docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6 linux/amd64

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6 - 国内下载镜像源 浏览次数:6

PaddlePaddle是中国最大的开源深度学习框架。它可以实现各种常见的机器学习算法,并支持多种编程语言,如Python、Java和C++。该镜像包含了PaddlePaddle的所有依赖包和预建环境,使您能够直接在容器中运行PaddlePaddle应用程序。

源镜像 docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6
镜像ID sha256:9dc3d1522db4b9d4cee0d28f219c8df222d0756c9f3a67fa57826c1a3160ee32
镜像TAG 2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6
大小 34.04GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /home
OS/平台 linux/amd64
浏览量 6 次
贡献者 20******6@qq.com
镜像创建 2024-09-13T06:34:01.040240048Z
同步时间 2025-06-20 02:33
更新时间 2025-06-20 08:04
开放端口
22/tcp
环境变量
PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-12.1/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin:/root/gopath/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.0 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 NV_CUDA_CUDART_VERSION=12.0.107-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-0 CUDA_VERSION=12.0.0 LD_LIBRARY_PATH=/usr/local/TensorRT-8.6.1.6/lib:/usr/local/cuda-12.0/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.0.0-1 NV_NVTX_VERSION=12.0.76-1 NV_LIBNPP_VERSION=12.0.0.30-1 NV_LIBNPP_PACKAGE=libnpp-12-0=12.0.0.30-1 NV_LIBCUSPARSE_VERSION=12.0.0.76-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-0 NV_LIBCUBLAS_VERSION=12.0.1.189-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-0=12.0.1.189-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.0 NVIDIA_PRODUCT_NAME=CUDA NVIDIA_CUDA_END_OF_LIFE=1 NV_CUDA_CUDART_DEV_VERSION=12.0.107-1 NV_NVML_DEV_VERSION=12.0.76-1 NV_LIBCUSPARSE_DEV_VERSION=12.0.0.76-1 NV_LIBNPP_DEV_VERSION=12.0.0.30-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-0=12.0.0.30-1 NV_LIBCUBLAS_DEV_VERSION=12.0.1.189-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-0 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-0=12.0.1.189-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.0.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-0=12.0.0-1 NV_NVPROF_VERSION=12.0.90-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-0=12.0.90-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.0 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.8.0.121 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.8.0.121-1+cuda12.0 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.8.0.121-1+cuda12.0 WITH_GPU=ON WITH_AVX=ON DEBIAN_FRONTEND=noninteractive HOME=/root CUDNN_VERSION=8.9.1 GOROOT=/usr/local/go GOPATH=/root/gopath
镜像标签
8.8.0.121: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 20.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6  docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6  docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6

Shell快速替换命令

sed -i 's#paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6  docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6  docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6'

镜像构建历史


# 2024-09-13 14:34:01  56.06KB 
/bin/sh -c ldconfig
                        
# 2024-09-13 14:33:54  0.00B 
/bin/sh -c #(nop)  ENV LD_LIBRARY_PATH=/usr/local/TensorRT-8.6.1.6/lib:/usr/local/cuda-12.0/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-09-13 14:33:50  0.00B 
/bin/sh -c pip cache purge
                        
# 2024-09-13 14:33:43  4.01GB 
/bin/sh -c python -m pip install https://paddle-whl.bj.bcebos.com/stable/cu120/paddlepaddle-gpu/paddlepaddle_gpu-2.6.2.post120-cp310-cp310-linux_x86_64.whl
                        
# 2024-09-13 14:32:14  11.61MB 
/bin/sh -c pip install -U pip -i https://pypi.tuna.tsinghua.edu.cn/simple
                        
# 2023-11-14 17:09:11  0.00B 声明容器运行时监听的端口
EXPOSE map[22/tcp:{}]
                        
# 2023-11-14 17:09:11  754.26MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget https://paddle-ci.cdn.bcebos.com/clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz &&     tar xf clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz && cd clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-16.04 &&     cp -rn * /usr/local && cd .. && rm -rf clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-16.04 && rm -rf clang+llvm-3.8.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz # buildkit
                        
# 2023-11-14 17:08:50  43.23MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget -q https://paddle-ci.gz.bcebos.com/ccache-4.8.2.tar.gz &&     tar xf ccache-4.8.2.tar.gz && mkdir /usr/local/ccache-4.8.2 && cd ccache-4.8.2 &&     mkdir build && cd build &&     cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local/ccache-4.8.2 .. &&     make -j8 && make install &&     ln -s /usr/local/ccache-4.8.2/bin/ccache /usr/local/bin/ccache &&     cd ../../ && rm -rf ccache-4.8.2.tar.gz # buildkit
                        
# 2023-11-14 17:07:37  88.53MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c pip3.10 --no-cache-dir install -r /root/requirements.txt # buildkit
                        
# 2023-11-14 17:05:47  164.00B 复制新文件或目录到容器中
COPY ./python/requirements.txt /root/ # buildkit
                        
# 2023-11-14 17:05:46  44.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm -f /usr/local/bin/pip && ln -s /usr/local/bin/pip3.10 /usr/local/bin/pip &&     rm -f /usr/local/bin/pip3 && ln -s /usr/local/bin/pip3.10 /usr/local/bin/pip3 # buildkit
                        
# 2023-11-14 17:05:46  6.19MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c localedef -i en_US -f UTF-8 en_US.UTF-8 # buildkit
                        
# 2023-11-14 17:05:44  649.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c git config --global credential.helper store # buildkit
                        
# 2023-11-14 17:05:44  9.12MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-get install -y golang-glide # buildkit
                        
# 2023-11-14 17:05:30  0.00B 设置环境变量 PATH
ENV PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-12.1/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin:/root/gopath/bin
                        
# 2023-11-14 17:05:30  0.00B 设置环境变量 GOROOT GOPATH
ENV GOROOT=/usr/local/go GOPATH=/root/gopath
                        
# 2023-11-14 17:05:30  407.78MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget --no-check-certificate -qO- https://paddle-ci.gz.bcebos.com/go1.17.2.linux-amd64.tar.gz |     tar -xz -C /usr/local &&     mkdir /root/gopath &&     mkdir /root/gopath/bin &&     mkdir /root/gopath/src # buildkit
                        
# 2023-11-14 17:05:24  119.57MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget -q https://ftp.gnu.org/gnu/binutils/binutils-2.33.1.tar.gz &&     tar -xzf binutils-2.33.1.tar.gz &&     cd binutils-2.33.1 &&     ./configure && make -j && make install && cd .. && rm -rf binutils-2.33.1 binutils-2.33.1.tar.gz # buildkit
                        
# 2023-11-14 16:45:41  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm setuptools-68.2.2.tar.gz pip-23.3.1.tar.gz &&     rm -r setuptools-68.2.2 pip-23.3.1 # buildkit
                        
# 2023-11-14 16:45:41  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2023-11-14 16:45:41  23.36MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c python3.10 setup.py install # buildkit
                        
# 2023-11-14 16:45:37  0.00B 设置工作目录为/home/pip-23.3.1
WORKDIR /home/pip-23.3.1
                        
# 2023-11-14 16:45:37  9.91MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget https://files.pythonhosted.org/packages/1f/7f/4da15e07ccd11c84c1ccc8f6e24288d5e76c99441bf80e315b33542db951/pip-23.3.1.tar.gz && tar -zxf pip-23.3.1.tar.gz # buildkit
                        
# 2023-11-14 16:45:32  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2023-11-14 16:45:31  10.89MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c python3.10 setup.py build && python3.10 setup.py install # buildkit
                        
# 2023-11-14 16:45:29  0.00B 设置工作目录为/home/setuptools-68.2.2
WORKDIR /home/setuptools-68.2.2
                        
# 2023-11-14 16:45:29  8.86MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget https://files.pythonhosted.org/packages/ef/cc/93f7213b2ab5ed383f98ce8020e632ef256b406b8569606c3f160ed8e1c9/setuptools-68.2.2.tar.gz && tar xf setuptools-68.2.2.tar.gz # buildkit
                        
# 2023-11-14 16:45:18  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2023-11-14 16:45:18  56.98MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-get update &&   apt-get install -y python3.10 python3.10-dev python3.10-distutils &&   apt-get install python-is-python3 &&   rm /usr/bin/python && ln -s /usr/bin/python3.10 /usr/bin/python &&   rm /usr/bin/python3 && ln -s /usr/bin/python3.10 /usr/bin/python3 # buildkit
                        
# 2023-11-14 16:37:23  0.00B 设置环境变量 PATH
ENV PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-12.1/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-14 16:37:23  112.87MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c wget -q https://cmake.org/files/v3.18/cmake-3.18.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.18.0-Linux-x86_64.tar.gz && rm cmake-3.18.0-Linux-x86_64.tar.gz # buildkit
                        
# 2023-11-14 16:30:02  0.00B 设置工作目录为/home
WORKDIR /home
                        
# 2023-11-14 16:30:02  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm -rf /build_script # buildkit
                        
# 2023-11-14 16:30:02  0.00B 设置环境变量 CUDNN_VERSION
ENV CUDNN_VERSION=8.9.1
                        
# 2023-11-14 16:30:02  2.51GB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_cudnn.sh cudnn891 # buildkit
                        
# 2023-11-14 16:27:38  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/gcc-12.1/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-14 16:27:38  27.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-12.1/bin/g++ /usr/bin/g++ # buildkit
                        
# 2023-11-14 16:27:38  27.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-12.1/bin/gcc /usr/bin/gcc # buildkit
                        
# 2023-11-14 16:27:37  27.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-12.1/bin/g++ /usr/local/bin/g++ # buildkit
                        
# 2023-11-14 16:27:37  27.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c ln -s /usr/local/gcc-12.1/bin/gcc /usr/local/bin/gcc # buildkit
                        
# 2023-11-14 16:27:37  2.32MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++ # buildkit
                        
# 2023-11-14 16:27:37  8.52GB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_gcc.sh gcc121 # buildkit
                        
# 2023-11-14 15:45:37  3.63MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_patchelf.sh # buildkit
                        
# 2023-11-14 15:45:10  7.00GB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c bash /build_scripts/install_trt.sh trt8616 # buildkit
                        
# 2023-11-14 15:42:25  37.26KB 复制新文件或目录到容器中
COPY tools/dockerfile/build_scripts /build_scripts # buildkit
                        
# 2023-11-14 15:42:25  0.00B 设置工作目录为/usr/bin
WORKDIR /usr/bin
                        
# 2023-11-14 15:42:25  504.51MB 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-get update --allow-unauthenticated &&   apt-get install -y software-properties-common &&   add-apt-repository ppa:deadsnakes/ppa &&   apt-get update &&   apt-get install -y curl wget vim git unzip unrar tar xz-utils libssl-dev bzip2 gzip     coreutils ntp language-pack-zh-hans libsm6 libxext6 libxrender-dev libgl1-mesa-glx     bison graphviz libjpeg-dev zlib1g-dev automake locales swig net-tools libtool kmod # buildkit
                        
# 2023-11-14 15:38:55  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-key adv --fetch-keys https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu2004/x86_64/3bf863cc.pub # buildkit
                        
# 2023-11-14 15:38:54  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c rm /etc/apt/sources.list.d/* # buildkit
                        
# 2023-11-14 15:38:54  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c apt-key del 7fa2af80 # buildkit
                        
# 2023-11-14 15:38:54  0.00B 执行命令并创建新的镜像层
RUN |2 WITH_GPU=ON WITH_AVX=ON /bin/sh -c chmod 777 /tmp # buildkit
                        
# 2023-11-14 15:38:54  1.29KB 复制新文件或目录到容器中
COPY paddle/scripts/docker/root/ /root/ # buildkit
                        
# 2023-11-14 15:38:54  0.00B 设置环境变量 HOME
ENV HOME=/root
                        
# 2023-11-14 15:38:54  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/cuda-12.0/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-14 15:38:54  0.00B 设置环境变量 DEBIAN_FRONTEND
ENV DEBIAN_FRONTEND=noninteractive
                        
# 2023-11-14 15:38:54  0.00B 设置环境变量 WITH_AVX
ENV WITH_AVX=ON
                        
# 2023-11-14 15:38:54  0.00B 设置环境变量 WITH_GPU
ENV WITH_GPU=ON
                        
# 2023-11-14 15:38:54  0.00B 定义构建参数
ARG WITH_AVX
                        
# 2023-11-14 15:38:54  0.00B 定义构建参数
ARG WITH_GPU
                        
# 2023-11-14 15:38:54  0.00B 
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
                        
# 2023-11-10 15:14:03  2.56GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 15:14:03  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.8.0.121
                        
# 2023-11-10 15:14:03  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 15:14:03  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 15:14:03  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.8.0.121-1+cuda12.0
                        
# 2023-11-10 15:14:03  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.8.0.121-1+cuda12.0
                        
# 2023-11-10 15:14:03  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 15:14:03  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.8.0.121
                        
# 2023-11-10 14:51:55  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 14:51:55  379.48KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:49:37  4.82GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     libtinfo5 libncursesw5     cuda-cudart-dev-12-0=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-0=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-0=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-0=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-0=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-0=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:49:37  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:49:37  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.0
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-0=12.0.90-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.0.90-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-0=12.0.0-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.0.0-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-0=12.0.1.189-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-0
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.0.1.189-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-0=12.0.0.30-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.0.0.30-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.0.0.76-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.0.76-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.0.107-1
                        
# 2023-11-10 14:49:37  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.0.0-1
                        
# 2023-11-10 14:37:45  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 14:37:45  0.00B 设置环境变量 NVIDIA_CUDA_END_OF_LIFE
ENV NVIDIA_CUDA_END_OF_LIFE=1
                        
# 2023-11-10 14:37:45  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 14:37:45  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 14:37:45  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 14:37:45  259.50KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:37:44  2.21GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-0=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-0=${NV_NVTX_VERSION}     libcusparse-12-0=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:44  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:37:44  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.0
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-0=12.0.1.189-1
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.0.1.189-1
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-0
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.0.0.76-1
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-0=12.0.0.30-1
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.0.0.30-1
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.0.76-1
                        
# 2023-11-10 14:37:44  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.0.0-1
                        
# 2023-11-10 14:31:11  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 14:31:11  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 14:31:11  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 14:31:10  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 14:31:10  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 14:31:10  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 14:31:10  148.49MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-0=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:30:50  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.0.0
                        
# 2023-11-10 14:30:50  18.32MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:30:50  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:30:50  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:30:50  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-0
                        
# 2023-11-10 14:30:50  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.0.107-1
                        
# 2023-11-10 14:30:50  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.0 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
                        
# 2023-11-10 14:30:50  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-03 18:45:52  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-03 18:45:51  72.79MB 
/bin/sh -c #(nop) ADD file:4809da414c2d478b4d991cbdaa2df457f2b3d07d0ff6cf673f09a66f90833e81 in / 
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=20.04
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:9dc3d1522db4b9d4cee0d28f219c8df222d0756c9f3a67fa57826c1a3160ee32",
    "RepoTags": [
        "paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6"
    ],
    "RepoDigests": [
        "paddlepaddle/paddle@sha256:46f8bb28ebafd306bb9e4960418546d846d7896db75cc51b20f31b24ba78b16d",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/paddlepaddle/paddle@sha256:3c84574b1a4519e4e39003ec16f77d440a241a2bf5b624bbe5552952170675b3"
    ],
    "Parent": "",
    "Comment": "",
    "Created": "2024-09-13T06:34:01.040240048Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "20.10.23",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "22/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/home/cmake-3.18.0-Linux-x86_64/bin:/usr/local/gcc-12.1/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin:/root/gopath/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.0 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471",
            "NV_CUDA_CUDART_VERSION=12.0.107-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-0",
            "CUDA_VERSION=12.0.0",
            "LD_LIBRARY_PATH=/usr/local/TensorRT-8.6.1.6/lib:/usr/local/cuda-12.0/targets/x86_64-linux/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.0.0-1",
            "NV_NVTX_VERSION=12.0.76-1",
            "NV_LIBNPP_VERSION=12.0.0.30-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-0=12.0.0.30-1",
            "NV_LIBCUSPARSE_VERSION=12.0.0.76-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-0",
            "NV_LIBCUBLAS_VERSION=12.0.1.189-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-0=12.0.1.189-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.0",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NVIDIA_CUDA_END_OF_LIFE=1",
            "NV_CUDA_CUDART_DEV_VERSION=12.0.107-1",
            "NV_NVML_DEV_VERSION=12.0.76-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.0.0.76-1",
            "NV_LIBNPP_DEV_VERSION=12.0.0.30-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-0=12.0.0.30-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.0.1.189-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-0",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-0=12.0.1.189-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.0.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-0=12.0.0-1",
            "NV_NVPROF_VERSION=12.0.90-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-0=12.0.90-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.0",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.8.0.121",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.8.0.121-1+cuda12.0",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.8.0.121-1+cuda12.0",
            "WITH_GPU=ON",
            "WITH_AVX=ON",
            "DEBIAN_FRONTEND=noninteractive",
            "HOME=/root",
            "CUDNN_VERSION=8.9.1",
            "GOROOT=/usr/local/go",
            "GOPATH=/root/gopath"
        ],
        "Cmd": null,
        "Image": "sha256:1a65eb70e2ecb99b6f43cdb68255ee483fecf0402c50f85391c49e1117283cb8",
        "Volumes": null,
        "WorkingDir": "/home",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.8.0.121",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "20.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 34041457949,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/8f8c78bee4993293bbc35c46df95d58ca9e9f857ac8770c663d26bdabe13623f/diff:/var/lib/docker/overlay2/c3cbb821ce4d0e41e789398e1c51429c1841fda798dd872fa558206113fd3584/diff:/var/lib/docker/overlay2/fdb02e34ba96159d06221560f70feb6d7f0ec557ce7a026f218f829132498b0d/diff:/var/lib/docker/overlay2/a6c7afa697e5e018c3da7de2f4caef681117977d1382485e22fede5d6b5ece0d/diff:/var/lib/docker/overlay2/1b3b273b0cd652c81897f3ff7d9b938bb238b4a945730361dc5e23cc791cf15e/diff:/var/lib/docker/overlay2/df037dcacaf7de30d4f9c621cac5604d4ad9b670b3cc769031c80715560d35c3/diff:/var/lib/docker/overlay2/f0cf0eba3520bfb8e624eef663926fce498f9afd9403f7129ada4b6391bff017/diff:/var/lib/docker/overlay2/a7332f81a70ab4094cef7a92b98213896569290ef55beecd0611d33433b94fdb/diff:/var/lib/docker/overlay2/0954d77029fa95c96cd3db42acc3af8832aa94a05642b79f258a78da82f4c54b/diff:/var/lib/docker/overlay2/c602f7947f81712b6b039e4e380f418298c0b77c193f6ca7311fcb06078ce7ca/diff:/var/lib/docker/overlay2/152f926a83167fa69b82ed0c934f8264934b4e4d0355f94cdbe50c801bb4b1a6/diff:/var/lib/docker/overlay2/36acf1b7e93051fe5eaf8c0e2ba6763117eb1a76e3ec23d3e794e0f871f29959/diff:/var/lib/docker/overlay2/9ca0f75dd2006797b3b1ca8683cebf7a5cf1da5f760215293720253da4c57a26/diff:/var/lib/docker/overlay2/d80af72efa8c62087cf70af7c26c25c3e70276427089e8a0dc88a57928598120/diff:/var/lib/docker/overlay2/d6c8b518f3dd8fe88bfcf346133331926fe1f92547a78379932e2ff1f633b420/diff:/var/lib/docker/overlay2/507e3631d3ca9ab88cbb40192471ba95a723af98c194d2926255fa80b827b73c/diff:/var/lib/docker/overlay2/127864349be3488271ca21282226cc8563dfc01ec7744e9858d6ac21f59b49c4/diff:/var/lib/docker/overlay2/8f02b134701fcaa2c1da83dd6933f178902b5c9d2a5f7953a3585b2c8d4bed1a/diff:/var/lib/docker/overlay2/7ce9a8bbe80e548d1b0fd00ff3bf9f097e6f8e9905fb7d2eed9f6fc135735747/diff:/var/lib/docker/overlay2/6e4b88f570a2525f03e45cd7360d692846d5ce1cd058cfa2db4a14821064efb5/diff:/var/lib/docker/overlay2/b0b5654270b57ddd2c16a74e037addc4d1c9fb415a5a85f1533194e917e6016a/diff:/var/lib/docker/overlay2/2f4175cf4ae2914039f1599338d8e1727d614ffc4dc9deb830cc0ee87298383e/diff:/var/lib/docker/overlay2/d0a23c7a0d47af7ae12388f3d9e963e2c8e4d1843582d5f0f5c241ba4f708d47/diff:/var/lib/docker/overlay2/48bfa69ca60d4b26996449fa39eca05d22447b438cf3a6f538256aaa8061a43c/diff:/var/lib/docker/overlay2/b63021766fd2000077fabdc8916aa19b1181445800e79967a19af9fc28fb9ac5/diff:/var/lib/docker/overlay2/5a938044d713074f8dc503ecbedc645b8d548eead5ee37164573f47e984e31eb/diff:/var/lib/docker/overlay2/000a8c2088164117277d52835061790c5265937ff3b4e9c2ec93c01d56bdfb0e/diff:/var/lib/docker/overlay2/dac8c9067665809d08e4a51618969c9bc818a36d34fa812275e87eff630974bd/diff:/var/lib/docker/overlay2/bac02c7c7a153b7d0cbab251fe8dccfe10563c603f2ef9c9e634688cc60efc8f/diff:/var/lib/docker/overlay2/20abf29b77ca9c756f63914f4441299f9219785f7502b479c399fd25ef755d7d/diff:/var/lib/docker/overlay2/aefee9874313b67cc9cb4de88d659b52766b4610fde2ef09648f33d82238e40d/diff:/var/lib/docker/overlay2/59562375cb25fe5f95c5b5cd45010ce35506efd91489924bbbf17343d1ec52a5/diff:/var/lib/docker/overlay2/f9c626f1b10d2ebe4196512aaec8b77a0033e1a81ef8f534ebb7da4a1062d8e8/diff:/var/lib/docker/overlay2/0b3d6ee192c023f03d508dac3dd8270ef97059ad5626c9cb59bcf6c47236b0da/diff:/var/lib/docker/overlay2/686618b8e4af184cce3824e2542f22edb018477cc77253db391f61054a3fd805/diff:/var/lib/docker/overlay2/7fb76e459dbd99e4f2e5b2fcaf95f03c78b0c64d331d7f228131fd61469ccf3b/diff:/var/lib/docker/overlay2/822675010f84c71b7540a494b03953368c0f326c6aa48e9378072a69f27250a7/diff:/var/lib/docker/overlay2/2d30068922aa538f117bb5a71188890978fcdbdf8155d4ea22ca7785ccde201c/diff:/var/lib/docker/overlay2/05342085d76c54c5042a68ea879f325405ea54569ceb9cd2c680bdce84688fce/diff:/var/lib/docker/overlay2/fbeba97a5005de1fb8a4f9cad94adaf422b09d82827ee6be318506b083db2887/diff:/var/lib/docker/overlay2/630302986a792f1bc873f11e43e0ced985a7f9649239ee3d7400a2eae64f567d/diff:/var/lib/docker/overlay2/c181da6efdda4111fdf461bfffcb5a10f5945c301e4db58f041dfc9a8ad9eb54/diff:/var/lib/docker/overlay2/01ae61ff8ed0ced4cb23e905d3d58765652da52b80df84e2ec58d69a8e839adb/diff:/var/lib/docker/overlay2/8c64f620a3ac4855c7a7ba8ea4a10c16b9615640f8b2d16a8d288360c26bfe24/diff:/var/lib/docker/overlay2/187af9661df5c4786b6172aa04d6cedcc9d710e2c7a8d06f519e456a7ea13b30/diff:/var/lib/docker/overlay2/29aefa2a7bd4669624d0477d0d7356ef428fb55dd4c8d9757d7745acf674cb1a/diff:/var/lib/docker/overlay2/c43ccd054b3b7abb2c594dba248ecd6ad38b85066f3265d77abf513986f3acd6/diff:/var/lib/docker/overlay2/6fee1b582ba1d05fd7ace97345fe724a26a1dc5bebb4545395d9df251cc279f3/diff:/var/lib/docker/overlay2/b1d52effc3996d41ef7f872cdd0e76628721113b7bc9aea520a5c9c59b4d12aa/diff:/var/lib/docker/overlay2/9aab4703a3f683ef75249eb31f0e306348292b411def082a0872f6ac98dcdb6f/diff:/var/lib/docker/overlay2/75b06c307cbbcc91700a57763fd5b0ca7ef5e419bea5eec395a978905d5ae73f/diff:/var/lib/docker/overlay2/4397954eee5d833aaf77421ec3c28f3255b518c5b3c5ba46e48ad283eb438e6e/diff:/var/lib/docker/overlay2/664f144fe1067ff45710fcfc32794d3fd284483344fe88f3828167f7e71ed196/diff:/var/lib/docker/overlay2/f064ce4d78acca1401a22fe03c795e9e7cf425227dba41f10d5a760611344b88/diff:/var/lib/docker/overlay2/510e8cf9ad824f5ab392a69e3159d142b89f9210c34db5d7a079d9e929732713/diff:/var/lib/docker/overlay2/5408abd3ec726f4d055e10fddd8f488a8839c8a355fe1fb064cdc9fee660e07b/diff",
            "MergedDir": "/var/lib/docker/overlay2/bfaa7383b870f26a1ef50d1d242fef237996168b87b9e37404c264fafe7ea019/merged",
            "UpperDir": "/var/lib/docker/overlay2/bfaa7383b870f26a1ef50d1d242fef237996168b87b9e37404c264fafe7ea019/diff",
            "WorkDir": "/var/lib/docker/overlay2/bfaa7383b870f26a1ef50d1d242fef237996168b87b9e37404c264fafe7ea019/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:6c3e7df31590f02f10cb71fc4eb27653e9b428df2e6e5421a455b062bd2e39f9",
            "sha256:3a551ed52cf364a7ed92938725199f975d59dab2982f31629e775cbc1a859b7f",
            "sha256:70780a76c270e7dabe6a1513deda6fa24780dd27b0c71c263568eb562eb83e12",
            "sha256:e4bcbc22d69f23ee94cce6a7afd3b15bfcb1384f37b7c272135aad1264105fee",
            "sha256:0ab7c4e0761e484f8181b610b6248f37a97e6000c2b6d77dae428be55a8e8609",
            "sha256:097c661bd433fd71afa514795044484af1edc26540f0b4309b90d7826c6962d3",
            "sha256:005297400330bb3050abd02b7903097031b145cbfbc3933bb64836010714a4ba",
            "sha256:205757e428ffa341f0b862546f2a0eeae35e04f0330e7a2c4ab7256c0a820b7e",
            "sha256:d5e0e60371a87ad29517313c9015a8ed46e0a347b05bca6138498342296581b5",
            "sha256:7a1c4903b90c403acdfbff87b2b62f117af9026432cce0df91c364467e7c0679",
            "sha256:77c6c6326476f4aedaa310e42cff9dfb0c62ad16c10296aa4c6fc8d916e1d01b",
            "sha256:e9bd0fa5c9b045d069db8b401768386c0a34b513f0b447cfca99ad0bb993f430",
            "sha256:061e424a1090558b4f1bad1d7c49cb57ef4f759e3825583ab882655c6008b8e1",
            "sha256:1a637586bab3853c083160605a091efd610a1b086cfe1b29d9195cc393038f03",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:4f46d8e69139ee956802c5ad3d2dec07378fd7245817a4d0724163d43413f4da",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:321e4534479cef7171b0ddafec156f451d636ffa7f5eb18fa4c21b1b4ddd50da",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:7d4cebd2f484b4f2d990fa915f5066bc147fce7d57c0544e74f60ba3c337b32c",
            "sha256:18b0bc3aa1628a4da069d831801c664e7e846be318f11c88eb5595455489df55",
            "sha256:bc08c81f0633e300183a6905f9c5787b7e18c00f1c341c53a4841ea024c0fa55",
            "sha256:9f9798be722e69ebc308dba8fe16a7df39c2111ade841350a718076dad764262",
            "sha256:c2f986e6882a2d781c35fa26249bd2493d6273a01c12644090adda697a27951c",
            "sha256:b9d06db998b18d1c84270407ec87c7da7e192f78ac9ad82bea1403fad50bd1db",
            "sha256:ef9985351a1ec2bd86bab82bb8969db89a6299e39cfefbb8a8dc492527bc6cb1",
            "sha256:990f4b9bf56af107876bbf6da3b8eb027746d59009f5b2d569e56ef26864b0de",
            "sha256:6d71d7dfad6f74879da7f63f3295edb5e22246caef52946632b8b0a39625380b",
            "sha256:d0860dc63a117fa50204c8f95144f6388f1413e311a0f5676e201434ac91e4e1",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:7611e51f432716735db3c673ebb692ff97c23ee53469b591c06cd4c0df68a753",
            "sha256:9bf0088449d9e46a71f28780676c74a4a28f81fe1966b1b8e8e9e7f83e108572",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:b5e83cf0e8ce310ed82442484e8f2843a5647cf09d63e9e8c859745ec5352551",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:a43092b2e7b2b89770a7e09c32960dbf34baa518a2279527d6fc3f523edcaf05",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:a4c3654d6b22773ba46c292e34ff5bcc660204895fc6c928679c3c932e068745",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:3b73fd7984c75d93b10de2bce543a7acc0bdfbaf6ad66e8d5aa31ba47003f5f3",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:0a8d77ecbb5640699f701ce577f9c372248a401c2ef368427fe1d9192bcc5240",
            "sha256:bdceaa23c7cf412d65087c504c1d67ae52da08dcd253da5fdf170c350e8b72eb",
            "sha256:48c614ed5bccc1cd44608c52d25437f83f151ffef77268195348b5148c0a201c",
            "sha256:9a30a62bf823b819160bbabbabb83155851ba6b7e0c197c843f9ba431300e412",
            "sha256:f62ed895522fea62f28a30d2a74bc88c99d49f79a601f69cc7695421c912fb80",
            "sha256:506ac591b944675767b452128ecdb20ed3e795046185291a303b742698a8cda5",
            "sha256:95c81a40c44d58f8c2e2825b3851812eef5eadfae302ec49978f164991e6f583",
            "sha256:4f7747a4a4582320456a9c9868187780b9345f9a0a47b5626cf3338027c07a8a",
            "sha256:adc26fbcaa0fa604a562a7b92f97c06732acdb9ea505086a22ea0fd105340bd0",
            "sha256:64a5b10e9625adf0cd8bd2fc317d84885cd15c458d527c9efd6ccfae89836e74",
            "sha256:ec26e31721f318291a6de7bb4da965d43ca660db797442d5e0b8878563471604",
            "sha256:fce0ca93f285f5338446571be816f509d2a2a1143ddd9a340a9e48931ed8b3cc",
            "sha256:454c088648bc8cc2646fb52003e15aa2bb13eb65bf16dd56ae5a6054c787feec",
            "sha256:6c4c1ca1360fe7e6d5cd375847706febdd26c2da1c1ef474ab37c75f13540d56",
            "sha256:4766c1ea839cbd8c307a6ff4583fd70731f6d4b2d15029973d24ce815a44d401"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-06-20T01:59:04.70287814+08:00"
    }
}

更多版本

docker.io/paddlepaddle/paddle:2.4.1-gpu-cuda11.7-cudnn8.4-trt8.4

linux/amd64 docker.io17.30GB2024-10-11 19:56
261

docker.io/paddlepaddle/paddle:2.5.0-gpu-cuda12.0-cudnn8.9-trt8.6

linux/amd64 docker.io22.04GB2025-01-17 01:39
210
186

docker.io/paddlepaddle/paddle:2.6.1

linux/amd64 docker.io4.66GB2025-04-13 21:10
192

docker.io/paddlepaddle/paddle:2.2.2-gpu-cuda10.2-cudnn7

linux/amd64 docker.io9.38GB2025-05-29 16:34
49

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.2-cudnn8.2-trt8.0

linux/amd64 docker.io21.56GB2025-06-19 14:18
7

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda11.7-cudnn8.4-trt8.4

linux/amd64 docker.io21.14GB2025-06-19 14:58
6

docker.io/paddlepaddle/paddle:2.6.2-gpu-cuda12.0-cudnn8.9-trt8.6

linux/amd64 docker.io34.04GB2025-06-20 02:33
5

docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda12.6-cudnn9.5-trt10.5

linux/amd64 docker.io43.07GB2025-06-20 04:33
6

docker.io/paddlepaddle/paddle:3.0.0-gpu-cuda11.8-cudnn8.9-trt8.6

linux/amd64 docker.io30.76GB2025-06-20 05:04
6