docker.io/nvcr.io/nvidia/pytorch:24.03-py3 linux/arm64

docker.io/nvcr.io/nvidia/pytorch:24.03-py3 - 国内下载镜像源 浏览次数:44 温馨提示: 这是一个 linux/arm64 系统架构镜像
这里是镜像的描述信息: NVIDIA PyTorch Docker Image

这是一个基于PyTorch框架的Docker容器镜像,提供了一个完整的深度学习环境。该镜像包含了PyTorch 1.x版本,以及其他必需的依赖包,如CUDA、cuDNN等。

使用这个镜像,您可以轻松地在本地环境中搭建一个深度学习工作站,进行各种机器学习和计算机视觉任务的实验和开发。

此外,该镜像还支持GPU加速,通过NVIDIA的CUDA和cuDNN技术,可以显著提高PyTorch的性能和效率。

源镜像 docker.io/nvcr.io/nvidia/pytorch:24.03-py3
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64
镜像ID sha256:d819e66760ff092a71adb4f3b628b3a2973f6b0b575555f2b5d0e57560cae761
镜像TAG 24.03-py3-linuxarm64
大小 17.47GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/arm64
浏览量 44 次
贡献者 71******3@qq.com
镜像创建 2024-03-09T06:50:51.294868667Z
同步时间 2025-06-12 06:11
更新时间 2025-06-29 13:13
开放端口
6006/tcp 8888/tcp
环境变量
PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin CUDA_VERSION=12.4.0.041 CUDA_DRIVER_VERSION=550.54.14 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS= _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0 NCCL_VERSION=2.20.5 CUBLAS_VERSION=12.4.2.65 CUFFT_VERSION=11.2.0.44 CURAND_VERSION=10.3.5.119 CUSPARSE_VERSION=12.3.0.142 CUSOLVER_VERSION=11.6.0.99 CUTENSOR_VERSION=2.0.1.2 NPP_VERSION=12.2.5.2 NVJPEG_VERSION=12.3.1.89 CUDNN_VERSION=9.0.0.306+cuda12.3 TRT_VERSION=8.6.3.1+cuda12.2.2.009 TRTOSS_VERSION=23.11 NSIGHT_SYSTEMS_VERSION=2024.2.1.38 NSIGHT_COMPUTE_VERSION=2024.1.0.13 DALI_VERSION=1.35.0 DALI_BUILD=12768324 POLYGRAPHY_VERSION=0.49.7 TRANSFORMER_ENGINE_VERSION=1.4 LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video NVIDIA_PRODUCT_NAME=PyTorch GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.18 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.16.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0 OPAL_PREFIX=/opt/hpcx/ompi OMPI_MCA_coll_hcoll_enable=0 LIBRARY_PATH=/usr/local/cuda/lib64/stubs: PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 PYTORCH_VERSION=2.3.0a0+40ec155e58 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.03 NVFUSER_BUILD_VERSION=f73ff1bc6a NVFUSER_VERSION=f73ff1bc6a PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python PYTHONIOENCODING=utf-8 LC_ALL=C.UTF-8 PIP_DEFAULT_TIMEOUT=100 NVM_DIR=/usr/local/nvm JUPYTER_PORT=8888 TENSORBOARD_PORT=6006 UCC_CL_BASIC_TLS=^sharp TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX PYTORCH_HOME=/opt/pytorch/pytorch CUDA_HOME=/usr/local/cuda TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1 USE_EXPERIMENTAL_CUDNN_V8_API=1 COCOAPI_VERSION=2.0+nv0.8.0 TORCH_CUDNN_V8_API_ENABLED=1 NCCL_WORK_FIFO_DEPTH=4194304 CUDA_MODULE_LOADING=LAZY NVIDIA_BUILD_ID=85286409
镜像标签
85286409: com.nvidia.build.id 154032c431742c7fde97a2fdad674917592306e5: com.nvidia.build.ref 12.4.2.65: com.nvidia.cublas.version 9.0: com.nvidia.cuda.version 9.0.0.306+cuda12.3: com.nvidia.cudnn.version 11.2.0.44: com.nvidia.cufft.version 10.3.5.119: com.nvidia.curand.version 11.6.0.99: com.nvidia.cusolver.version 12.3.0.142: com.nvidia.cusparse.version 2.0.1.2: com.nvidia.cutensor.version 2.20.5: com.nvidia.nccl.version 12.2.5.2: com.nvidia.npp.version 2024.1.0.13: com.nvidia.nsightcompute.version 2024.2.1.38: com.nvidia.nsightsystems.version 12.3.1.89: com.nvidia.nvjpeg.version 2.3.0a0+40ec155e58: com.nvidia.pytorch.version 8.6.3.1+cuda12.2.2.009: com.nvidia.tensorrt.version 23.11: com.nvidia.tensorrtoss.version nvidia_driver: com.nvidia.volumes.needed ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64  docker.io/nvcr.io/nvidia/pytorch:24.03-py3

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64  docker.io/nvcr.io/nvidia/pytorch:24.03-py3

Shell快速替换命令

sed -i 's#nvcr.io/nvidia/pytorch:24.03-py3#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64  docker.io/nvcr.io/nvidia/pytorch:24.03-py3'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64  docker.io/nvcr.io/nvidia/pytorch:24.03-py3'

镜像构建历史


# 2024-03-09 14:50:51  0.00B 添加元数据标签
LABEL com.nvidia.build.ref=154032c431742c7fde97a2fdad674917592306e5
                        
# 2024-03-09 14:50:51  0.00B 定义构建参数
ARG NVIDIA_BUILD_REF
                        
# 2024-03-09 14:50:51  0.00B 添加元数据标签
LABEL com.nvidia.build.id=85286409
                        
# 2024-03-09 14:50:51  0.00B 设置环境变量 NVIDIA_BUILD_ID
ENV NVIDIA_BUILD_ID=85286409
                        
# 2024-03-09 14:50:51  0.00B 定义构建参数
ARG NVIDIA_BUILD_ID
                        
# 2024-03-09 14:50:51  719.00B 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2024-03-09 14:50:50  52.98KB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c ln -sf ${_CUDA_COMPAT_PATH}/lib.real ${_CUDA_COMPAT_PATH}/lib  && echo ${_CUDA_COMPAT_PATH}/lib > /etc/ld.so.conf.d/00-cuda-compat.conf  && ldconfig  && rm -f ${_CUDA_COMPAT_PATH}/lib # buildkit
                        
# 2024-03-09 14:50:50  0.00B 设置环境变量 CUDA_MODULE_LOADING
ENV CUDA_MODULE_LOADING=LAZY
                        
# 2024-03-09 14:50:50  0.00B 设置环境变量 NCCL_WORK_FIFO_DEPTH
ENV NCCL_WORK_FIFO_DEPTH=4194304
                        
# 2024-03-09 14:50:50  0.00B 设置环境变量 TORCH_CUDNN_V8_API_ENABLED
ENV TORCH_CUDNN_V8_API_ENABLED=1
                        
# 2024-03-09 14:50:50  298.37MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Transformer Engine in iGPU container until Version variable is set"; else     pip install --no-cache-dir --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@release_v${TRANSFORMER_ENGINE_VERSION}; fi # buildkit
                        
# 2024-03-09 14:44:32  399.66MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c env MAX_JOBS=4 pip install flash-attn==2.4.2 # buildkit
                        
# 2024-03-09 13:54:10  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2024-03-09 13:54:10  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-03-09 13:54:10  42.60MB 执行命令并创建新的镜像层
RUN |1 PYVER=3.10 /bin/sh -c pip install --no-cache-dir /opt/pytorch/torch_tensorrt/dist/*.whl # buildkit
                        
# 2024-03-09 13:33:40  0.00B 定义构建参数
ARG PYVER
                        
# 2024-03-09 13:33:40  148.80MB 复制新文件或目录到容器中
COPY torch_tensorrt/ /opt/pytorch/torch_tensorrt/ # buildkit
                        
# 2024-03-09 13:33:09  8.83MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip --version && python -c 'import sys; print(sys.platform)'     && pip install --no-cache-dir nvidia-pyindex     && if [ "${L4T}" = "1" ]; then pip install polygraphy; else       pip install --extra-index-url https://urm.nvidia.com/artifactory/api/pypi/sw-tensorrt-pypi/simple --no-cache-dir polygraphy==${POLYGRAPHY_VERSION}; fi     && pip install --extra-index-url http://sqrl/dldata/pip-simple --trusted-host sqrl --no-cache-dir pytorch-quantization==2.1.2 # buildkit
                        
# 2024-03-09 13:32:53  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin
                        
# 2024-03-09 13:32:53  6.17MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -x  && URL=$(VERIFY=1 /nvidia/build-scripts/installTRT.sh | sed -n "s/^.*\(http.*\)tar.*$/\1/p")tar  && FILE=$(wget -O - $URL | sed -n 's/^.*href="\(TensorRT[^"]*\)".*$/\1/p' | egrep -v "internal|safety")  && wget $URL/$FILE -O - | tar -xz  && PY=$(python -c 'import sys; print(str(sys.version_info[0])+str(sys.version_info[1]))')  && pip install TensorRT-*/python/tensorrt-*-cp$PY*.whl  && pip install TensorRT-*/graphsurgeon/graphsurgeon-*.whl  && pip install TensorRT-*/uff/uff-*.whl  && mv /usr/src/tensorrt /opt  && ln -s /opt/tensorrt /usr/src/tensorrt  && rm -r TensorRT-*  && UFF_PATH=$(pip show uff | sed -n 's/Location: \(.*\)$/\1/p')/uff  && sed -i 's/from tensorflow import GraphDef/from tensorflow.python import GraphDef/'     $UFF_PATH/converters/tensorflow/conversion_helpers.py  && chmod +x ${UFF_PATH}/bin/convert_to_uff.py  && ln -sf ${UFF_PATH}/bin/convert_to_uff.py /usr/local/bin/convert-to-uff # buildkit
                        
# 2024-03-09 13:32:13  51.00MB 执行命令并创建新的镜像层
RUN /bin/sh -c chmod -R a+w . # buildkit
                        
# 2024-03-09 13:32:02  34.89MB 复制新文件或目录到容器中
COPY tutorials tutorials # buildkit
                        
# 2024-03-09 13:32:00  15.96MB 复制新文件或目录到容器中
COPY examples examples # buildkit
                        
# 2024-03-09 13:31:59  2.07KB 复制新文件或目录到容器中
COPY docker-examples docker-examples # buildkit
                        
# 2024-03-09 13:31:59  2.05KB 复制新文件或目录到容器中
COPY NVREADME.md README.md # buildkit
                        
# 2024-03-09 13:31:58  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-03-09 13:31:57  2.97GB 执行命令并创建新的镜像层
RUN /bin/sh -c if [ "${L4T}" = "1" ]; then     echo "Not installing rapids for L4T build." ; else     find /rapids  -name "*-Linux.tar.gz" -exec     tar -C /usr --exclude="*.a" --exclude="bin/xgboost" --strip-components=1 -xvf {} \;  && find /rapids -name "*.whl"     ! -name "Pillow-*"     ! -name "certifi-*"     ! -name "protobuf-*" -exec     pip install --no-cache-dir {} +  && pip install --no-cache-dir networkx==2.6.3  && rm $(pip show xgboost | grep Location | awk '{print $2}')/xgboost/lib/libxgboost.so; fi # buildkit
                        
# 2024-03-09 13:30:50  201.84KB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir --disable-pip-version-check tabulate # buildkit
                        
# 2024-03-09 13:30:48  3.63MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip uninstall -y pillow  && cd /tmp  && git clone https://github.com/uploadcare/pillow-simd  && cd pillow-simd  && git fetch --all --tags --prune  && git checkout tags/9.5.0  && sed -i 's/DEBUG = False/DEBUG = True/' setup.py  && patch -p1 < /opt/pytorch/pil_10.0.0_CVE-2023-44271_for_pillow_simd_9.5.0.patch  && patch -p1 < /opt/pytorch/pil_CVE-2023-50447_for_pillow_sim_9.5.0.patch  && rm /opt/pytorch/pil_10.0.0_CVE-2023-44271_for_pillow_simd_9.5.0.patch  && rm /opt/pytorch/pil_CVE-2023-50447_for_pillow_sim_9.5.0.patch  && if [[ $TARGETARCH = "amd64" ]] ; then CC="cc -mavx" pip install --no-cache-dir --disable-pip-version-check  . ; fi  && if [[ $TARGETARCH = "arm64" ]] ; then pip install --no-cache-dir --disable-pip-version-check  . ; fi  && rm -rf ../pillow-simd # buildkit
                        
# 2024-03-09 13:30:22  15.06MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir /tmp/dist/*.whl # buildkit
                        
# 2024-03-09 13:30:17  732.03MB 执行命令并创建新的镜像层
RUN /bin/sh -c ( cd vision && export PYTORCH_VERSION=$(python -c "import torch; print(torch.__version__)") && CFLAGS="-g0" FORCE_CUDA=1 NVCC_APPEND_FLAGS="--threads 8" pip install --no-cache-dir --no-build-isolation --disable-pip-version-check . )  && ( cd vision && cmake -Bbuild -H. -GNinja -DWITH_CUDA=1 -DCMAKE_PREFIX_PATH=`python -c 'import torch;print(torch.utils.cmake_prefix_path)'` && cmake --build build --target install && rm -rf build )  && ( cd fuser && pip install -r requirements.txt &&  python setup.py -version-tag=a0+${NVFUSER_VERSION} install && python setup.py clean)  && ( cd apex && CFLAGS="-g0" NVCC_APPEND_FLAGS="--threads 8" pip install -v --no-build-isolation --no-cache-dir --disable-pip-version-check --config-settings "--build-option=--cpp_ext --cuda_ext --bnp --xentropy --deprecated_fused_adam --deprecated_fused_lamb --fast_multihead_attn --distributed_lamb --fast_layer_norm --transducer --distributed_adam --fmha --fast_bottleneck --nccl_p2p --peer_memory --permutation_search --focal_loss --fused_conv_bias_relu --index_mul_2d --cudnn_gbn --group_norm" . && rm -rf build )  && ( cd data && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check --no-deps -v . && rm -rf build )  && ( cd text && export TORCHDATA_VERSION="$(python -c 'import torchdata; print(torchdata.__version__)')" && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check --no-deps -v . && unset TORCHDATA_VERSION )  && ( cd pytorch/third_party/cudnn_frontend && pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . && rm -rf build )  && ( cd pytorch/third_party/onnx && pip uninstall typing -y && CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" pip install --no-build-isolation --no-cache-dir --disable-pip-version-check . ) # buildkit
                        
# 2024-03-09 12:49:34  2.21KB 复制新文件或目录到容器中
COPY singularity/ /.singularity.d/ # buildkit
                        
# 2024-03-09 12:49:33  90.11MB 执行命令并创建新的镜像层
RUN /bin/sh -c export COCOAPI_TAG=$(echo ${COCOAPI_VERSION} | sed 's/^.*+n//')  && pip install --disable-pip-version-check --no-cache-dir git+https://github.com/nvidia/cocoapi.git@${COCOAPI_TAG}#subdirectory=PythonAPI # buildkit
                        
# 2024-03-09 12:49:11  0.00B 设置环境变量 COCOAPI_VERSION
ENV COCOAPI_VERSION=2.0+nv0.8.0
                        
# 2024-03-09 12:49:11  402.62MB 执行命令并创建新的镜像层
RUN /bin/sh -c if [ -z "${DALI_VERSION}" ] ; then   echo "Not Installing DALI for L4T Build." ; else   export DALI_PKG_SUFFIX="cuda${CUDA_VERSION%%.*}0"   && pip install --disable-pip-version-check --no-cache-dir                 --extra-index-url https://developer.download.nvidia.com/compute/redist                 --extra-index-url http://sqrl/dldata/pip-dali${DALI_URL_SUFFIX:-} --trusted-host sqrl         nvidia-dali-${DALI_PKG_SUFFIX}==${DALI_VERSION}; fi # buildkit
                        
# 2024-03-09 12:49:02  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2024-03-09 12:49:02  409.37MB 执行命令并创建新的镜像层
RUN /bin/sh -c pip install --no-cache-dir /tmp/dist/*.whl # buildkit
                        
# 2024-03-09 12:48:53  1.59MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir -v -r /opt/pytorch/pytorch/requirements.txt # buildkit
                        
# 2024-03-09 12:48:50  2.06GB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c pip install /opt/transfer/torch*.whl      && patchelf --set-rpath '/usr/local/lib' /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_global_deps.so # buildkit
                        
# 2024-03-09 12:48:10  0.00B 设置环境变量 USE_EXPERIMENTAL_CUDNN_V8_API
ENV USE_EXPERIMENTAL_CUDNN_V8_API=1
                        
# 2024-03-09 12:48:10  0.00B 设置环境变量 TORCH_ALLOW_TF32_CUBLAS_OVERRIDE
ENV TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
                        
# 2024-03-09 12:48:10  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2024-03-09 12:48:10  0.00B 设置环境变量 PYTORCH_HOME
ENV PYTORCH_HOME=/opt/pytorch/pytorch
                        
# 2024-03-09 12:48:10  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX
                        
# 2024-03-09 12:48:10  0.00B 设置环境变量 UCC_CL_BASIC_TLS
ENV UCC_CL_BASIC_TLS=^sharp
                        
# 2024-03-09 12:48:10  46.56MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c OPENCV_VERSION=4.7.0 &&     cd / &&     wget -q -O - https://github.com/opencv/opencv/archive/${OPENCV_VERSION}.tar.gz | tar -xzf - &&     cd /opencv-${OPENCV_VERSION} &&     cmake -GNinja -Bbuild -H.           -DWITH_CUDA=OFF -DWITH_1394=OFF           -DPYTHON3_PACKAGES_PATH="/usr/local/lib/python${PYVER}/dist-packages"           -DBUILD_opencv_cudalegacy=OFF -DBUILD_opencv_stitching=OFF -DWITH_IPP=OFF -DWITH_PROTOBUF=OFF &&     cmake --build build --target install &&     cd modules/python/package &&     pip install --no-cache-dir --disable-pip-version-check -v . &&     rm -rf /opencv-${OPENCV_VERSION} # buildkit
                        
# 2024-03-09 12:44:40  0.00B 声明容器运行时监听的端口
EXPOSE map[6006/tcp:{}]
                        
# 2024-03-09 12:44:40  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2024-03-09 12:44:40  0.00B 设置环境变量 TENSORBOARD_PORT
ENV TENSORBOARD_PORT=6006
                        
# 2024-03-09 12:44:40  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2024-03-09 12:44:40  427.00B 复制新文件或目录到容器中
COPY jupyter_notebook_config.py /usr/local/etc/jupyter/ # buildkit
                        
# 2024-03-09 12:44:39  160.55MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c pip install --disable-pip-version-check --no-cache-dir git+https://github.com/cliffwoolley/jupyter_tensorboard.git@0.2.0+nv21.03  && mkdir -p $NVM_DIR  && curl -Lo- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.2/install.sh | bash  && source "$NVM_DIR/nvm.sh"  && nvm install 16.20.2 node  && jupyter labextension install jupyterlab_tensorboard  && jupyter serverextension enable jupyterlab  && pip install --no-cache-dir jupytext  && jupyter labextension install jupyterlab-jupytext@1.2.2  && ( cd /usr/local/share/jupyter/lab/staging       && npm prune --production )  && npm cache clean --force  && rm -rf /usr/local/share/.cache  && echo "source $NVM_DIR/nvm.sh" >> /etc/bash.bashrc  && mv /root/.jupyter/jupyter_notebook_config.json /usr/local/etc/jupyter/  && jupyter lab clean # buildkit
                        
# 2024-03-09 12:42:21  0.00B 设置环境变量 NVM_DIR
ENV NVM_DIR=/usr/local/nvm
                        
# 2024-03-09 12:42:21  27.51KB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c PATCHED_FILE=$(python -c "from tensorboard.plugins.core import core_plugin as _; print(_.__file__)") &&     sed -i 's/^\( *"--bind_all",\)$/\1 default=True,/' "$PATCHED_FILE" &&     test $(grep '^ *"--bind_all", default=True,$' "$PATCHED_FILE" | wc -l) -eq 1 # buildkit
                        
# 2024-03-09 12:42:20  171.33MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c git config --global url."https://github".insteadOf git://github &&     pip install --no-cache-dir notebook==6.4.10 jupyterlab==2.3.2 python-hostlist traitlets==5.9.0 &&     pip install --no-cache-dir tensorboard==2.9.0 # buildkit
                        
# 2024-03-09 12:41:56  472.99MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir         numpy==1.24.4         scipy==1.11.3         "PyYAML>=5.4.1"         astunparse         typing_extensions         cffi         spacy         mock         tqdm         librosa==0.10.1         expecttest==0.1.3         hypothesis==5.35.1         xdoctest==1.0.2         pytest         pytest-xdist         pytest-rerunfailures         pytest-shard         pytest-flakefinder         pybind11         Cython         "regex>=2020.1.8"         protobuf==4.24.4 &&     if [[ $TARGETARCH = "amd64" ]] ; then pip install --no-cache-dir mkl==2021.1.1 mkl-include==2021.1.1 mkl-devel==2021.1.1 ;     find /usr/local/lib -maxdepth 1 -type f -regex '.*\/lib\(tbb\|mkl\).*\.so\($\|\.[0-9]*\.[0-9]*\)' -exec rm -v {} + ; fi # buildkit
                        
# 2024-03-09 12:41:24  0.00B 设置环境变量 PIP_DEFAULT_TIMEOUT
ENV PIP_DEFAULT_TIMEOUT=100
                        
# 2024-03-09 12:41:24  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-03-09 12:41:24  0.00B 设置环境变量 PYTHONIOENCODING
ENV PYTHONIOENCODING=utf-8
                        
# 2024-03-09 12:41:24  2.22GB 复制新文件或目录到容器中
COPY . . # buildkit
                        
# 2024-03-09 12:40:14  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2024-03-09 12:40:13  39.88MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/OpenBLAS/0.3.24-$(uname -m)/OpenBLAS-0.3.24-$(uname -m).tar.gz" --output OpenBLAS.tar.gz &&     tar -xf OpenBLAS.tar.gz -C /usr/local/ &&     rm OpenBLAS.tar.gz # buildkit
                        
# 2024-03-09 12:40:12  64.67MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c pip install --no-cache-dir pip setuptools==68.2.2 &&     pip install --no-cache-dir cmake # buildkit
                        
# 2024-03-09 12:40:07  20.74MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c curl -O https://bootstrap.pypa.io/get-pip.py &&     python get-pip.py &&     rm get-pip.py # buildkit
                        
# 2024-03-09 12:40:01  0.00B 设置环境变量 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION
ENV PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
                        
# 2024-03-09 12:40:01  179.18MB 执行命令并创建新的镜像层
RUN |6 NVIDIA_PYTORCH_VERSION=24.03 PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 NVFUSER_BUILD_VERSION=f73ff1bc6a TARGETARCH=arm64 PYVER=3.10 L4T=0 /bin/sh -c export PYSFX=`echo "$PYVER" | cut -c1-1` &&     export DEBIAN_FRONTEND=noninteractive &&     apt-get update &&     apt-get install -y --no-install-recommends         python$PYVER-dev         python$PYSFX         python$PYSFX-dev         python$PYSFX-distutils         python-is-python$PYSFX         autoconf         automake         libatlas-base-dev         libgoogle-glog-dev         libbz2-dev         libleveldb-dev         liblmdb-dev         libprotobuf-dev         libsnappy-dev         libtool         nasm         protobuf-compiler         pkg-config         unzip         sox         libsndfile1         libpng-dev         libhdf5-103         libhdf5-dev         gfortran         rapidjson-dev         ninja-build         libedit-dev         build-essential         patchelf      && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-03-09 12:40:01  0.00B 定义构建参数
ARG L4T=0
                        
# 2024-03-09 12:40:01  0.00B 定义构建参数
ARG PYVER=3.10
                        
# 2024-03-09 12:40:01  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2024-03-09 12:40:01  0.00B 添加元数据标签
LABEL com.nvidia.pytorch.version=2.3.0a0+40ec155e58
                        
# 2024-03-09 12:40:01  0.00B 设置环境变量 NVFUSER_BUILD_VERSION NVFUSER_VERSION
ENV NVFUSER_BUILD_VERSION=f73ff1bc6a NVFUSER_VERSION=f73ff1bc6a
                        
# 2024-03-09 12:40:01  0.00B 设置环境变量 PYTORCH_BUILD_VERSION PYTORCH_VERSION PYTORCH_BUILD_NUMBER NVIDIA_PYTORCH_VERSION
ENV PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58 PYTORCH_VERSION=2.3.0a0+40ec155e58 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=24.03
                        
# 2024-03-09 12:40:01  0.00B 定义构建参数
ARG NVFUSER_BUILD_VERSION
                        
# 2024-03-09 12:40:01  0.00B 定义构建参数
ARG PYTORCH_BUILD_VERSION
                        
# 2024-03-09 12:40:01  0.00B 定义构建参数
ARG NVIDIA_PYTORCH_VERSION
                        
# 2024-03-09 12:40:01  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=PyTorch
                        
# 2024-03-09 09:08:19  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:
                        
# 2024-03-09 09:08:19  883.87MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.18 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.16.0 OPENMPI_VERSION=4.1.7 TARGETARCH=arm64 /bin/sh -c export DEVEL=1 BASE=0  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUDA.sh  && /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installNCCL.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installCUTENSOR.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && if [ -f "/tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch" ]; then patch -p0 < /tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch; fi  && rm -f /tmp/cuda-*.patch # buildkit
                        
# 2024-03-09 08:44:29  1.49KB 复制新文件或目录到容器中
COPY cuda-*.patch /tmp # buildkit
                        
# 2024-03-09 08:44:29  0.00B 设置环境变量 OMPI_MCA_coll_hcoll_enable
ENV OMPI_MCA_coll_hcoll_enable=0
                        
# 2024-03-09 08:44:29  0.00B 设置环境变量 OPAL_PREFIX PATH
ENV OPAL_PREFIX=/opt/hpcx/ompi PATH=/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin
                        
# 2024-03-09 08:44:29  222.60MB 执行命令并创建新的镜像层
RUN |7 GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.18 RDMACORE_VERSION=39.0 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.16.0 OPENMPI_VERSION=4.1.7 TARGETARCH=arm64 /bin/sh -c cd /nvidia  && ( export DEBIAN_FRONTEND=noninteractive        && apt-get update                            && apt-get install -y --no-install-recommends              libibverbs1                                  libibverbs-dev                               librdmacm1                                   librdmacm-dev                                libibumad3                                   libibumad-dev                                ibverbs-utils                                ibverbs-providers                     && rm -rf /var/lib/apt/lists/*               && rm $(dpkg-query -L                                    libibverbs-dev                               librdmacm-dev                                libibumad-dev                            | grep "\(\.so\|\.a\)$")          )                                            && ( cd opt/gdrcopy/                              && dpkg -i libgdrapi_*.deb                   )                                         && ( cp -r opt/hpcx /opt/                                         && cp etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/          && ln -sf /opt/hpcx/ompi /usr/local/mpi                      && ln -sf /opt/hpcx/ucx  /usr/local/ucx                      && sed -i 's/^\(hwloc_base_binding_policy\) = core$/\1 = none/' /opt/hpcx/ompi/etc/openmpi-mca-params.conf         && sed -i 's/^\(btl = self\)$/#\1/'                             /opt/hpcx/ompi/etc/openmpi-mca-params.conf       )                                                         && ldconfig # buildkit
                        
# 2024-03-09 08:44:29  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2024-03-09 08:44:29  0.00B 设置环境变量 GDRCOPY_VERSION HPCX_VERSION MOFED_VERSION OPENUCX_VERSION OPENMPI_VERSION RDMACORE_VERSION
ENV GDRCOPY_VERSION=2.3.1-1 HPCX_VERSION=2.18 MOFED_VERSION=5.4-rdmacore39.0 OPENUCX_VERSION=1.16.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=39.0
                        
# 2024-03-09 08:44:29  0.00B 定义构建参数
ARG OPENMPI_VERSION
                        
# 2024-03-09 08:44:29  0.00B 定义构建参数
ARG OPENUCX_VERSION
                        
# 2024-03-09 08:44:29  0.00B 定义构建参数
ARG MOFED_VERSION=5.4-rdmacore39.0
                        
# 2024-03-09 08:44:29  0.00B 定义构建参数
ARG RDMACORE_VERSION
                        
# 2024-03-09 08:44:29  0.00B 定义构建参数
ARG HPCX_VERSION
                        
# 2024-03-09 08:44:29  0.00B 定义构建参数
ARG GDRCOPY_VERSION
                        
# 2024-03-09 08:43:45  83.54MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         build-essential         git         libglib2.0-0         less         libnl-route-3-200         libnl-3-dev         libnl-route-3-dev         libnuma-dev         libnuma1         libpmi2-0-dev         nano         numactl         openssh-client         vim         wget  && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-03-09 08:39:15  148.72KB 复制新文件或目录到容器中
COPY NVIDIA_Deep_Learning_Container_License.pdf /workspace/ # buildkit
                        
# 2024-03-09 08:39:15  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2024-03-09 08:39:15  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2024-03-09 08:39:15  14.85KB 复制新文件或目录到容器中
COPY entrypoint/ /opt/nvidia/ # buildkit
                        
# 2024-03-09 08:39:15  0.00B 设置环境变量 PATH LD_LIBRARY_PATH NVIDIA_VISIBLE_DEVICES NVIDIA_DRIVER_CAPABILITIES
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
                        
# 2024-03-09 08:39:15  0.00B 定义构建参数
ARG _LIBPATH_SUFFIX
                        
# 2024-03-09 08:39:15  46.00B 执行命令并创建新的镜像层
RUN |21 CUDA_VERSION=12.4.0.041 CUDA_DRIVER_VERSION=550.54.14 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.20.5 CUBLAS_VERSION=12.4.2.65 CUFFT_VERSION=11.2.0.44 CURAND_VERSION=10.3.5.119 CUSPARSE_VERSION=12.3.0.142 CUSOLVER_VERSION=11.6.0.99 CUTENSOR_VERSION=2.0.1.2 NPP_VERSION=12.2.5.2 NVJPEG_VERSION=12.3.1.89 CUDNN_VERSION=9.0.0.306+cuda12.3 TRT_VERSION=8.6.3.1+cuda12.2.2.009 TRTOSS_VERSION=23.11 NSIGHT_SYSTEMS_VERSION=2024.2.1.38 NSIGHT_COMPUTE_VERSION=2024.1.0.13 DALI_VERSION=1.35.0 DALI_BUILD=12768324 POLYGRAPHY_VERSION=0.49.7 TRANSFORMER_ENGINE_VERSION=1.4 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf  && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2024-03-09 08:39:15  13.39KB 复制文件或目录到容器中
ADD docs.tgz / # buildkit
                        
# 2024-03-09 08:39:15  0.00B 设置环境变量 DALI_VERSION DALI_BUILD POLYGRAPHY_VERSION TRANSFORMER_ENGINE_VERSION
ENV DALI_VERSION=1.35.0 DALI_BUILD=12768324 POLYGRAPHY_VERSION=0.49.7 TRANSFORMER_ENGINE_VERSION=1.4
                        
# 2024-03-09 08:39:15  0.00B 定义构建参数
ARG TRANSFORMER_ENGINE_VERSION
                        
# 2024-03-09 08:39:15  0.00B 定义构建参数
ARG POLYGRAPHY_VERSION
                        
# 2024-03-09 08:39:15  0.00B 定义构建参数
ARG DALI_BUILD
                        
# 2024-03-09 08:39:15  0.00B 定义构建参数
ARG DALI_VERSION
                        
# 2024-03-09 08:39:15  0.00B 添加元数据标签
LABEL com.nvidia.nccl.version=2.20.5 com.nvidia.cublas.version=12.4.2.65 com.nvidia.cufft.version=11.2.0.44 com.nvidia.curand.version=10.3.5.119 com.nvidia.cusparse.version=12.3.0.142 com.nvidia.cusolver.version=11.6.0.99 com.nvidia.cutensor.version=2.0.1.2 com.nvidia.npp.version=12.2.5.2 com.nvidia.nvjpeg.version=12.3.1.89 com.nvidia.cudnn.version=9.0.0.306+cuda12.3 com.nvidia.tensorrt.version=8.6.3.1+cuda12.2.2.009 com.nvidia.tensorrtoss.version=23.11 com.nvidia.nsightsystems.version=2024.2.1.38 com.nvidia.nsightcompute.version=2024.1.0.13
                        
# 2024-03-09 08:39:15  4.40GB 执行命令并创建新的镜像层
RUN |17 CUDA_VERSION=12.4.0.041 CUDA_DRIVER_VERSION=550.54.14 JETPACK_HOST_MOUNTS= NCCL_VERSION=2.20.5 CUBLAS_VERSION=12.4.2.65 CUFFT_VERSION=11.2.0.44 CURAND_VERSION=10.3.5.119 CUSPARSE_VERSION=12.3.0.142 CUSOLVER_VERSION=11.6.0.99 CUTENSOR_VERSION=2.0.1.2 NPP_VERSION=12.2.5.2 NVJPEG_VERSION=12.3.1.89 CUDNN_VERSION=9.0.0.306+cuda12.3 TRT_VERSION=8.6.3.1+cuda12.2.2.009 TRTOSS_VERSION=23.11 NSIGHT_SYSTEMS_VERSION=2024.2.1.38 NSIGHT_COMPUTE_VERSION=2024.1.0.13 /bin/sh -c /nvidia/build-scripts/installNCCL.sh  && /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUTENSOR.sh # buildkit
                        
# 2024-03-09 08:27:13  0.00B 设置环境变量 NCCL_VERSION CUBLAS_VERSION CUFFT_VERSION CURAND_VERSION CUSPARSE_VERSION CUSOLVER_VERSION CUTENSOR_VERSION NPP_VERSION NVJPEG_VERSION CUDNN_VERSION TRT_VERSION TRTOSS_VERSION NSIGHT_SYSTEMS_VERSION NSIGHT_COMPUTE_VERSION
ENV NCCL_VERSION=2.20.5 CUBLAS_VERSION=12.4.2.65 CUFFT_VERSION=11.2.0.44 CURAND_VERSION=10.3.5.119 CUSPARSE_VERSION=12.3.0.142 CUSOLVER_VERSION=11.6.0.99 CUTENSOR_VERSION=2.0.1.2 NPP_VERSION=12.2.5.2 NVJPEG_VERSION=12.3.1.89 CUDNN_VERSION=9.0.0.306+cuda12.3 TRT_VERSION=8.6.3.1+cuda12.2.2.009 TRTOSS_VERSION=23.11 NSIGHT_SYSTEMS_VERSION=2024.2.1.38 NSIGHT_COMPUTE_VERSION=2024.1.0.13
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG NSIGHT_COMPUTE_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG NSIGHT_SYSTEMS_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG TRTOSS_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG TRT_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG CUDNN_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG NVJPEG_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG NPP_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG CUTENSOR_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG CUSOLVER_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG CUSPARSE_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG CURAND_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG CUFFT_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG CUBLAS_VERSION
                        
# 2024-03-09 08:27:13  0.00B 定义构建参数
ARG NCCL_VERSION
                        
# 2024-03-09 08:27:13  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver com.nvidia.cuda.version=9.0
                        
# 2024-03-09 08:27:13  0.00B 设置环境变量 _CUDA_COMPAT_PATH ENV BASH_ENV SHELL NVIDIA_REQUIRE_CUDA
ENV _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0
                        
# 2024-03-09 08:27:13  53.23KB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.4.0.041 CUDA_DRIVER_VERSION=550.54.14 JETPACK_HOST_MOUNTS= /bin/sh -c cp -vprd /nvidia/. /  &&  patch -p0 < /etc/startup_scripts.patch  &&  rm -f /etc/startup_scripts.patch # buildkit
                        
# 2024-03-09 08:27:13  427.24MB 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.4.0.041 CUDA_DRIVER_VERSION=550.54.14 JETPACK_HOST_MOUNTS= /bin/sh -c /nvidia/build-scripts/installCUDA.sh # buildkit
                        
# 2024-03-09 08:25:55  0.00B 执行命令并创建新的镜像层
RUN |3 CUDA_VERSION=12.4.0.041 CUDA_DRIVER_VERSION=550.54.14 JETPACK_HOST_MOUNTS= /bin/sh -c if [ -n "${JETPACK_HOST_MOUNTS}" ]; then        echo "/usr/lib/aarch64-linux-gnu/tegra" > /etc/ld.so.conf.d/nvidia-tegra.conf     && echo "/usr/lib/aarch64-linux-gnu/tegra-egl" >> /etc/ld.so.conf.d/nvidia-tegra.conf;     fi # buildkit
                        
# 2024-03-09 08:25:55  0.00B 设置环境变量 CUDA_VERSION CUDA_DRIVER_VERSION CUDA_CACHE_DISABLE NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS
ENV CUDA_VERSION=12.4.0.041 CUDA_DRIVER_VERSION=550.54.14 CUDA_CACHE_DISABLE=1 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
                        
# 2024-03-09 08:25:55  0.00B 定义构建参数
ARG JETPACK_HOST_MOUNTS
                        
# 2024-03-09 08:25:55  0.00B 定义构建参数
ARG CUDA_DRIVER_VERSION
                        
# 2024-03-09 08:25:55  0.00B 定义构建参数
ARG CUDA_VERSION
                        
# 2024-03-09 08:25:55  302.60MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         apt-utils         build-essential         ca-certificates         curl         libncurses5         libncursesw5         patch         wget         rsync         unzip         jq         gnupg         libtcmalloc-minimal4 # buildkit
                        
# 2024-02-28 02:53:25  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2024-02-28 02:53:25  69.25MB 
/bin/sh -c #(nop) ADD file:07cdbabf782942af04487c9da03de50a611a51e69d8bac1f593acb73a3ba3a46 in / 
                        
# 2024-02-28 02:53:22  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2024-02-28 02:53:22  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2024-02-28 02:53:22  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2024-02-28 02:53:22  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:d819e66760ff092a71adb4f3b628b3a2973f6b0b575555f2b5d0e57560cae761",
    "RepoTags": [
        "nvcr.io/nvidia/pytorch:24.03-py3",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:24.03-py3-linuxarm64"
    ],
    "RepoDigests": [
        "nvcr.io/nvidia/pytorch@sha256:01eaf709000a9859fe03ed53a67458349d20816642db9b406d3a44e4e8d82414",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch@sha256:2e3c0fed90b89d90c8f58abfc972ceea7b19e5da8bb77215b177d32507fad54a"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-03-09T06:50:51.294868667Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "6006/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/lib/python3.10/dist-packages/torch_tensorrt/bin:/usr/local/mpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/tensorrt/bin",
            "CUDA_VERSION=12.4.0.041",
            "CUDA_DRIVER_VERSION=550.54.14",
            "CUDA_CACHE_DISABLE=1",
            "NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=",
            "_CUDA_COMPAT_PATH=/usr/local/cuda/compat",
            "ENV=/etc/shinit_v2",
            "BASH_ENV=/etc/bash.bashrc",
            "SHELL=/bin/bash",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=9.0",
            "NCCL_VERSION=2.20.5",
            "CUBLAS_VERSION=12.4.2.65",
            "CUFFT_VERSION=11.2.0.44",
            "CURAND_VERSION=10.3.5.119",
            "CUSPARSE_VERSION=12.3.0.142",
            "CUSOLVER_VERSION=11.6.0.99",
            "CUTENSOR_VERSION=2.0.1.2",
            "NPP_VERSION=12.2.5.2",
            "NVJPEG_VERSION=12.3.1.89",
            "CUDNN_VERSION=9.0.0.306+cuda12.3",
            "TRT_VERSION=8.6.3.1+cuda12.2.2.009",
            "TRTOSS_VERSION=23.11",
            "NSIGHT_SYSTEMS_VERSION=2024.2.1.38",
            "NSIGHT_COMPUTE_VERSION=2024.1.0.13",
            "DALI_VERSION=1.35.0",
            "DALI_BUILD=12768324",
            "POLYGRAPHY_VERSION=0.49.7",
            "TRANSFORMER_ENGINE_VERSION=1.4",
            "LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility,video",
            "NVIDIA_PRODUCT_NAME=PyTorch",
            "GDRCOPY_VERSION=2.3.1-1",
            "HPCX_VERSION=2.18",
            "MOFED_VERSION=5.4-rdmacore39.0",
            "OPENUCX_VERSION=1.16.0",
            "OPENMPI_VERSION=4.1.7",
            "RDMACORE_VERSION=39.0",
            "OPAL_PREFIX=/opt/hpcx/ompi",
            "OMPI_MCA_coll_hcoll_enable=0",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs:",
            "PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58",
            "PYTORCH_VERSION=2.3.0a0+40ec155e58",
            "PYTORCH_BUILD_NUMBER=0",
            "NVIDIA_PYTORCH_VERSION=24.03",
            "NVFUSER_BUILD_VERSION=f73ff1bc6a",
            "NVFUSER_VERSION=f73ff1bc6a",
            "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python",
            "PYTHONIOENCODING=utf-8",
            "LC_ALL=C.UTF-8",
            "PIP_DEFAULT_TIMEOUT=100",
            "NVM_DIR=/usr/local/nvm",
            "JUPYTER_PORT=8888",
            "TENSORBOARD_PORT=6006",
            "UCC_CL_BASIC_TLS=^sharp",
            "TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX",
            "PYTORCH_HOME=/opt/pytorch/pytorch",
            "CUDA_HOME=/usr/local/cuda",
            "TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1",
            "USE_EXPERIMENTAL_CUDNN_V8_API=1",
            "COCOAPI_VERSION=2.0+nv0.8.0",
            "TORCH_CUDNN_V8_API_ENABLED=1",
            "NCCL_WORK_FIFO_DEPTH=4194304",
            "CUDA_MODULE_LOADING=LAZY",
            "NVIDIA_BUILD_ID=85286409"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.build.id": "85286409",
            "com.nvidia.build.ref": "154032c431742c7fde97a2fdad674917592306e5",
            "com.nvidia.cublas.version": "12.4.2.65",
            "com.nvidia.cuda.version": "9.0",
            "com.nvidia.cudnn.version": "9.0.0.306+cuda12.3",
            "com.nvidia.cufft.version": "11.2.0.44",
            "com.nvidia.curand.version": "10.3.5.119",
            "com.nvidia.cusolver.version": "11.6.0.99",
            "com.nvidia.cusparse.version": "12.3.0.142",
            "com.nvidia.cutensor.version": "2.0.1.2",
            "com.nvidia.nccl.version": "2.20.5",
            "com.nvidia.npp.version": "12.2.5.2",
            "com.nvidia.nsightcompute.version": "2024.1.0.13",
            "com.nvidia.nsightsystems.version": "2024.2.1.38",
            "com.nvidia.nvjpeg.version": "12.3.1.89",
            "com.nvidia.pytorch.version": "2.3.0a0+40ec155e58",
            "com.nvidia.tensorrt.version": "8.6.3.1+cuda12.2.2.009",
            "com.nvidia.tensorrtoss.version": "23.11",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "arm64",
    "Os": "linux",
    "Size": 17467547594,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/0c28c63ddf90e807b2919ad2ddcb0888c0f843b0681f4d4479ecf39af0205e82/diff:/var/lib/docker/overlay2/d2e5d35275523aa8a87371344d32114a418a69ba2d62a727e3fee3e49a08aee5/diff:/var/lib/docker/overlay2/665f6d3114159fae63e29f6548af30a3b51e3f1afadc2fe614bb773d6bb3dfc7/diff:/var/lib/docker/overlay2/d94550beb49dea8a6e548b704eef177424e689e5b096043885f4039ae1a33565/diff:/var/lib/docker/overlay2/88089835fcda55a87a44b51cbd0425b5111f86c87626ffab43e20b0a1d897d60/diff:/var/lib/docker/overlay2/a0af0bb0ff5a19c0a107bc395aff2d371ff69bb682c13243fb98b7cfd2bdd2a7/diff:/var/lib/docker/overlay2/a17efd7abff8e32c7bd5ea48df9ce1b4607f0188cba507032eb609d2562e4cd7/diff:/var/lib/docker/overlay2/3f0cdf648841070e13ac6db9e9c982752330211e70a7d3f616a8dd5a10819f67/diff:/var/lib/docker/overlay2/5b07d3e8f29ee44376e905ef24d91f68d58469dfc423449e0dc9ca5ced240e6f/diff:/var/lib/docker/overlay2/f2e38459cd91cbc44b990ef848e6450c4796eb65192069b755c30de3daa2ac65/diff:/var/lib/docker/overlay2/c9b336053e57cd5c970f15453d479d39e00e639fef14813654850de9429850b6/diff:/var/lib/docker/overlay2/cd9527e8122297d4efbe102a2ab2c9070bb9b15aeabba019d4ee16a8e96852db/diff:/var/lib/docker/overlay2/4ff0973a47cc68c415173ee6b2ae17302c45253491a7e34aab716fbb94ddf819/diff:/var/lib/docker/overlay2/9a175632fb7618d6e9447293308cec05499e87c7d3b4afa55f38dcd84f242c22/diff:/var/lib/docker/overlay2/7924eeae861d61ac521214bd291e85fd7a63dc94c462489e5687091fae847c4a/diff:/var/lib/docker/overlay2/0eb27cc78af9e60ade8a3a5c634a8e2d7b3a0076a8a91240cdb9180828dcd248/diff:/var/lib/docker/overlay2/c60ed5ed34290261df56dfab36e9ab2392ad3d1bf2dd0a311aab35405fc40bd1/diff:/var/lib/docker/overlay2/2cfc6d5b6c300932cddc5f61feb997d0d123351c1f27413252d41a2338aa310c/diff:/var/lib/docker/overlay2/38a0ca279a037dc14e4efcb1f2726cc2093970fab73706dd45882e47d3d94edf/diff:/var/lib/docker/overlay2/0c43b266230a0dcbdea68674eb8d1c7097857059034fa3b89fed19e6f9c7ba3c/diff:/var/lib/docker/overlay2/01caafdf647b24cd07defc3af12d60343c65b02bf5dccf777c92b0dd23a7e07c/diff:/var/lib/docker/overlay2/a58cd3a59fec695be31067a8b5b3afa56b96ec67ed76f0e5bf3f8b6fa1587b98/diff:/var/lib/docker/overlay2/53c1742abec1c767a43ed90ef3fd6004b15ef1196ed3eddc92a0f521cc83c9c2/diff:/var/lib/docker/overlay2/46ac060986d47b673fa839aab00c09e57f3968ab0b36efa9251e87527854556c/diff:/var/lib/docker/overlay2/bdf4659066da1a933e2145bf7bb22f2c7ecb798d748d38e7ddd106b5ba41b89c/diff:/var/lib/docker/overlay2/0c3ab626358b96fabbd3197a9b9c43c1982f9b05e4406637a4e1df5f8cd51726/diff:/var/lib/docker/overlay2/6a5a3b322665b27f1381e17a20def93e2cad2e992bac7782b20e2dcd4794e862/diff:/var/lib/docker/overlay2/a563cb1c3e4f1ffdd38c1030cfe4a5496a64c143fe7923b6b77e00560f9baff6/diff:/var/lib/docker/overlay2/af0157c99b582efa8b7bb572c5baa55d0dc871c9e99af6d86e88ad7f34de5b28/diff:/var/lib/docker/overlay2/9191767a1de641abb3755922ebaaf16270604d90edcf0f1249fe1ded2df0218d/diff:/var/lib/docker/overlay2/270d42be26ce8dee2f45cfd2473ac50adc3ae38b56ee852a8d27af71d5b96537/diff:/var/lib/docker/overlay2/6ba4d00eb005c6e6f300b473a705fbea582971cc765895da01d1744eb0d4be32/diff:/var/lib/docker/overlay2/fe00f910eacf1447b639d8ca98d44d983c8b47364167803d83aded62c219123b/diff:/var/lib/docker/overlay2/81eaa685528016880cd444b710d2d1ed43287e172d67ed2fc0d30f3a02357acd/diff:/var/lib/docker/overlay2/fcf2e2294959e1dbfdd8e1759a71861c249a3557ec6fcb5e600910df33b6ec57/diff:/var/lib/docker/overlay2/12570c76ac9c650677dc6cb4c7a10ff289b90b82f724f5d14b8c9393ba8baa5f/diff:/var/lib/docker/overlay2/6cbbb37974076e4e742df3543bf12671f4d6bf6e0d85d9bd1865b00eabd697fa/diff:/var/lib/docker/overlay2/3792f5a80365b044b5fc1b5469eb279d29cef93ae602755bfed7fa8339f2ee82/diff:/var/lib/docker/overlay2/d90e39a028149c58ef64683e470a4bf079df6e460bf70c8d84c8f3406f0f2c9e/diff:/var/lib/docker/overlay2/75e37bbc31e6ad9cf1a226df7d9e937a7ab77e96efdc0d553aba5c960f1f85db/diff:/var/lib/docker/overlay2/5b6784d6d19dd6a95524e24ccd43ce5fd3fd3242e25f0b6c02671962891dfda1/diff:/var/lib/docker/overlay2/d7d3ae88da74915e15e0d55a9106c4f2d0cab195a4e9561d0696936a55712631/diff:/var/lib/docker/overlay2/f7ae8d7f34c3d14abbd45f307fbe5d469e0fda77900f81ecae90690bff5a8696/diff:/var/lib/docker/overlay2/46668c3d403005ab3fbb2a5d576234388c11012803108d79334e43cc8f85cb16/diff:/var/lib/docker/overlay2/67ee0e155ba8d6577ca9ca6578be626fbdbe2c09523610ac4a60a12498fcbe00/diff:/var/lib/docker/overlay2/ec31080d5c1e9163f49b604cd0a3a1314df88be91fa15220526d18f1dbb3dbfc/diff:/var/lib/docker/overlay2/5ae0860edceaae891551d94258b4a9d183a71bbac18b08a6de35452ad035730a/diff:/var/lib/docker/overlay2/0a9044b2394ec0e2cb4a5ebc2c1ff14349c0eecc8ee734e6d7c8f42d2bd43bc8/diff:/var/lib/docker/overlay2/d003b375df94ba71dfae404a531422613f4ba25c3b94b60363b779432ee89d2e/diff:/var/lib/docker/overlay2/665da2907d1475045515a40e4ef7e0b016625c736f65648bfbe6c1b38c6f75cd/diff",
            "MergedDir": "/var/lib/docker/overlay2/f2751b88b2ae92a4edfe3d6c66467d73a11ee966a8c4fadec3c471b7d298ece9/merged",
            "UpperDir": "/var/lib/docker/overlay2/f2751b88b2ae92a4edfe3d6c66467d73a11ee966a8c4fadec3c471b7d298ece9/diff",
            "WorkDir": "/var/lib/docker/overlay2/f2751b88b2ae92a4edfe3d6c66467d73a11ee966a8c4fadec3c471b7d298ece9/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:a510ae0f066c65d73f523d5821fe048a6858e53360ecb8d39b7b931162f11479",
            "sha256:5c0bce2d015c0b9e0816eaeb5040be6c1919ed49a94e0882ca5ec92fb58c9a59",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:0fd385458d6a331c5425ffccc17a7edb0173fbeca2054f42c127dd270432a1bb",
            "sha256:0838894383e895ac4347a1514fe1764a04c3a8a6b52a02e4a03aa9836b010577",
            "sha256:6b3fed31aef38f2428ae99184c88bf89f2d5e0e79a15a48fd2737217935348de",
            "sha256:aee6851c613955877ab2b9359515d64d1cfb6959e2c032b85cf1897bd90dea20",
            "sha256:1cfcd1e13cf38dc167a921edd43404cad9c32ef4c5022be4a55c70d747ead6ac",
            "sha256:d2042ddd69e18ceb5838aa06af72cb0d4e98535b2e2efacd959e888c5090e4ab",
            "sha256:490b40c39aa3ee515b255188b59cafcc75928a97ebba8bc0f4fe0ab8466225a1",
            "sha256:bbba8f8cfab3255c6c2d188d56ce4b857361cb0144d8357b332441ffb3522960",
            "sha256:d66e341090986ff63e6a8243fccea7e3eab4f76c03542853b8b68d8f99d9fe09",
            "sha256:7cee726ee8a82ff3d1aa6e52fd3ddd5887441d748a628dbf6cc78271053aee59",
            "sha256:52eb96bee98bcbc7773244af0eca1b679a6814ad17948cd2a62c4223e3edea10",
            "sha256:14884d79eed41c2b51496b8b77e09ec50ea0044d4dcc4ceaa5854656168922d8",
            "sha256:88a00318d25cfc6a66677c5592a4e00c68d6ff1a24187d2530c0c2b2f72a21c0",
            "sha256:52011a44ea1e14ba8061a9e68788da13bceb584c831992d893883df1a39443ba",
            "sha256:dfed55fbcd3aba76f088fb977c0d40cf8f2dc7abcbcb417d72241384747720aa",
            "sha256:0efcfad5c75dcf1055135559a257e3c6208db71075f377683a556e737320aa73",
            "sha256:27ffa74c4fdb08259cae09a2471ae078dee8fd0ab5ddcd082c0dab5395b468c6",
            "sha256:ebfd0440676401639cd3d5f4f19d1c6327fe9c84b858910def4db4d882c86a67",
            "sha256:0c7de391c0e365e2b8957245d346ff80901bba78bf35eff2cf269e838afd41b3",
            "sha256:175a3106335692760789ca9916c320cd7ffe84d828454d928fb77cdd1abac811",
            "sha256:4af2b62417e2575b5ed727d5a02c31c3075889e58e88e22eb00a70ed3f2e6454",
            "sha256:75b8c3acfe9ad554970e4bfe68fbd9da57110d6e33a5a96af15cf78fc098706d",
            "sha256:8b5801c00f14181006caa2cd7dddac2387de3e961918a191947dcb92d633e0e4",
            "sha256:5240d881b805ed245c3a3052c36e35eb734ec6f5231003feae9951f44b3ad978",
            "sha256:26265b86170a7944fae358b9609768f7872128988ef47b37b86f233c196fc602",
            "sha256:dd6c6bf6bce0bd2a9194e26565e6583b3ac1b8f42165db86774ca8ec8bf64b97",
            "sha256:639bd83d3c1fd2be60404cf4dbdf1dfbc1fd4d9d32bb10c3e1ed7c655f7157c6",
            "sha256:94ecd12b38aefe2550ad4ddfe36fbb288f484b8097c13b2b98853ac4939468bc",
            "sha256:de3e19189059ef06634b880d3d92f93e1e453774af0e258590e0bb9f60eb31ad",
            "sha256:f61aa7dc9163f9caaf865ec0c91bec537b5166070a6d7713e26c49c8f13c8fd1",
            "sha256:994a1948de9d485725f902b27b490585d74c131e3ad4e014aace345fb789afcc",
            "sha256:43a254ec33db14e8bb8af573d6ab4a7fda3bb8d50a4ce0d936e232fb236d8f4e",
            "sha256:b3ebe49cd0418fadf81ab77b56ad91fa2742475ae3e8f18f98fa54129855c087",
            "sha256:c334a76ee9bc95999b517826244a725ae8f1d308b9dfb966db6fe18d48c7c6a0",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:c3aebecb40e37d95a4239ecdc866bc7a9ef51341e424955765f162c4482caff3",
            "sha256:cb2be10e6d62c7aebf600378afad4537895ecb335dff01fb111381d2cb4d3b32",
            "sha256:be094485b099d0a64842b7830ba4733077cdc2626644a3583a50144c3de0a942",
            "sha256:2f0694a48efa897ae9a9819c37bcb1816f49150298ae8dbade8a837e7363a4b6",
            "sha256:a2794523c4e797ec578052940c8a6ca35b2d8c2704c72af53b40202513e605ca",
            "sha256:2479a00a56f37585460c9e1a542235b49bc2c5c572ff9b4345b88ab20438cc4d",
            "sha256:62a7bbd4d228104e000995e26f7731162dc1d44a782383ae1af8d1ba5728bcb5",
            "sha256:9d23c718393833cc25c2fb422218d4085558dc7b8e4cbbefbd28af6c04a2d4fb",
            "sha256:9d8bb6da2a8a1da3bdf84a707796e557319a6408406657837aca52008252b8b6",
            "sha256:09779bedd19247a284765bab5309ee9e35fb677ac427ab7744d30f47a4196cbc",
            "sha256:89c190d7d055619f6544da25d1f99a0eae063643963e3daf8eef09a9958e8998",
            "sha256:7efe2fa9cbe718f32a63aab44f0fa50e9e4a266faa07e16753f2160630c53187",
            "sha256:0c92e95556bee76c46e64911c22deed38079dfdb031202a7032233eebcab8dd1"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-06-12T05:53:36.535561192+08:00"
    }
}

更多版本

docker.io/nvcr.io/nvidia/pytorch:24.01-py3

linux/amd64 docker.io22.02GB2024-09-20 00:38
1102

docker.io/nvcr.io/nvidia/pytorch:22.12-py3

linux/amd64 docker.io18.27GB2024-10-17 00:56
687

docker.io/nvcr.io/nvidia/pytorch:23.04-py3

linux/amd64 docker.io20.38GB2024-10-18 01:26
582

docker.io/nvcr.io/nvidia/pytorch:24.06-py3

linux/amd64 docker.io19.15GB2024-10-22 00:29
662

docker.io/nvcr.io/nvidia/pytorch:21.11-py3

linux/amd64 docker.io14.47GB2024-10-22 10:38
647

docker.io/nvcr.io/nvidia/pytorch:24.07-py3

linux/amd64 docker.io20.19GB2025-01-09 00:29
767

docker.io/nvcr.io/nvidia/pytorch:24.02-py3

linux/amd64 docker.io22.21GB2025-02-23 20:44
1087

docker.io/nvcr.io/nvidia/pytorch:24.05-py3

linux/amd64 docker.io18.78GB2025-03-18 01:37
303

docker.io/nvcr.io/nvidia/pytorch:24.11-py3

linux/amd64 docker.io21.77GB2025-04-04 03:43
272

docker.io/nvcr.io/nvidia/pytorch:24.10-py3

linux/amd64 docker.io21.03GB2025-04-04 03:50
291

docker.io/nvcr.io/nvidia/pytorch:24.12-py3

linux/amd64 docker.io21.66GB2025-04-11 02:13
436

docker.io/nvcr.io/nvidia/pytorch:25.04-py3

linux/amd64 docker.io24.66GB2025-05-23 01:14
233

docker.io/nvcr.io/nvidia/pytorch:23.09-py3

linux/amd64 docker.io22.01GB2025-05-29 03:30
111

docker.io/nvcr.io/nvidia/pytorch:25.04-py3

linux/arm64 docker.io22.42GB2025-06-04 07:57
150

docker.io/nvcr.io/nvidia/pytorch:25.05-py3

linux/amd64 docker.io25.72GB2025-06-04 09:16
236

docker.io/nvcr.io/nvidia/pytorch:24.03-py3

linux/arm64 docker.io17.47GB2025-06-12 06:11
43