc52e83bfcd321c2ea796c9526b1faa5/diff:/var/lib/docker/overlay2/6d732964585cbe212d15e7e73790c986f49c8c1a5204fe76e449611014e8d4a7/diff:/var/lib/docker/overlay2/bcf47e76c18518ded2ac3e1e6cb8f4fbbfa0a28b8ea595a11e7ab002099d45ab/diff:/var/lib/docker/overlay2/105826d8b35a9d85950264fc6911c25c5b117f514be0a22379d0b330471b6a22/diff:/var/lib/docker/overlay2/638ee1935c3b60a925c7cddf167ee422f8b9030e90d8256ea9e460a7e5ad2375/diff:/var/lib/docker/overlay2/5ce45d05b64162dff8c3d2965ca94c59e92496a7a471a956d589967f9ace8169/diff:/var/lib/docker/overlay2/4d8b486154978005ed40c124638404c67f70cc6d1874a2f1e1eb5870aa8e713b/diff:/var/lib/docker/overlay2/e4abd7572c0f4f06e2b3bc60afad2cc25d591d6e7b95dcd24c5df372aa41f6f4/diff:/var/lib/docker/overlay2/cfafd1f04a6a2bd163113c8afb68b278ad0e48344c778df1fae766708d39ca6b/diff:/var/lib/docker/overlay2/11848a093729c7f4980961e35070508054d90aabe4d67b3eccb2b2e6895ea92e/diff:/var/lib/docker/overlay2/f73adc0c059092d0118b5f3752fc3d71396b2ac72ac5955b86a28f2b42c2cc82/diff:/var/lib/docker/overlay2/f2944f1c8bdd00d7d3f3e961127c95e8aa3dfbf7d92cc1d8336f3bd5f6711f65/diff:/var/lib/docker/overlay2/2f4be7d2dea5f89ec82e005d6af726545d044f6f2761a7f4b355a296adb09acc/diff:/var/lib/docker/overlay2/5abe2411c89136e9c5ccf93f21956a622e29b721c4dd0abf4bfffeaf378ff19b/diff:/var/lib/docker/overlay2/9190157ea096c49fbfba75ef3e6c1cadfbb313f14201f4e2d8413427597eaf60/diff:/var/lib/docker/overlay2/274a801851c75b6ceff755bb8a6d5fc0002ce9e15a51de5fd22652dfcba1007e/diff:/var/lib/docker/overlay2/d52b6f242cbe46501d62921bef0e35e852c7304c4653bdd5fef9a1b4f9ffef33/diff:/var/lib/docker/overlay2/4259a7a04045f84b579b7167391dd8f27f4f62444ef7cbd69a4d72cbcf955c6f/diff:/var/lib/docker/overlay2/800386c78d87949025de4f9acfaf2b381cc5065caba9fd012cea1bd8dc46b266/diff:/var/lib/docker/overlay2/5408abd3ec726f4d055e10fddd8f488a8839c8a355fe1fb064cdc9fee660e07b/diff",
            "MergedDir": "/var/lib/docker/overlay2/ebad369e99a5511b6717e107077f534adbef166c1d522e03e26b3c158bf873b8/merged",
            "UpperDir": "/var/lib/docker/overlay2/ebad369e99a5511b6717e107077f534adbef166c1d522e03e26b3c158bf873b8/diff",
            "WorkDir": "/var/lib/docker/overlay2/ebad369e99a5511b6717e107077f534adbef166c1d522e03e26b3c158bf873b8/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:6c3e7df31590f02f10cb71fc4eb27653e9b428df2e6e5421a455b062bd2e39f9",
            "sha256:851dfeb181928f7e34d874b04c1bf8995798ca1aaaf0319ce0e453a73d998ac8",
            "sha256:33e57ea5b30a49e661305472f1a9677269b397f6e2435f27b53c1aaa9b7074c5",
            "sha256:86f0cc586e78639fddbe58d8f2ea17756020502a874270e6e8eb9d137d19cbde",
            "sha256:f344b08ff6c5121d786112e0f588c627da349e4289e409d1fde1b3ad8845fa66",
            "sha256:dbd5b7f451e30b5b69fc545ed2fde7b81415f3684230617594825bb84042fe2e",
            "sha256:980eb7f7bcb0a7b55a3274767f792e6db838a5ed454805c241f8edec8a6bfcc9",
            "sha256:63296bbbf98bdc530d0ef6529abca4d2301abb76b206c1fdc332be31a7ecf9c2",
            "sha256:8a741f0ee5177975fd861b1d837acb151cc52d373b0851409711ad01ffb713b5",
            "sha256:1a7b944dac2534334f8a2439c614990c039c861787aaffb49a61b917a403a889",
            "sha256:b63c7fe2d89fe3b04ae50c035f1063926883b4bf4999d223b6b975edf74f0b03",
            "sha256:d93d20af701b3a2a25817ff5a17a22606757a025e3f408228e1c5df01f189ba3",
            "sha256:42804adc3f779163afd8f28412d00a6196d7960024c2d3eb8d4eb70e897c7ae8",
            "sha256:1a637586bab3853c083160605a091efd610a1b086cfe1b29d9195cc393038f03",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:c67103e2d5eaa1fa37e3b0c4104f4efaa4b6e94232cc6cbfcda6d99a5ed2efa1",
            "sha256:015d07e0087a4fc4868ab3ade19e97719b8e3adc0543a97cc1a273b4d249fd6e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:d7dfdccbee309a68eaa621acef1153c8ab6a6a5e8d3febcd51a47a45525ce4d1",
            "sha256:ccee7a6f7208159795ebf431cd20175b2a0c412d0b801bd6e4d93e8286d4d1cc",
            "sha256:80a32bed36cee34880c759db416dedc75a13b16633036de09eb89d0e6bf6946f",
            "sha256:e33bd88c4cbb3f91a606e540f0ab3c81f7372031eb6a67ac5d483e4722845b2d",
            "sha256:5211b804ef811426652350618f8576600e6f099a052160551804737736980e81",
            "sha256:e4ccd09ff95ec735b81e8c38309d9f0c525744d95765434f8d255e6817b9936d",
            "sha256:0b0c4e15e92aaf13060e073c73119eeb5c4ba28c15d4fa430871c2de7e0d8e1e",
            "sha256:07a78e5f7bac74a19944e912614c582f7d7c337101e6828b18a60ef7c41b228e",
            "sha256:201ae15895a8bcd1647a28531a695be74d9c51b9949d34b246c9927bb352b82e",
            "sha256:4881565531ffaf0a137d8ea944cf966ce1d6daa981b94e03f78466a9e13eeb08",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:957b371da5210a5f2d16f0def9eff09a03a634724ac50cee5dfb83f4929838af",
            "sha256:9541ca1179e1597bdd38d4b9d64c1583d0c811bce32ac6fcf629666ed251299a",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:c5a1e5d827e75394830c54ff0118de55a50e4b7fa8b3bcb823d73d404e7845eb",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:79728a4eb93a24cd14edc12c0081ae2d04990b29b8f82ef5389e5dbeb312440e",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:9c4b43845b65d4e1928c6fd8c66414dff48da72d4fbac145029b29f5362c0d9c",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:cc946b03b52185a49c1ccc16e26258ecbc39291dd936efb29c06bb8bcaed5d58",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:d0607faee90090c3a30b86245dc5bd2fac4ee8e2f4188f7c554abb22debc99bf",
            "sha256:17af033578117ef04f40ca34575d532e5d1b102389d5545ee4e3fcb6383e7ffc",
            "sha256:ac7e9e5d6dde94bd135ba31141e221c9a9a82cfe8c3f2ad54cc58923ff0be9ea",
            "sha256:6cc5fd664803564f15a866d914e752140a2301ec400f71f8a143ff7b634f32f2",
            "sha256:1e0cfe9b22f376e08f55892b3ccb99c3ec417bdb04e78df5ffe6da6aa33212ea",
            "sha256:e8893ec30cb791a8e7b4b10a722f346515b36444ff614e6644fa4708c145c9a1",
            "sha256:5ac48c5bfee9e292cc77ce75a6e0ed721c2883c20f822ebb346b8e50e612432c",
            "sha256:112b2b7508a82886e5639c95d610db708e40af30807c867ce19b1b14fbd84fef",
            "sha256:19e3f20fc2b6beb0c58711a9d2c9634653b93326111931cdc3ece330fce473f5",
            "sha256:185e55288f04912a7ba429a2535e89f88a7d9c1f87f67a9e5395a1bd1eaacd4f",
            "sha256:fe84b1b8b70f66073052924b17e425e0b0477acc4397ffd2af7b5f01b8f2e016",
            "sha256:19c6e357c74fbdc8e4d1850abe467e60fed40cb3f07a700c824bcf348061ffb5",
            "sha256:e9839c06b5ee52dab73ea43c2acff1e52cddd88524937a3393b4aeb115e58f15",
            "sha256:861f37820555261e880cae88f8d4fd92c0599642d26df97f1ad2123f676e21fb",
            "sha256:8f2152c69e6f1eb78583a985fef30b3341976722be0ed8a20e7ddb2722646e62",
            "sha256:5cbb60db62330648d90f8148a2b6121428a47c64d4c1203bf74073ffa8b7f11f",
            "sha256:04ab1898b9bd222bbd1a1ecac9cb9b051ad29d6a4b31fa8b3b51c92207d61347"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-06-20T05:04:17.379602448+08:00"
    }
}

更多版本

docker.io/paddlepaddle/paddle:2.4.1-gpu-cuda11.7-cudnn8.4-trt8.4

linux/amd64 docker.io17.30GB2024-10-11 19:56
261

docker.io/paddlepaddle/paddle:2.5.0-gpu-cuda12.0-cudnn8.9-trt8.6

linux/amd64 docker.io22.04GB2025-01-17 01:39
210
186

docker.io/paddlepaddle/paddle:2.6.1

linux/amd64 docker.io4.66GB2025-04-13 21:10
191

docker.io/paddlepaddle/paddle:2.2.2-gpu-cuda10.2-cudnn7

linux/amd64 docker.io9.38GB2025-05-29 16:34
49

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.2-cudnn8.2-trt8.0

linux/amd64 docker.io21.56GB2025-06-19 14:18
7

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4

linux/amd64 docker.io21.14GB2025-06-19 14:58
6

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6

linux/amd64 docker.io34.04GB2025-06-20 02:33
5

docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda12.6-cudnn9.5-trt10.5

linux/amd64 docker.io43.07GB2025-06-20 04:33
6

docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6

linux/amd64 docker.io30.76GB2025-06-20 05:04
5