镜像构建历史
# 2025-06-10 22:21:24 0.00B 设置默认要执行的命令
CMD ["bash" "start.sh"]
# 2025-06-10 22:21:24 0.00B 设置环境变量 DOCKER
ENV DOCKER=true
# 2025-06-10 22:21:24 0.00B 设置环境变量 WEBUI_BUILD_VERSION
ENV WEBUI_BUILD_VERSION=63256136ef8322210c01c2bb322097d1ccfb8c6f
# 2025-06-10 22:21:24 0.00B 定义构建参数
ARG BUILD_HASH=63256136ef8322210c01c2bb322097d1ccfb8c6f
# 2025-06-10 22:21:24 0.00B 指定运行容器时使用的用户
USER 0:0
# 2025-06-10 22:21:24 0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"] "0s" "0s" "0s" "0s" '\x00'}
# 2025-06-10 22:21:24 0.00B 声明容器运行时监听的端口
EXPOSE map[8080/tcp:{}]
# 2025-06-10 22:21:24 70.36MB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend . # buildkit
# 2025-06-10 22:21:24 4.40KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/package.json /app/package.json # buildkit
# 2025-06-10 22:21:24 193.85KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/CHANGELOG.md /app/CHANGELOG.md # buildkit
# 2025-06-10 22:21:24 314.39MB 复制新文件或目录到容器中
COPY --chown=0:0 /app/build /app/build # buildkit
# 2025-06-10 22:20:04 3.31GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c pip3 install --no-cache-dir uv && if [ "$USE_CUDA" = "true" ]; then pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; else pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; fi; chown -R $UID:$GID /app/backend/data/ # buildkit
# 2025-06-10 22:18:58 2.42KB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend/requirements.txt ./requirements.txt # buildkit
# 2025-06-10 17:39:06 1.02GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ "$USE_OLLAMA" = "true" ]; then apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && apt-get install -y --no-install-recommends curl jq && curl -fsSL https://ollama.com/install.sh | sh && rm -rf /var/lib/apt/lists/*; else apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && rm -rf /var/lib/apt/lists/*; fi # buildkit
# 2025-06-10 17:38:24 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c chown -R $UID:$GID /app $HOME # buildkit
# 2025-06-10 17:38:24 36.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id # buildkit
# 2025-06-10 17:38:23 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c mkdir -p $HOME/.cache/chroma # buildkit
# 2025-06-10 17:38:24 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ $UID -ne 0 ]; then if [ $GID -ne 0 ]; then addgroup --gid $GID app; fi; adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; fi # buildkit
# 2025-06-10 17:38:23 0.00B 设置环境变量 HOME
ENV HOME=/root
# 2025-06-10 17:38:23 0.00B 设置工作目录为/app/backend
WORKDIR /app/backend
# 2025-06-10 17:38:23 0.00B 设置环境变量 HF_HOME
ENV HF_HOME=/app/backend/data/cache/embedding/models
# 2025-06-10 17:38:23 0.00B 设置环境变量 TIKTOKEN_ENCODING_NAME TIKTOKEN_CACHE_DIR
ENV TIKTOKEN_ENCODING_NAME=cl100k_base TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken
# 2025-06-10 17:38:23 0.00B 设置环境变量 RAG_EMBEDDING_MODEL RAG_RERANKING_MODEL SENTENCE_TRANSFORMERS_HOME
ENV RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 RAG_RERANKING_MODEL= SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models
# 2025-06-10 17:38:23 0.00B 设置环境变量 WHISPER_MODEL WHISPER_MODEL_DIR
ENV WHISPER_MODEL=base WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models
# 2025-06-10 17:38:23 0.00B 设置环境变量 OPENAI_API_KEY WEBUI_SECRET_KEY SCARF_NO_ANALYTICS DO_NOT_TRACK ANONYMIZED_TELEMETRY
ENV OPENAI_API_KEY= WEBUI_SECRET_KEY= SCARF_NO_ANALYTICS=true DO_NOT_TRACK=true ANONYMIZED_TELEMETRY=false
# 2025-06-10 17:38:23 0.00B 设置环境变量 OLLAMA_BASE_URL OPENAI_API_BASE_URL
ENV OLLAMA_BASE_URL=/ollama OPENAI_API_BASE_URL=
# 2025-06-10 17:38:23 0.00B 设置环境变量 ENV PORT USE_OLLAMA_DOCKER USE_CUDA_DOCKER USE_CUDA_DOCKER_VER USE_EMBEDDING_MODEL_DOCKER USE_RERANKING_MODEL_DOCKER
ENV ENV=prod PORT=8080 USE_OLLAMA_DOCKER=false USE_CUDA_DOCKER=false USE_CUDA_DOCKER_VER=cu128 USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL_DOCKER=
# 2025-06-10 17:38:23 0.00B 定义构建参数
ARG GID=0
# 2025-06-10 17:38:23 0.00B 定义构建参数
ARG UID=0
# 2025-06-10 17:38:23 0.00B 定义构建参数
ARG USE_RERANKING_MODEL=
# 2025-06-10 17:38:23 0.00B 定义构建参数
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
# 2025-06-10 17:38:23 0.00B 定义构建参数
ARG USE_CUDA_VER=cu128
# 2025-06-10 17:38:23 0.00B 定义构建参数
ARG USE_OLLAMA=false
# 2025-06-10 17:38:23 0.00B 定义构建参数
ARG USE_CUDA=false
# 2025-06-04 07:02:53 0.00B 设置默认要执行的命令
CMD ["python3"]
# 2025-06-04 07:02:53 36.00B 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; for src in idle3 pip3 pydoc3 python3 python3-config; do dst="$(echo "$src" | tr -d 3)"; [ -s "/usr/local/bin/$src" ]; [ ! -e "/usr/local/bin/$dst" ]; ln -svT "$src" "/usr/local/bin/$dst"; done # buildkit
# 2025-06-04 07:02:53 45.81MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; savedAptMark="$(apt-mark showmanual)"; apt-get update; apt-get install -y --no-install-recommends dpkg-dev gcc gnupg libbluetooth-dev libbz2-dev libc6-dev libdb-dev libffi-dev libgdbm-dev liblzma-dev libncursesw5-dev libreadline-dev libsqlite3-dev libssl-dev make tk-dev uuid-dev wget xz-utils zlib1g-dev ; wget -O python.tar.xz "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"; echo "$PYTHON_SHA256 *python.tar.xz" | sha256sum -c -; wget -O python.tar.xz.asc "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"; GNUPGHOME="$(mktemp -d)"; export GNUPGHOME; gpg --batch --keyserver hkps://keys.openpgp.org --recv-keys "$GPG_KEY"; gpg --batch --verify python.tar.xz.asc python.tar.xz; gpgconf --kill all; rm -rf "$GNUPGHOME" python.tar.xz.asc; mkdir -p /usr/src/python; tar --extract --directory /usr/src/python --strip-components=1 --file python.tar.xz; rm python.tar.xz; cd /usr/src/python; gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"; ./configure --build="$gnuArch" --enable-loadable-sqlite-extensions --enable-optimizations --enable-option-checking=fatal --enable-shared $(test "$gnuArch" != 'riscv64-linux-musl' && echo '--with-lto') --with-ensurepip ; nproc="$(nproc)"; EXTRA_CFLAGS="$(dpkg-buildflags --get CFLAGS)"; LDFLAGS="$(dpkg-buildflags --get LDFLAGS)"; LDFLAGS="${LDFLAGS:--Wl},--strip-all"; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:-}" ; rm python; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:--Wl},-rpath='\$\$ORIGIN/../lib'" python ; make install; cd /; rm -rf /usr/src/python; find /usr/local -depth \( \( -type d -a \( -name test -o -name tests -o -name idle_test \) \) -o \( -type f -a \( -name '*.pyc' -o -name '*.pyo' -o -name 'libpython*.a' \) \) \) -exec rm -rf '{}' + ; ldconfig; apt-mark auto '.*' > /dev/null; apt-mark manual $savedAptMark; find /usr/local -type f -executable -not \( -name '*tkinter*' \) -exec ldd '{}' ';' | awk '/=>/ { so = $(NF-1); if (index(so, "/usr/local/") == 1) { next }; gsub("^/(usr/)?", "", so); printf "*%s\n", so }' | sort -u | xargs -r dpkg-query --search | cut -d: -f1 | sort -u | xargs -r apt-mark manual ; apt-get purge -y --auto-remove -o APT::AutoRemove::RecommendsImportant=false; rm -rf /var/lib/apt/lists/*; export PYTHONDONTWRITEBYTECODE=1; python3 --version; pip3 install --disable-pip-version-check --no-cache-dir --no-compile 'setuptools==65.5.1' 'wheel<0.46' ; pip3 --version # buildkit
# 2025-06-04 07:02:53 0.00B 设置环境变量 PYTHON_SHA256
ENV PYTHON_SHA256=8fb5f9fbc7609fa822cb31549884575db7fd9657cbffb89510b5d7975963a83a
# 2025-06-04 07:02:53 0.00B 设置环境变量 PYTHON_VERSION
ENV PYTHON_VERSION=3.11.13
# 2025-06-04 07:02:53 0.00B 设置环境变量 GPG_KEY
ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D
# 2025-06-04 07:02:53 9.24MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates netbase tzdata ; rm -rf /var/lib/apt/lists/* # buildkit
# 2025-06-04 07:02:53 0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
# 2025-06-04 07:02:53 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2025-05-20 08:00:00 74.81MB
# debian.sh --arch 'amd64' out/ 'bookworm' '@1747699200'
镜像信息
{
"Id": "sha256:78d5f16808d9c97bb8af8e83b302a7a4cce052072369e0c19732c49c9a2c5dc7",
"RepoTags": [
"ghcr.io/open-webui/open-webui:0.6.14",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui:0.6.14"
],
"RepoDigests": [
"ghcr.io/open-webui/open-webui@sha256:fb4593f2810854d4cf6d5142078d97852dedda7e0b73685680dd16e7a1f590a9",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui@sha256:67105dc3e39bb90f7aa09cb533e26622a65c3e442b54909e8f47125c59949897"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2025-06-10T14:21:24.969814237Z",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "0:0",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"ExposedPorts": {
"8080/tcp": {}
},
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"LANG=C.UTF-8",
"GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D",
"PYTHON_VERSION=3.11.13",
"PYTHON_SHA256=8fb5f9fbc7609fa822cb31549884575db7fd9657cbffb89510b5d7975963a83a",
"ENV=prod",
"PORT=8080",
"USE_OLLAMA_DOCKER=false",
"USE_CUDA_DOCKER=false",
"USE_CUDA_DOCKER_VER=cu128",
"USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2",
"USE_RERANKING_MODEL_DOCKER=",
"OLLAMA_BASE_URL=/ollama",
"OPENAI_API_BASE_URL=",
"OPENAI_API_KEY=",
"WEBUI_SECRET_KEY=",
"SCARF_NO_ANALYTICS=true",
"DO_NOT_TRACK=true",
"ANONYMIZED_TELEMETRY=false",
"WHISPER_MODEL=base",
"WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models",
"RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2",
"RAG_RERANKING_MODEL=",
"SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models",
"TIKTOKEN_ENCODING_NAME=cl100k_base",
"TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken",
"HF_HOME=/app/backend/data/cache/embedding/models",
"HOME=/root",
"WEBUI_BUILD_VERSION=63256136ef8322210c01c2bb322097d1ccfb8c6f",
"DOCKER=true"
],
"Cmd": [
"bash",
"start.sh"
],
"Healthcheck": {
"Test": [
"CMD-SHELL",
"curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"
]
},
"ArgsEscaped": true,
"Image": "",
"Volumes": null,
"WorkingDir": "/app/backend",
"Entrypoint": null,
"OnBuild": null,
"Labels": {
"org.opencontainers.image.created": "2025-06-10T14:18:41.939Z",
"org.opencontainers.image.description": "User-friendly AI Interface (Supports Ollama, OpenAI API, ...)",
"org.opencontainers.image.licenses": "NOASSERTION",
"org.opencontainers.image.revision": "63256136ef8322210c01c2bb322097d1ccfb8c6f",
"org.opencontainers.image.source": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.title": "open-webui",
"org.opencontainers.image.url": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.version": "0.6.14"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 4848751010,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/2a51d1635a53cc11e9e4a2ce02104c78c7a238c2744be84fae67de79da949934/diff:/var/lib/docker/overlay2/fd16f087b11bea54ad9653287bcc467e06263bc43127d2988ff42bc4159dda21/diff:/var/lib/docker/overlay2/40e8f4469756490c2a3f1e5ba5b0e178330ab45628367a15dc4ddfa094800bb5/diff:/var/lib/docker/overlay2/1a77a46c0292dfe0aca19181852a35ee1f4c62460ce8139a94f116630541ddf8/diff:/var/lib/docker/overlay2/2d48b1ea87d5ca5e9bdd76aae6beea91968834850d86a59b8c815d799239222f/diff:/var/lib/docker/overlay2/a47f9e9911bfcd4aa3957d35e856f712c844d8163ff3d7c91cb04f3edab8d016/diff:/var/lib/docker/overlay2/f2e082bea0b35af59e6bfe585053d422735e1d7f50898ea602bf0a6300b6602e/diff:/var/lib/docker/overlay2/550a291f1cd61c4b56561afc771ce4482ccd08653ddc4c2e62c9f9476a548544/diff:/var/lib/docker/overlay2/21dc601902f5734560d6fdeb8b392d3254eb541387c500931e047cb874a8f5f2/diff:/var/lib/docker/overlay2/9ed092e90484d441852977138f2c56cc66739abfd7e02c1fe928910d3da344db/diff:/var/lib/docker/overlay2/efbe0382533ec0d26f1f92c356ea9ca07179068038b1da0d8e4cb3b3851cb4b5/diff:/var/lib/docker/overlay2/2e10f7bd42bfb83dd919dc6c17fa92284fb6964ad12a9470c8ab0c46d19272f3/diff:/var/lib/docker/overlay2/80d4ed01296ce1b0e9151bc1e0e426e30b7e779c50ba8eaa0ad3a1413a07bf22/diff:/var/lib/docker/overlay2/054d8cdca0e7f59fcf76530d4b4ae966c5891d3130c6ced54f08e18bed7a5946/diff:/var/lib/docker/overlay2/8c3c6d49a286695292ca02f68a749f8d298963491e7b19bc618e55f67bd4bdd3/diff",
"MergedDir": "/var/lib/docker/overlay2/b9eb178fcd867e2c263be4058689cbc2deaa6a43ce8d17ea77ba8be78679813f/merged",
"UpperDir": "/var/lib/docker/overlay2/b9eb178fcd867e2c263be4058689cbc2deaa6a43ce8d17ea77ba8be78679813f/diff",
"WorkDir": "/var/lib/docker/overlay2/b9eb178fcd867e2c263be4058689cbc2deaa6a43ce8d17ea77ba8be78679813f/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:ace34d1d784c01e3f9d156687089e8f58f786e23ccd097bdbbf337d6d28b3783",
"sha256:5e6605a14cb201f9c95bcce3162c019937bd264c07fa1d9387489f52fb3853ed",
"sha256:dd8620dce35ec1fd18fe07d0d19ddb808cad8cbf65bb72a8706e4df3fdb224c6",
"sha256:358eedbb897f14e26abf8d58fcd32438f9e9d3d37b2fbf9f693cfb9fbb60f8db",
"sha256:5c9e1086bcc914af5b08f36175a1933081f810da4cf1a807f6eec5d81588d649",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:6aa575f9e2a2eca494aec54660b2e4853784477003803f1cac973b30370d8ffd",
"sha256:a1ceef483e84cd7173f79c138a67ca7afd3dc2fd0535ce19e41d278a85a569f8",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:542cb21eba1ea44b910c06b0001496f49c43088f2819856c47ad8a940e6a1775",
"sha256:b2dee5ff061c10d3d6491d5bc0711aab76bb1f75008c89d86dc1d430bc5a2d95",
"sha256:30910c83aa404d3867167d1b12533a27fee02026809e7a2a37267078c8940df9",
"sha256:7337e75525cede61550cb8b6beb94fe81a16c38a8ecf53fe6de648b19834bf0d",
"sha256:d069831ccf6a4cf17ae5d98f49bab836e7df96498b96ddf63e075be92b26a1b0",
"sha256:c58f936e6648ab3c9004a807a4e1556810493f4dfcbcc0cb654c822b149129b0",
"sha256:237381ac1b207779180b8b3c9c5f45268f61755c7e1df626cb2135b63f4b7403"
]
},
"Metadata": {
"LastTagTime": "2025-06-11T08:32:04.319195509+08:00"
}
}