docker.io/nvcr.io/nvidia/pytorch:25.05-py3 linux/amd64

docker.io/nvcr.io/nvidia/pytorch:25.05-py3 - 国内下载镜像源 浏览次数:29
这里是镜像的描述信息: NVIDIA PyTorch Docker Image

这是一个基于PyTorch框架的Docker容器镜像,提供了一个完整的深度学习环境。该镜像包含了PyTorch 1.x版本,以及其他必需的依赖包,如CUDA、cuDNN等。

使用这个镜像,您可以轻松地在本地环境中搭建一个深度学习工作站,进行各种机器学习和计算机视觉任务的实验和开发。

此外,该镜像还支持GPU加速,通过NVIDIA的CUDA和cuDNN技术,可以显著提高PyTorch的性能和效率。

源镜像 docker.io/nvcr.io/nvidia/pytorch:25.05-py3
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3
镜像ID sha256:26d284b843da533ebc054429bb264b78f57afbc1527b72d6213bf6078ff56029
镜像TAG 25.05-py3
大小 25.72GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 29 次
贡献者 yo*********0@163.com
镜像创建 2025-05-22T05:31:49.857024867Z
同步时间 2025-06-04 09:16
更新时间 2025-06-06 05:44
开放端口
6006/tcp 8888/tcp
环境变量
PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/mpi/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS= GDRCOPY_VERSION=2.4.4 HPCX_VERSION=2.23 MOFED_VERSION=5.4-rdmacore50.0 OPENUCX_VERSION=1.19.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=50.0 EFA_VERSION=1.38.1 AWS_OFI_NCCL_VERSION=1.14.0 OPAL_PREFIX=/opt/hpcx/ompi OMPI_MCA_coll_hcoll_enable=0 CUDA_VERSION=12.9.0.043 CUDA_DRIVER_VERSION=575.51.03 _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0 NCCL_VERSION=2.26.5 CUBLAS_VERSION=12.9.0.13 CUFFT_VERSION=11.4.0.6 CURAND_VERSION=10.3.10.19 CUSPARSE_VERSION=12.5.9.5 CUSPARSELT_VERSION=0.7.1.0 CUSOLVER_VERSION=11.7.4.40 NPP_VERSION=12.4.0.27 NVJPEG_VERSION=12.4.0.16 CUFILE_VERSION=1.14.0.30 NVJITLINK_VERSION=12.9.41 CUBLASMP_VERSION=0.4.0.789 CAL_VERSION=0.4.4.50 NVSHMEM_VERSION=3.2.5 CUDNN_VERSION=9.10.1.4 CUDNN_FRONTEND_VERSION=1.11.0 TRT_VERSION=10.10.0.31 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2025.3.1.90 NSIGHT_COMPUTE_VERSION=2025.2.0.11 DALI_VERSION=1.49.0 DALI_BUILD= DALI_URL_SUFFIX=120 POLYGRAPHY_VERSION=0.49.20 TRANSFORMER_ENGINE_VERSION=2.3 MODEL_OPT_VERSION=0.27.1 CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0 LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video NVIDIA_PRODUCT_NAME=PyTorch LIBRARY_PATH=/usr/local/cuda/lib64/stubs: PYTORCH_BUILD_VERSION=2.8.0a0+5228986 PYTORCH_VERSION=2.8.0a0+5228986 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=25.05 NVFUSER_BUILD_VERSION=9bf5aca NVFUSER_VERSION=9bf5aca PIP_BREAK_SYSTEM_PACKAGES=1 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python PIP_CONSTRAINT=/etc/pip/constraint.txt NVPL_LAPACK_MATH_MODE=PEDANTIC PYTHONIOENCODING=utf-8 LC_ALL=C.UTF-8 PIP_DEFAULT_TIMEOUT=100 JUPYTER_PORT=8888 TENSORBOARD_PORT=6006 UCC_CL_BASIC_TLS=^sharp TORCH_CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0+PTX PYTORCH_HOME=/opt/pytorch/pytorch CUDA_HOME=/usr/local/cuda TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1 COCOAPI_VERSION=2.0+nv0.8.1 CUDA_MODULE_LOADING=LAZY TORCH_NCCL_USE_COMM_NONBLOCKING=0 NVIDIA_BUILD_ID=170559088
镜像标签
170559088: com.nvidia.build.id 0f499560921269b0135bf88c85232c1f26bcecfb: com.nvidia.build.ref 0.4.4.50: com.nvidia.cal.version 12.9.0.13: com.nvidia.cublas.version 0.4.0.789: com.nvidia.cublasmp.version 9.0: com.nvidia.cuda.version 9.10.1.4: com.nvidia.cudnn.version 11.4.0.6: com.nvidia.cufft.version 10.3.10.19: com.nvidia.curand.version 11.7.4.40: com.nvidia.cusolver.version 12.5.9.5: com.nvidia.cusparse.version 0.7.1.0: com.nvidia.cusparselt.version 2.26.5: com.nvidia.nccl.version 12.4.0.27: com.nvidia.npp.version 2025.2.0.11: com.nvidia.nsightcompute.version 2025.3.1.90: com.nvidia.nsightsystems.version 12.4.0.16: com.nvidia.nvjpeg.version 2.8.0a0+5228986: com.nvidia.pytorch.version 10.10.0.31: com.nvidia.tensorrt.version : com.nvidia.tensorrtoss.version nvidia_driver: com.nvidia.volumes.needed ubuntu: org.opencontainers.image.ref.name 24.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3  docker.io/nvcr.io/nvidia/pytorch:25.05-py3

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3  docker.io/nvcr.io/nvidia/pytorch:25.05-py3

Shell快速替换命令

sed -i 's#nvcr.io/nvidia/pytorch:25.05-py3#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3  docker.io/nvcr.io/nvidia/pytorch:25.05-py3'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3  docker.io/nvcr.io/nvidia/pytorch:25.05-py3'

镜像构建历史


# 2025-05-22 13:31:49  0.00B 添加元数据标签
LABEL com.nvidia.build.ref=0f499560921269b0135bf88c85232c1f26bcecfb
                        
# 2025-05-22 13:31:49  0.00B 定义构建参数
ARG NVIDIA_BUILD_REF=0f499560921269b0135bf88c85232c1f26bcecfb
                        
# 2025-05-22 13:31:49  0.00B 添加元数据标签
LABEL com.nvidia.build.id=170559088
                        
# 2025-05-22 13:31:49  0.00B 设置环境变量 NVIDIA_BUILD_ID
ENV NVIDIA_BUILD_ID=170559088
                        
# 2025-05-22 13:31:49  0.00B 定义构建参数
ARG NVIDIA_BUILD_ID=170559088
                        
# 2025-05-22 13:31:49  719.00B 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2025-05-22 13:31:49  83.94KB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c ln -sf ${_CUDA_COMPAT_PATH}/lib.real ${_CUDA_COMPAT_PATH}/lib  && echo ${_CUDA_COMPAT_PATH}/lib > /etc/ld.so.conf.d/00-cuda-compat.conf  && ldconfig  && rm -f ${_CUDA_COMPAT_PATH}/lib # buildkit
                        
# 2025-05-22 13:31:49  0.00B 设置环境变量 TORCH_NCCL_USE_COMM_NONBLOCKING
ENV TORCH_NCCL_USE_COMM_NONBLOCKING=0
                        
# 2025-05-22 13:31:49  0.00B 设置环境变量 CUDA_MODULE_LOADING
ENV CUDA_MODULE_LOADING=LAZY
                        
# 2025-05-22 13:31:49  817.64MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Transformer Engine in iGPU container until Version variable is set"; else     /nvidia/build-scripts/installCAL.sh &&     /nvidia/build-scripts/installCUBLASMP.sh &&     /nvidia/build-scripts/installNVSHMEM.sh &&     git clone -b release_v${TRANSFORMER_ENGINE_VERSION} --single-branch --recursive https://github.com/NVIDIA/TransformerEngine.git &&     env NVTE_CUDA_ARCHS="70;80;89;90;100;120" NVTE_BUILD_THREADS_PER_JOB=8 pip install --no-cache-dir --no-build-isolation ./TransformerEngine &&     rm -rf TransformerEngine; fi # buildkit
                        
# 2025-05-22 13:26:51  1.44GB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c if [ "${L4T}" = "1" ]; then echo "Not installing Flash Attention wheel in iGPU as it is a requirement for Transformer Engine"; else     pip install --no-cache-dir /opt/pytorch/flash_attn*.whl; fi # buildkit
                        
# 2025-05-22 13:25:43  46.22MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c pip install --no-cache-dir /opt/pytorch/torch_tensorrt/dist/*.whl # buildkit
                        
# 2025-05-22 13:25:30  737.66MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c pip install --no-cache-dir /opt/pytorch/apex/dist/*.whl # buildkit
                        
# 2025-05-22 13:23:49  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/mpi/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin
                        
# 2025-05-22 13:23:49  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2025-05-22 13:23:49  0.00B 定义构建参数
ARG PYVER=3.12
                        
# 2025-05-22 13:23:49  162.24MB 复制新文件或目录到容器中
COPY torch_tensorrt/ /opt/pytorch/torch_tensorrt/ # buildkit
                        
# 2025-05-22 13:23:48  52.89MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c pip --version && python -c 'import sys; print(sys.platform)'     && pip install --extra-index-url https://urm.nvidia.com/artifactory/api/pypi/sw-tensorrt-pypi/simple --no-cache-dir "polygraphy==${POLYGRAPHY_VERSION}"     && pip install  --index-url https://gitlab-master.nvidia.com/api/v4/projects/omniml%2Fmodelopt/packages/pypi/simple --extra-index-url https://pypi.nvidia.com "nvidia-modelopt[torch]==${MODEL_OPT_VERSION}"     && pip install nvidia-resiliency-ext==0.3.0 # buildkit
                        
# 2025-05-22 13:23:44  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/mpi/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin
                        
# 2025-05-22 13:23:44  6.60MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c set -x     && WHEELS=1 /nvidia/build-scripts/installTRT.sh # buildkit
                        
# 2025-05-22 13:22:10  34.90MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c chmod -R a+w . # buildkit
                        
# 2025-05-22 13:22:10  34.89MB 复制新文件或目录到容器中
COPY tutorials tutorials # buildkit
                        
# 2025-05-22 13:22:10  2.07KB 复制新文件或目录到容器中
COPY docker-examples docker-examples # buildkit
                        
# 2025-05-22 13:22:10  2.05KB 复制新文件或目录到容器中
COPY NVREADME.md README.md # buildkit
                        
# 2025-05-22 13:22:10  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2025-05-22 13:22:10  3.00GB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c if [ "${L4T}" = "1" ]; then     echo "Not installing rapids for L4T build."; exit 0; fi  && find /rapids  -name "*-Linux.tar.gz" -exec     tar -C /usr --exclude="*.a" --exclude="bin/xgboost" --strip-components=1 -xvf {} \;  && find /rapids -name "*.whl"     ! -name "tornado-*"     ! -name "cugraph_dgl*"     ! -name "cugraph_pyg*"     ! -name "torch_geometric*"     ! -name "Pillow-*"     ! -name "certifi-*"     ! -name "protobuf-*"     ! -name "six-*"     -exec pip install --no-cache-dir {} + # buildkit
                        
# 2025-05-22 13:21:39  224.07KB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c pip install tabulate # buildkit
                        
# 2025-05-22 13:21:38  174.73MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c ( cd fuser && pip install -r requirements.txt &&  python setup.py -version-tag=a0+${NVFUSER_VERSION} install && python setup.py clean && cp $(find /usr/local/lib/python${PYVER}/dist-packages/ -name libnvfuser_codegen.so)  /usr/local/lib/python${PYVER}/dist-packages/torch/lib/ )  && ( cd lightning-thunder && python setup.py install && rm -rf build *.egg-info)  && ( cd lightning-thunder && mkdir tmp && cd tmp && git clone -b v${CUDNN_FRONTEND_VERSION} --recursive --single-branch https://github.com/NVIDIA/cudnn-frontend.git cudnn_frontend && cd cudnn_frontend && pip install --no-build-isolation . && cd ../../ && rm -rf tmp )  && ( cd pytorch/third_party/onnx && pip uninstall typing -y && CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" pip install --no-build-isolation . ) # buildkit
                        
# 2025-05-22 13:17:10  2.21KB 复制新文件或目录到容器中
COPY singularity/ /.singularity.d/ # buildkit
                        
# 2025-05-22 13:17:10  70.97MB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c export COCOAPI_TAG=$(echo ${COCOAPI_VERSION} | sed 's/^.*+n//')  && pip install git+https://github.com/nvidia/cocoapi.git@${COCOAPI_TAG}#subdirectory=PythonAPI # buildkit
                        
# 2025-05-22 13:16:49  0.00B 设置环境变量 COCOAPI_VERSION
ENV COCOAPI_VERSION=2.0+nv0.8.1
                        
# 2025-05-22 13:16:49  1.19GB 执行命令并创建新的镜像层
RUN |8 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali /bin/sh -c if [ -z "${DALI_VERSION}" ] ; then   echo "Not Installing DALI for L4T Build." ; exit 0; fi   && export CUDA_VERSION_MAJOR=$(ls /usr/local/cuda/lib64/libcudart.so.*.*.* | cut -d . -f 3)   && export DALI_PKG_SUFFIX="cuda${CUDA_VERSION_MAJOR}0"   && if [ -z "${DALI_URL_SUFFIX}" ] ; then export DALI_EXTRA_INDEX_URL="${DALI_EXTRA_INDEX_URL}-qa"; fi   && pip install                 --extra-index-url https://developer.download.nvidia.com/compute/redist                 --extra-index-url "${DALI_EXTRA_INDEX_URL}"                 --trusted-host sqrl         nvidia-dali-${DALI_PKG_SUFFIX}==${DALI_VERSION} # buildkit
                        
# 2025-05-22 13:16:36  0.00B 定义构建参数
ARG DALI_EXTRA_INDEX_URL=http://sqrl/nvdl/datasets/dali/pip-dali
                        
# 2025-05-22 13:16:36  782.44MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir /tmp/dist/*.whl # buildkit
                        
# 2025-05-22 13:16:27  17.61MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c cd pytorch && pip install -v -r /opt/pytorch/pytorch/requirements.txt # buildkit
                        
# 2025-05-22 13:16:25  14.48MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c patchelf --set-rpath '$ORIGIN:/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torchvision/' /usr/local/lib/libtorchvision.so.1.0 && patchelf --set-soname libtorchvision.so.1 --output /usr/local/lib/libtorchvision.so.1.0 /usr/local/lib/libtorchvision.so.1.0 && ldconfig && pushd /usr/local/lib && ln -s libtorchvision.so.1 /usr/local/lib/libtorchvision.so && popd && patchelf --set-soname libjpeg.so.62 --output /usr/local/lib/libjpeg.so.62 $(readlink -f $(ldd /usr/local/lib/python3.12/dist-packages/torchvision/image.so | grep libjpeg | awk '{print $3}')) # buildkit
                        
# 2025-05-22 13:16:25  0.00B 复制新文件或目录到容器中
COPY /usr/local/lib64/libjpeg* /usr/local/lib/ # buildkit
                        
# 2025-05-22 13:16:25  12.29MB 复制新文件或目录到容器中
COPY /usr/local/lib64/libtorchvision.so /usr/local/lib/libtorchvision.so.1.0 # buildkit
                        
# 2025-05-22 13:16:25  397.33KB 复制新文件或目录到容器中
COPY /usr/local/include/torchvision/ /usr/local/include/torchvision/ # buildkit
                        
# 2025-05-22 13:16:25  9.01KB 复制新文件或目录到容器中
COPY /usr/local/share/cmake/TorchVision/ /usr/local/share/cmake/TorchVision/ # buildkit
                        
# 2025-05-22 13:16:25  2.30GB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c echo "TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}"     && pip install /opt/transfer/torch*.whl     && patchelf --set-rpath '/usr/local/lib' /usr/local/lib/python${PYVER}/dist-packages/torch/lib/libtorch_global_deps.so # buildkit
                        
# 2025-05-22 13:16:02  0.00B 设置环境变量 TORCH_ALLOW_TF32_CUBLAS_OVERRIDE
ENV TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
                        
# 2025-05-22 13:16:02  0.00B 设置环境变量 CUDA_HOME
ENV CUDA_HOME=/usr/local/cuda
                        
# 2025-05-22 13:16:02  0.00B 设置环境变量 PYTORCH_HOME
ENV PYTORCH_HOME=/opt/pytorch/pytorch
                        
# 2025-05-22 13:16:02  0.00B 设置环境变量 TORCH_CUDA_ARCH_LIST
ENV TORCH_CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0+PTX
                        
# 2025-05-22 13:16:02  0.00B 设置环境变量 UCC_CL_BASIC_TLS
ENV UCC_CL_BASIC_TLS=^sharp
                        
# 2025-05-22 13:16:02  65.56MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c OPENCV_VERSION=4.10.0 &&     cd / &&     wget -q -O - https://github.com/opencv/opencv/archive/${OPENCV_VERSION}.tar.gz | tar -xzf - &&     cd /opencv-${OPENCV_VERSION} &&     cmake -GNinja -Bbuild -H.           -DWITH_CUDA=OFF -DWITH_1394=OFF           -DPYTHON3_PACKAGES_PATH="/usr/local/lib/python${PYVER}/dist-packages"           -DBUILD_opencv_cudalegacy=OFF -DBUILD_opencv_stitching=OFF -DWITH_IPP=OFF -DWITH_PROTOBUF=OFF &&     cmake --build build --target install &&     cd modules/python/package &&     pip install -v . &&     rm -rf /opencv-${OPENCV_VERSION} # buildkit
                        
# 2025-05-22 13:13:04  0.00B 声明容器运行时监听的端口
EXPOSE map[6006/tcp:{}]
                        
# 2025-05-22 13:13:04  0.00B 声明容器运行时监听的端口
EXPOSE map[8888/tcp:{}]
                        
# 2025-05-22 13:13:04  0.00B 设置环境变量 TENSORBOARD_PORT
ENV TENSORBOARD_PORT=6006
                        
# 2025-05-22 13:13:04  0.00B 设置环境变量 JUPYTER_PORT
ENV JUPYTER_PORT=8888
                        
# 2025-05-22 13:13:04  248.00B 复制新文件或目录到容器中
COPY jupyter_config/settings.jupyterlab-settings /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/ # buildkit
                        
# 2025-05-22 13:13:04  236.00B 复制新文件或目录到容器中
COPY jupyter_config/manager.jupyterlab-settings /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/ # buildkit
                        
# 2025-05-22 13:13:04  519.00B 复制新文件或目录到容器中
COPY jupyter_config/jupyter_notebook_config.py /usr/local/etc/jupyter/ # buildkit
                        
# 2025-05-22 13:13:04  14.34MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install --no-cache-dir /builder/*.whl jupytext black isort  && mkdir -p /root/.jupyter/lab/user-settings/@jupyterlab/completer-extension/  && jupyter lab clean # buildkit
                        
# 2025-05-22 13:12:33  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2025-05-22 13:12:33  27.81KB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c PATCHED_FILE=$(python -c "from tensorboard.plugins.core import core_plugin as _; print(_.__file__)") &&     sed -i 's/^\( *"--bind_all",\)$/\1 default=True,/' "$PATCHED_FILE" &&     test $(grep '^ *"--bind_all", default=True,$' "$PATCHED_FILE" | wc -l) -eq 1 # buildkit
                        
# 2025-05-22 13:12:32  254.20MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c git config --global url."https://github".insteadOf git://github &&     pip install jupyterlab notebook tensorboard     jupyterlab_code_formatter python-hostlist # buildkit
                        
# 2025-05-22 13:12:22  2.21GB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install         numpy         scipy         PyYAML         astunparse         typing_extensions         cffi         spacy         mock         tqdm         librosa         expecttest         hypothesis         xdoctest         pytest         pytest-xdist         pytest-rerunfailures         pytest-shard         pytest-flakefinder         pybind11         Cython         regex         protobuf         six &&     if [[ $TARGETARCH = "amd64" ]] ; then pip install --no-cache-dir mkl mkl-include mkl-devel ;     find /usr/local/lib -maxdepth 1 -type f -regex '.*\/lib\(tbb\|mkl\).*\.so\($\|\.[0-9]*\.[0-9]*\)' -exec rm -v {} + ; fi # buildkit
                        
# 2025-05-22 13:11:46  0.00B 设置环境变量 PIP_DEFAULT_TIMEOUT
ENV PIP_DEFAULT_TIMEOUT=100
                        
# 2025-05-22 13:11:46  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2025-05-22 13:11:46  0.00B 设置环境变量 PYTHONIOENCODING
ENV PYTHONIOENCODING=utf-8
                        
# 2025-05-22 13:11:46  1.47GB 复制新文件或目录到容器中
COPY . . # buildkit
                        
# 2025-05-22 13:11:39  0.00B 设置工作目录为/opt/pytorch
WORKDIR /opt/pytorch
                        
# 2025-05-22 13:11:39  0.00B 设置环境变量 NVPL_LAPACK_MATH_MODE
ENV NVPL_LAPACK_MATH_MODE=PEDANTIC
                        
# 2025-05-22 13:11:39  0.00B 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c if [ $TARGETARCH = "arm64" ]; then cd /opt &&     curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/nvpl_slim_24.04/sbsa/nvpl_slim_24.04.tar" --output nvpl_slim_24.04.tar &&     tar -xf nvpl_slim_24.04.tar &&     cp -r nvpl_slim_24.04/lib/* /usr/local/lib &&     cp -r nvpl_slim_24.04/include/* /usr/local/include &&     rm -rf nvpl_slim_24.04.tar nvpl_slim_24.04 ; fi # buildkit
                        
# 2025-05-22 13:11:39  46.71MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c curl "https://gitlab-master.nvidia.com/api/v4/projects/105799/packages/generic/OpenBLAS/0.3.24-$(uname -m)/OpenBLAS-0.3.24-$(uname -m).tar.gz" --output OpenBLAS.tar.gz &&     tar -xf OpenBLAS.tar.gz -C /usr/local/ &&     rm OpenBLAS.tar.gz # buildkit
                        
# 2025-05-22 13:11:38  76.34MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c pip install pip setuptools &&     pip install cmake # buildkit
                        
# 2025-05-22 13:11:30  291.00B 复制新文件或目录到容器中
COPY constraint.txt /etc/pip/constraint.txt # buildkit
                        
# 2025-05-22 13:11:30  0.00B 设置环境变量 PIP_CONSTRAINT
ENV PIP_CONSTRAINT=/etc/pip/constraint.txt
                        
# 2025-05-22 13:11:30  12.86MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c DEBIAN_FRONTEND=noninteractive apt remove -y --force-yes python3-pip &&    curl -O https://bootstrap.pypa.io/get-pip.py &&     python get-pip.py &&     rm get-pip.py # buildkit
                        
# 2025-05-22 13:11:28  0.00B 设置环境变量 PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION
ENV PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
                        
# 2025-05-22 13:11:28  226.67MB 执行命令并创建新的镜像层
RUN |7 NVIDIA_PYTORCH_VERSION=25.05 PYTORCH_BUILD_VERSION=2.8.0a0+5228986 NVFUSER_BUILD_VERSION=9bf5aca TARGETARCH=amd64 PYVER=3.12 PYVER_MAJMIN=312 L4T=0 /bin/sh -c export PYSFX=`echo "${PYVER}" | cut -c1-1` &&     export DEBIAN_FRONTEND=noninteractive &&     apt-get update &&     apt-get install -y --no-install-recommends         python$PYVER-dev         python$PYSFX         python$PYSFX-dev         python$PYSFX-venv         python-is-python$PYSFX         autoconf         automake         libatlas-base-dev         libgoogle-glog-dev         libbz2-dev         libc-ares2         libre2-dev         libleveldb-dev         liblmdb-dev         libprotobuf-dev         libsnappy-dev         libtool         nasm         protobuf-compiler         pkg-config         unzip         sox         libsndfile1         libpng-dev         libhdf5-dev         gfortran         rapidjson-dev         ninja-build         libedit-dev         build-essential         patchelf     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-05-22 13:11:28  0.00B 定义构建参数
ARG L4T=0
                        
# 2025-05-22 13:11:28  0.00B 设置环境变量 PIP_BREAK_SYSTEM_PACKAGES
ENV PIP_BREAK_SYSTEM_PACKAGES=1
                        
# 2025-05-22 13:11:28  0.00B 定义构建参数
ARG PYVER_MAJMIN=312
                        
# 2025-05-22 13:11:28  0.00B 定义构建参数
ARG PYVER=3.12
                        
# 2025-05-22 13:11:28  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
# 2025-05-22 13:11:28  0.00B 添加元数据标签
LABEL com.nvidia.pytorch.version=2.8.0a0+5228986
                        
# 2025-05-22 13:11:28  0.00B 设置环境变量 NVFUSER_BUILD_VERSION NVFUSER_VERSION
ENV NVFUSER_BUILD_VERSION=9bf5aca NVFUSER_VERSION=9bf5aca
                        
# 2025-05-22 13:11:28  0.00B 设置环境变量 PYTORCH_BUILD_VERSION PYTORCH_VERSION PYTORCH_BUILD_NUMBER NVIDIA_PYTORCH_VERSION
ENV PYTORCH_BUILD_VERSION=2.8.0a0+5228986 PYTORCH_VERSION=2.8.0a0+5228986 PYTORCH_BUILD_NUMBER=0 NVIDIA_PYTORCH_VERSION=25.05
                        
# 2025-05-22 13:11:28  0.00B 定义构建参数
ARG NVFUSER_BUILD_VERSION=9bf5aca
                        
# 2025-05-22 13:11:28  0.00B 定义构建参数
ARG PYTORCH_BUILD_VERSION=2.8.0a0+5228986
                        
# 2025-05-22 13:11:28  0.00B 定义构建参数
ARG NVIDIA_PYTORCH_VERSION=25.05
                        
# 2025-05-22 13:11:28  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=PyTorch
                        
# 2025-05-15 09:01:15  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:
                        
# 2025-05-15 09:01:15  1.02GB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEVEL=1 BASE=0  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUDA.sh  && /nvidia/build-scripts/installLIBS.sh  && if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then /nvidia/build-scripts/installNCCL.sh; fi  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installCUSPARSELT.sh  && if [ -f "/tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch" ]; then patch -p0 < /tmp/cuda-${_CUDA_VERSION_MAJMIN}.patch; fi  && rm -f /tmp/cuda-*.patch # buildkit
                        
# 2025-05-15 08:58:46  1.49KB 复制新文件或目录到容器中
COPY cuda-*.patch /tmp # buildkit
                        
# 2025-05-15 08:58:46  99.02MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         build-essential         git         libglib2.0-0         less         libhwloc15         libnl-route-3-200         libnl-3-dev         libnl-route-3-dev         libnuma-dev         libnuma1         libpmi2-0-dev         nano         numactl         openssh-client         vim         wget  && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-05-15 08:37:55  0.00B 添加元数据标签
LABEL com.nvidia.nccl.version=2.26.5 com.nvidia.cublas.version=12.9.0.13 com.nvidia.cufft.version=11.4.0.6 com.nvidia.curand.version=10.3.10.19 com.nvidia.cusparse.version=12.5.9.5 com.nvidia.cusparselt.version=0.7.1.0 com.nvidia.cusolver.version=11.7.4.40 com.nvidia.npp.version=12.4.0.27 com.nvidia.nvjpeg.version=12.4.0.16 com.nvidia.cublasmp.version=0.4.0.789 com.nvidia.cal.version=0.4.4.50 com.nvidia.cudnn.version=9.10.1.4 com.nvidia.tensorrt.version=10.10.0.31 com.nvidia.tensorrtoss.version= com.nvidia.nsightsystems.version=2025.3.1.90 com.nvidia.nsightcompute.version=2025.2.0.11
                        
# 2025-05-15 08:37:55  7.84GB 执行命令并创建新的镜像层
RUN /bin/sh -c /nvidia/build-scripts/installLIBS.sh  && /nvidia/build-scripts/installCUDNN.sh  && /nvidia/build-scripts/installTRT.sh  && /nvidia/build-scripts/installNSYS.sh  && /nvidia/build-scripts/installNCU.sh  && /nvidia/build-scripts/installCUSPARSELT.sh  && if [ -z "${JETPACK_HOST_MOUNTS}" ]; then       /nvidia/build-scripts/installNCCL.sh;     fi; # buildkit
                        
# 2025-05-15 08:36:58  584.70MB 执行命令并创建新的镜像层
RUN /bin/sh -c /nvidia/build-scripts/installCUDA.sh # buildkit
                        
# 2025-05-15 08:36:49  302.31MB 执行命令并创建新的镜像层
RUN /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         apt-utils         build-essential         libncurses6         libncursesw6         unzip         jq         gnupg         libtcmalloc-minimal4  && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-05-15 08:23:05  467.00B 执行命令并创建新的镜像层
RUN |40 JETPACK_HOST_MOUNTS= GDRCOPY_VERSION=2.4.4 HPCX_VERSION=2.23 RDMACORE_VERSION=50.0 MOFED_VERSION=5.4-rdmacore50.0 OPENUCX_VERSION=1.19.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.38.1 AWS_OFI_NCCL_VERSION=1.14.0 TARGETARCH=amd64 CUDA_VERSION=12.9.0.043 CUDA_DRIVER_VERSION=575.51.03 NCCL_VERSION=2.26.5 CUBLAS_VERSION=12.9.0.13 CUFFT_VERSION=11.4.0.6 CURAND_VERSION=10.3.10.19 CUSPARSE_VERSION=12.5.9.5 CUSOLVER_VERSION=11.7.4.40 NPP_VERSION=12.4.0.27 NVJPEG_VERSION=12.4.0.16 CUFILE_VERSION=1.14.0.30 NVJITLINK_VERSION=12.9.41 CUBLASMP_VERSION=0.4.0.789 CAL_VERSION=0.4.4.50 NVSHMEM_VERSION=3.2.5 CUDNN_VERSION=9.10.1.4 CUDNN_FRONTEND_VERSION=1.11.0 TRT_VERSION=10.10.0.31 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2025.3.1.90 NSIGHT_COMPUTE_VERSION=2025.2.0.11 CUSPARSELT_VERSION=0.7.1.0 DALI_VERSION=1.49.0 DALI_BUILD= DALI_URL_SUFFIX=120 POLYGRAPHY_VERSION=0.49.20 TRANSFORMER_ENGINE_VERSION=2.3 MODEL_OPT_VERSION=0.27.1 CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0 _LIBPATH_SUFFIX= /bin/sh -c mkdir -p /workspace && cp -f -p /opt/nvidia/entrypoint.d/30-container-license.txt /workspace/license.txt # buildkit
                        
# 2025-05-15 08:23:05  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2025-05-15 08:23:05  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2025-05-15 08:23:05  16.23KB 复制新文件或目录到容器中
COPY entrypoint/ /opt/nvidia/ # buildkit
                        
# 2025-05-15 08:23:05  21.81KB 执行命令并创建新的镜像层
RUN |40 JETPACK_HOST_MOUNTS= GDRCOPY_VERSION=2.4.4 HPCX_VERSION=2.23 RDMACORE_VERSION=50.0 MOFED_VERSION=5.4-rdmacore50.0 OPENUCX_VERSION=1.19.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.38.1 AWS_OFI_NCCL_VERSION=1.14.0 TARGETARCH=amd64 CUDA_VERSION=12.9.0.043 CUDA_DRIVER_VERSION=575.51.03 NCCL_VERSION=2.26.5 CUBLAS_VERSION=12.9.0.13 CUFFT_VERSION=11.4.0.6 CURAND_VERSION=10.3.10.19 CUSPARSE_VERSION=12.5.9.5 CUSOLVER_VERSION=11.7.4.40 NPP_VERSION=12.4.0.27 NVJPEG_VERSION=12.4.0.16 CUFILE_VERSION=1.14.0.30 NVJITLINK_VERSION=12.9.41 CUBLASMP_VERSION=0.4.0.789 CAL_VERSION=0.4.4.50 NVSHMEM_VERSION=3.2.5 CUDNN_VERSION=9.10.1.4 CUDNN_FRONTEND_VERSION=1.11.0 TRT_VERSION=10.10.0.31 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2025.3.1.90 NSIGHT_COMPUTE_VERSION=2025.2.0.11 CUSPARSELT_VERSION=0.7.1.0 DALI_VERSION=1.49.0 DALI_BUILD= DALI_URL_SUFFIX=120 POLYGRAPHY_VERSION=0.49.20 TRANSFORMER_ENGINE_VERSION=2.3 MODEL_OPT_VERSION=0.27.1 CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0 _LIBPATH_SUFFIX= /bin/sh -c if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then            echo "/opt/amazon/aws-ofi-nccl/lib" > /etc/ld.so.conf.d/aws-ofi-nccl.conf       && ldconfig;                                                 fi # buildkit
                        
# 2025-05-15 08:23:05  5.13MB 复制新文件或目录到容器中
COPY /opt/amazon/aws-ofi-nccl /opt/amazon/aws-ofi-nccl # buildkit
                        
# 2025-05-15 08:22:44  0.00B 设置环境变量 PATH LD_LIBRARY_PATH NVIDIA_VISIBLE_DEVICES NVIDIA_DRIVER_CAPABILITIES
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/mpi/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
                        
# 2025-05-15 08:22:44  0.00B 定义构建参数
ARG _LIBPATH_SUFFIX=
                        
# 2025-05-15 08:22:44  46.00B 执行命令并创建新的镜像层
RUN |39 JETPACK_HOST_MOUNTS= GDRCOPY_VERSION=2.4.4 HPCX_VERSION=2.23 RDMACORE_VERSION=50.0 MOFED_VERSION=5.4-rdmacore50.0 OPENUCX_VERSION=1.19.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.38.1 AWS_OFI_NCCL_VERSION=1.14.0 TARGETARCH=amd64 CUDA_VERSION=12.9.0.043 CUDA_DRIVER_VERSION=575.51.03 NCCL_VERSION=2.26.5 CUBLAS_VERSION=12.9.0.13 CUFFT_VERSION=11.4.0.6 CURAND_VERSION=10.3.10.19 CUSPARSE_VERSION=12.5.9.5 CUSOLVER_VERSION=11.7.4.40 NPP_VERSION=12.4.0.27 NVJPEG_VERSION=12.4.0.16 CUFILE_VERSION=1.14.0.30 NVJITLINK_VERSION=12.9.41 CUBLASMP_VERSION=0.4.0.789 CAL_VERSION=0.4.4.50 NVSHMEM_VERSION=3.2.5 CUDNN_VERSION=9.10.1.4 CUDNN_FRONTEND_VERSION=1.11.0 TRT_VERSION=10.10.0.31 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2025.3.1.90 NSIGHT_COMPUTE_VERSION=2025.2.0.11 CUSPARSELT_VERSION=0.7.1.0 DALI_VERSION=1.49.0 DALI_BUILD= DALI_URL_SUFFIX=120 POLYGRAPHY_VERSION=0.49.20 TRANSFORMER_ENGINE_VERSION=2.3 MODEL_OPT_VERSION=0.27.1 CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf  && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2025-05-15 08:22:44  13.39KB 复制文件或目录到容器中
ADD docs.tgz / # buildkit
                        
# 2025-05-15 08:22:44  0.00B 设置环境变量 NCCL_VERSION CUBLAS_VERSION CUFFT_VERSION CURAND_VERSION CUSPARSE_VERSION CUSPARSELT_VERSION CUSOLVER_VERSION NPP_VERSION NVJPEG_VERSION CUFILE_VERSION NVJITLINK_VERSION CUBLASMP_VERSION CAL_VERSION NVSHMEM_VERSION CUDNN_VERSION CUDNN_FRONTEND_VERSION TRT_VERSION TRTOSS_VERSION NSIGHT_SYSTEMS_VERSION NSIGHT_COMPUTE_VERSION DALI_VERSION DALI_BUILD DALI_URL_SUFFIX POLYGRAPHY_VERSION TRANSFORMER_ENGINE_VERSION MODEL_OPT_VERSION CUDA_ARCH_LIST
ENV NCCL_VERSION=2.26.5 CUBLAS_VERSION=12.9.0.13 CUFFT_VERSION=11.4.0.6 CURAND_VERSION=10.3.10.19 CUSPARSE_VERSION=12.5.9.5 CUSPARSELT_VERSION=0.7.1.0 CUSOLVER_VERSION=11.7.4.40 NPP_VERSION=12.4.0.27 NVJPEG_VERSION=12.4.0.16 CUFILE_VERSION=1.14.0.30 NVJITLINK_VERSION=12.9.41 CUBLASMP_VERSION=0.4.0.789 CAL_VERSION=0.4.4.50 NVSHMEM_VERSION=3.2.5 CUDNN_VERSION=9.10.1.4 CUDNN_FRONTEND_VERSION=1.11.0 TRT_VERSION=10.10.0.31 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2025.3.1.90 NSIGHT_COMPUTE_VERSION=2025.2.0.11 DALI_VERSION=1.49.0 DALI_BUILD= DALI_URL_SUFFIX=120 POLYGRAPHY_VERSION=0.49.20 TRANSFORMER_ENGINE_VERSION=2.3 MODEL_OPT_VERSION=0.27.1 CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0
                        
# 2025-05-15 08:22:44  0.00B 定义构建参数
ARG NCCL_VERSION=2.26.5 CUBLAS_VERSION=12.9.0.13 CUFFT_VERSION=11.4.0.6 CURAND_VERSION=10.3.10.19 CUSPARSE_VERSION=12.5.9.5 CUSOLVER_VERSION=11.7.4.40 NPP_VERSION=12.4.0.27 NVJPEG_VERSION=12.4.0.16 CUFILE_VERSION=1.14.0.30 NVJITLINK_VERSION=12.9.41 CUBLASMP_VERSION=0.4.0.789 CAL_VERSION=0.4.4.50 NVSHMEM_VERSION=3.2.5 CUDNN_VERSION=9.10.1.4 CUDNN_FRONTEND_VERSION=1.11.0 TRT_VERSION=10.10.0.31 TRTOSS_VERSION= NSIGHT_SYSTEMS_VERSION=2025.3.1.90 NSIGHT_COMPUTE_VERSION=2025.2.0.11 CUSPARSELT_VERSION=0.7.1.0 DALI_VERSION=1.49.0 DALI_BUILD= DALI_URL_SUFFIX=120 POLYGRAPHY_VERSION=0.49.20 TRANSFORMER_ENGINE_VERSION=2.3 MODEL_OPT_VERSION=0.27.1 CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0
                        
# 2025-05-15 08:22:44  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver com.nvidia.cuda.version=9.0
                        
# 2025-05-15 08:22:44  0.00B 设置环境变量 _CUDA_COMPAT_PATH ENV BASH_ENV SHELL NVIDIA_REQUIRE_CUDA
ENV _CUDA_COMPAT_PATH=/usr/local/cuda/compat ENV=/etc/shinit_v2 BASH_ENV=/etc/bash.bashrc SHELL=/bin/bash NVIDIA_REQUIRE_CUDA=cuda>=9.0
                        
# 2025-05-15 08:22:44  68.28KB 执行命令并创建新的镜像层
RUN |12 JETPACK_HOST_MOUNTS= GDRCOPY_VERSION=2.4.4 HPCX_VERSION=2.23 RDMACORE_VERSION=50.0 MOFED_VERSION=5.4-rdmacore50.0 OPENUCX_VERSION=1.19.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.38.1 AWS_OFI_NCCL_VERSION=1.14.0 TARGETARCH=amd64 CUDA_VERSION=12.9.0.043 CUDA_DRIVER_VERSION=575.51.03 /bin/sh -c cp -vprd /nvidia/. /  &&  patch -p0 < /etc/startup_scripts.patch  &&  rm -f /etc/startup_scripts.patch # buildkit
                        
# 2025-05-15 08:22:44  290.43MB 执行命令并创建新的镜像层
RUN |12 JETPACK_HOST_MOUNTS= GDRCOPY_VERSION=2.4.4 HPCX_VERSION=2.23 RDMACORE_VERSION=50.0 MOFED_VERSION=5.4-rdmacore50.0 OPENUCX_VERSION=1.19.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.38.1 AWS_OFI_NCCL_VERSION=1.14.0 TARGETARCH=amd64 CUDA_VERSION=12.9.0.043 CUDA_DRIVER_VERSION=575.51.03 /bin/sh -c BASE=min /nvidia/build-scripts/installCUDA.sh # buildkit
                        
# 2025-05-15 07:04:54  0.00B 设置环境变量 CUDA_VERSION CUDA_DRIVER_VERSION
ENV CUDA_VERSION=12.9.0.043 CUDA_DRIVER_VERSION=575.51.03
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG CUDA_DRIVER_VERSION=575.51.03
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG CUDA_VERSION=12.9.0.043
                        
# 2025-05-15 07:04:54  0.00B 设置环境变量 OMPI_MCA_coll_hcoll_enable
ENV OMPI_MCA_coll_hcoll_enable=0
                        
# 2025-05-15 07:04:54  0.00B 设置环境变量 OPAL_PREFIX PATH
ENV OPAL_PREFIX=/opt/hpcx/ompi PATH=/usr/local/mpi/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin
                        
# 2025-05-15 07:04:54  230.97MB 执行命令并创建新的镜像层
RUN |10 JETPACK_HOST_MOUNTS= GDRCOPY_VERSION=2.4.4 HPCX_VERSION=2.23 RDMACORE_VERSION=50.0 MOFED_VERSION=5.4-rdmacore50.0 OPENUCX_VERSION=1.19.0 OPENMPI_VERSION=4.1.7 EFA_VERSION=1.38.1 AWS_OFI_NCCL_VERSION=1.14.0 TARGETARCH=amd64 /bin/sh -c cd /nvidia  && ( export DEBIAN_FRONTEND=noninteractive        && apt-get update                            && apt-get install -y --no-install-recommends              libibverbs1                                  libibverbs-dev                               librdmacm1                                   librdmacm-dev                                libibumad3                                   libibumad-dev                                ibverbs-utils                                ibverbs-providers                     && rm -rf /var/lib/apt/lists/*               && rm $(dpkg-query -L                                    libibverbs-dev                               librdmacm-dev                                libibumad-dev                            | grep "\(\.so\|\.a\)$")          )                                            && ( cd opt/gdrcopy/                              && dpkg -i libgdrapi_*.deb                   )                                         && ( cp -r opt/hpcx /opt/                                         && cp etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/          && ln -sf /opt/hpcx/ompi /usr/local/mpi                      && ln -sf /opt/hpcx/ucx  /usr/local/ucx                      && sed -i 's/^\(hwloc_base_binding_policy\) = core$/\1 = none/' /opt/hpcx/ompi/etc/openmpi-mca-params.conf         && sed -i 's/^\(btl = self\)$/#\1/'                             /opt/hpcx/ompi/etc/openmpi-mca-params.conf       )                                                         && ( if [ ! -f /etc/ld.so.conf.d/nvidia-tegra.conf ]; then           cd opt/amazon/efa/                                           && dpkg -i libfabric*.deb                                    && rm /opt/amazon/efa/lib/libfabric.a                        && echo "/opt/amazon/efa/lib" > /etc/ld.so.conf.d/efa.conf;         fi                                                         )                                                         && ldconfig # buildkit
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG TARGETARCH=amd64
                        
# 2025-05-15 07:04:54  0.00B 设置环境变量 GDRCOPY_VERSION HPCX_VERSION MOFED_VERSION OPENUCX_VERSION OPENMPI_VERSION RDMACORE_VERSION EFA_VERSION AWS_OFI_NCCL_VERSION
ENV GDRCOPY_VERSION=2.4.4 HPCX_VERSION=2.23 MOFED_VERSION=5.4-rdmacore50.0 OPENUCX_VERSION=1.19.0 OPENMPI_VERSION=4.1.7 RDMACORE_VERSION=50.0 EFA_VERSION=1.38.1 AWS_OFI_NCCL_VERSION=1.14.0
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG AWS_OFI_NCCL_VERSION=1.14.0
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG EFA_VERSION=1.38.1
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG OPENMPI_VERSION=4.1.7
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG OPENUCX_VERSION=1.19.0
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG MOFED_VERSION=5.4-rdmacore50.0
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG RDMACORE_VERSION=50.0
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG HPCX_VERSION=2.23
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG GDRCOPY_VERSION=2.4.4
                        
# 2025-05-15 07:04:54  9.25MB 执行命令并创建新的镜像层
RUN |1 JETPACK_HOST_MOUNTS= /bin/sh -c export DEBIAN_FRONTEND=noninteractive  && apt-get update  && apt-get install -y --no-install-recommends         ca-certificates         curl         patch         wget  && rm -rf /var/lib/apt/lists/*  && echo "hsts=0" > /root/.wgetrc # buildkit
                        
# 2025-05-15 07:04:54  0.00B 执行命令并创建新的镜像层
RUN |1 JETPACK_HOST_MOUNTS= /bin/sh -c if [ -n "${JETPACK_HOST_MOUNTS}" ]; then        echo "/usr/lib/aarch64-linux-gnu/tegra" > /etc/ld.so.conf.d/nvidia-tegra.conf     && echo "/usr/lib/aarch64-linux-gnu/tegra-egl" >> /etc/ld.so.conf.d/nvidia-tegra.conf;     fi # buildkit
                        
# 2025-05-15 07:04:54  0.00B 设置环境变量 NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS
ENV NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
                        
# 2025-05-15 07:04:54  0.00B 定义构建参数
ARG JETPACK_HOST_MOUNTS=
                        
# 2025-04-28 17:44:51  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2025-04-28 17:44:50  78.10MB 
/bin/sh -c #(nop) ADD file:ad85a9d7b0a74c2140bd51d9c4559cca392991e0c95f84cb139347348e5d1f9a in / 
                        
# 2025-04-28 17:44:48  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=24.04
                        
# 2025-04-28 17:44:48  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2025-04-28 17:44:48  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2025-04-28 17:44:48  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:26d284b843da533ebc054429bb264b78f57afbc1527b72d6213bf6078ff56029",
    "RepoTags": [
        "nvcr.io/nvidia/pytorch:25.05-py3",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch:25.05-py3"
    ],
    "RepoDigests": [
        "nvcr.io/nvidia/pytorch@sha256:a0b4dc04f3ca1e539a5c6ea06f79bc45a33d5acd5cbf87dce7910365a924227c",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/nvcr.io/nvidia/pytorch@sha256:333f816367a6a6e062d168adbd71c3745038c249585bbdf18a54af337876ca80"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-05-22T05:31:49.857024867Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "ExposedPorts": {
            "6006/tcp": {},
            "8888/tcp": {}
        },
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/lib/python3.12/dist-packages/torch_tensorrt/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/mpi/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/ucx/bin:/opt/amazon/efa/bin:/opt/tensorrt/bin",
            "NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=",
            "GDRCOPY_VERSION=2.4.4",
            "HPCX_VERSION=2.23",
            "MOFED_VERSION=5.4-rdmacore50.0",
            "OPENUCX_VERSION=1.19.0",
            "OPENMPI_VERSION=4.1.7",
            "RDMACORE_VERSION=50.0",
            "EFA_VERSION=1.38.1",
            "AWS_OFI_NCCL_VERSION=1.14.0",
            "OPAL_PREFIX=/opt/hpcx/ompi",
            "OMPI_MCA_coll_hcoll_enable=0",
            "CUDA_VERSION=12.9.0.043",
            "CUDA_DRIVER_VERSION=575.51.03",
            "_CUDA_COMPAT_PATH=/usr/local/cuda/compat",
            "ENV=/etc/shinit_v2",
            "BASH_ENV=/etc/bash.bashrc",
            "SHELL=/bin/bash",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=9.0",
            "NCCL_VERSION=2.26.5",
            "CUBLAS_VERSION=12.9.0.13",
            "CUFFT_VERSION=11.4.0.6",
            "CURAND_VERSION=10.3.10.19",
            "CUSPARSE_VERSION=12.5.9.5",
            "CUSPARSELT_VERSION=0.7.1.0",
            "CUSOLVER_VERSION=11.7.4.40",
            "NPP_VERSION=12.4.0.27",
            "NVJPEG_VERSION=12.4.0.16",
            "CUFILE_VERSION=1.14.0.30",
            "NVJITLINK_VERSION=12.9.41",
            "CUBLASMP_VERSION=0.4.0.789",
            "CAL_VERSION=0.4.4.50",
            "NVSHMEM_VERSION=3.2.5",
            "CUDNN_VERSION=9.10.1.4",
            "CUDNN_FRONTEND_VERSION=1.11.0",
            "TRT_VERSION=10.10.0.31",
            "TRTOSS_VERSION=",
            "NSIGHT_SYSTEMS_VERSION=2025.3.1.90",
            "NSIGHT_COMPUTE_VERSION=2025.2.0.11",
            "DALI_VERSION=1.49.0",
            "DALI_BUILD=",
            "DALI_URL_SUFFIX=120",
            "POLYGRAPHY_VERSION=0.49.20",
            "TRANSFORMER_ENGINE_VERSION=2.3",
            "MODEL_OPT_VERSION=0.27.1",
            "CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0",
            "LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility,video",
            "NVIDIA_PRODUCT_NAME=PyTorch",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs:",
            "PYTORCH_BUILD_VERSION=2.8.0a0+5228986",
            "PYTORCH_VERSION=2.8.0a0+5228986",
            "PYTORCH_BUILD_NUMBER=0",
            "NVIDIA_PYTORCH_VERSION=25.05",
            "NVFUSER_BUILD_VERSION=9bf5aca",
            "NVFUSER_VERSION=9bf5aca",
            "PIP_BREAK_SYSTEM_PACKAGES=1",
            "PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python",
            "PIP_CONSTRAINT=/etc/pip/constraint.txt",
            "NVPL_LAPACK_MATH_MODE=PEDANTIC",
            "PYTHONIOENCODING=utf-8",
            "LC_ALL=C.UTF-8",
            "PIP_DEFAULT_TIMEOUT=100",
            "JUPYTER_PORT=8888",
            "TENSORBOARD_PORT=6006",
            "UCC_CL_BASIC_TLS=^sharp",
            "TORCH_CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0+PTX",
            "PYTORCH_HOME=/opt/pytorch/pytorch",
            "CUDA_HOME=/usr/local/cuda",
            "TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1",
            "COCOAPI_VERSION=2.0+nv0.8.1",
            "CUDA_MODULE_LOADING=LAZY",
            "TORCH_NCCL_USE_COMM_NONBLOCKING=0",
            "NVIDIA_BUILD_ID=170559088"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.build.id": "170559088",
            "com.nvidia.build.ref": "0f499560921269b0135bf88c85232c1f26bcecfb",
            "com.nvidia.cal.version": "0.4.4.50",
            "com.nvidia.cublas.version": "12.9.0.13",
            "com.nvidia.cublasmp.version": "0.4.0.789",
            "com.nvidia.cuda.version": "9.0",
            "com.nvidia.cudnn.version": "9.10.1.4",
            "com.nvidia.cufft.version": "11.4.0.6",
            "com.nvidia.curand.version": "10.3.10.19",
            "com.nvidia.cusolver.version": "11.7.4.40",
            "com.nvidia.cusparse.version": "12.5.9.5",
            "com.nvidia.cusparselt.version": "0.7.1.0",
            "com.nvidia.nccl.version": "2.26.5",
            "com.nvidia.npp.version": "12.4.0.27",
            "com.nvidia.nsightcompute.version": "2025.2.0.11",
            "com.nvidia.nsightsystems.version": "2025.3.1.90",
            "com.nvidia.nvjpeg.version": "12.4.0.16",
            "com.nvidia.pytorch.version": "2.8.0a0+5228986",
            "com.nvidia.tensorrt.version": "10.10.0.31",
            "com.nvidia.tensorrtoss.version": "",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "24.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 25724368577,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/6a9991a73f4ce685918725f1f75d4e647952c06265150253f761e8df40ffc19f/diff:/var/lib/docker/overlay2/bf7b4b51bd9beb5739d26cd50814c499856b32aca440f8f1bdd85ae81c8be608/diff:/var/lib/docker/overlay2/f009cd3619034237c28ba1ff49cba22827c050032a9f7f474b5e0308ced4ae84/diff:/var/lib/docker/overlay2/ed4f5475d6268e04e205d82b9b0e9048028afd647851e6582d427c7c299ea5c2/diff:/var/lib/docker/overlay2/fa60672b823c27adb5f19d02a1e923eb2c4bc433eba920e3d8fc47cd584476b9/diff:/var/lib/docker/overlay2/ab2104a19815be6b3b70aa38e5f5649033ba18c09693bc2de1771055a29010d0/diff:/var/lib/docker/overlay2/3f2549a4c70997903dac732333d15443b95b5060b600b3bb0e74d0cfa7d0c66b/diff:/var/lib/docker/overlay2/8998abe2a15470e1e85f1a588d278bebadbff6d3db912fbe37d7fba313f2223d/diff:/var/lib/docker/overlay2/b3974e907d4a06e22773820c02b41c90ca416b067a6f4b1fb7316a89ad650978/diff:/var/lib/docker/overlay2/8a3042a1940b5de88c98568aabe1bea508dc16f481331c4779e32752dc7af87f/diff:/var/lib/docker/overlay2/f57c3aca3f55be477c1e1e6a5962b8a0c13ac8c65793f17108b0291f9df65773/diff:/var/lib/docker/overlay2/a95cc8a2225983f6b208045667559279148e9cebd19b77ffd22a4ac665dd3909/diff:/var/lib/docker/overlay2/bfbde68df510f350cb310d326f31e08ce48147ffc1e536f5acf15fa3fe61303a/diff:/var/lib/docker/overlay2/dfe14dd269b3f32b7232347fe057d7211ab6c982aaf946f25d4c01a6d53c52c3/diff:/var/lib/docker/overlay2/0b90adf2c9a8e05d679f4e0e3a92494e0a89cc65bf0b9852f2cd4ea825f854f9/diff:/var/lib/docker/overlay2/2f0df8d0800c11b57d0b420f581f5a572db56753e2e9f9880c3e6b48aa5907a9/diff:/var/lib/docker/overlay2/0f688f8abff3cedd4923f17480502cccd9cb9030bf5e149edc19a3fc014fcf90/diff:/var/lib/docker/overlay2/6a535fcf2a203d67bec93b9bddbcc889011bffe0f356b578143f86200a681e95/diff:/var/lib/docker/overlay2/d2468462c6c4807e2ae60167de78978f9592b6f6435fa8ef45964977cb441b93/diff:/var/lib/docker/overlay2/a5a8dbd8f197e654c2e6079e850c32c90fb61664207bc985b3732c1faff5ee95/diff:/var/lib/docker/overlay2/5382e13bbdc89c890749d835dce31c49e9e44ceca12bb0ed5634012cfaedb625/diff:/var/lib/docker/overlay2/d8571d3ae13f3d63b895a4bce42e96badb0ed2ad8d47bcc0070503fe70e60c9c/diff:/var/lib/docker/overlay2/929fb31b16feed0d08211307e72c0eadabbb29464a4c77fcefdd01d34618dc86/diff:/var/lib/docker/overlay2/37efaf5a87c5401359e7fe32ced8049dbee96bb5f23c51a5527869b687859c83/diff:/var/lib/docker/overlay2/1ed2bc41c85f3d05a3cc728403556e851a23394b1f5f848cece9ca76eefc40d0/diff:/var/lib/docker/overlay2/1334373c2ae3bc7c8bc9b3a493d1ba9c86774498d2c458e0a7c5dd2224ce9156/diff:/var/lib/docker/overlay2/d4707df4a23a6dda2c7441be78a409953ab8a5a217ba6d87abd19e796509e9cc/diff:/var/lib/docker/overlay2/31a1035cc176d48a8dde8f6d3efab703f4d9c2b7c57ace7f183af57b20d57cf5/diff:/var/lib/docker/overlay2/f5b3d5464817b880fa6169938ae8d8995b00b6014f2da2808a27944aa3eb465d/diff:/var/lib/docker/overlay2/435bca893ea63fc55aaeeee302be5005af8810a17b7e4f975b986fa772fbf982/diff:/var/lib/docker/overlay2/aabc1967abb3fae0526d5650a9ae266cfaf961c56ea6f084fec6125407f2ed18/diff:/var/lib/docker/overlay2/fe03084f4a0ddd7e18b7e41afa4323d73b0208eaa03093cc06d0ae4330c60ee0/diff:/var/lib/docker/overlay2/e7c18a4913b725ed346954d40d4939a157eb4ea6e4616e3f465677c17fe7863d/diff:/var/lib/docker/overlay2/01b25be6868c213dcf49aa9050644ee01ef762bc3f52846f9bec9078f05c86e2/diff:/var/lib/docker/overlay2/4a8e8634c7211bde1669c759722748ee88e43154a12ca25d9687591a2f694c48/diff:/var/lib/docker/overlay2/093684b398fde2ed3cd7106e7c7b819b1a2ae04bdc92c85db45e98a731a12e93/diff:/var/lib/docker/overlay2/38f510440d0628da0acd6099ee8a611f9443273a5202db76e07086ab8a998e09/diff:/var/lib/docker/overlay2/92a60eef573e987ec66282772626691a93c04b2898b9bec4b4e167c523dd3e79/diff:/var/lib/docker/overlay2/b754d44f83f06784d7a477bc038763c4ce248f179b490accbef029e5f2de31a1/diff:/var/lib/docker/overlay2/4647c8687ee3580503dce0988258041808fc47a2db0761c62abbcf8319311202/diff:/var/lib/docker/overlay2/4674d87cc9f0d20d8b45cb6ce794616026bce0f7d7a9caf017aab2c4cfff0d92/diff:/var/lib/docker/overlay2/3f58b490229271741b54da78f29629ce798f4869cbe19e4bcba88f2a091c9326/diff:/var/lib/docker/overlay2/6f49a1c90a8c07b4eda59f585a8f49663ff7e48508bb90f0d2fb65576bea76df/diff:/var/lib/docker/overlay2/198bd36aeda7893463acb2b6d7ae8211554c2b7786538f77659b808e8526864e/diff:/var/lib/docker/overlay2/72cecf59869e219900d0d2e9de84fbcd459efcf6003f6c5af0659b81c076934b/diff:/var/lib/docker/overlay2/bdd7ff6e6c5859fcd9640a7cdb598a5861a9c8c22f7d3e0c3edf2310f99f8920/diff:/var/lib/docker/overlay2/77d1f02dd2415d1358da37aad36f0a6177de793ef69447604a4e062da8ebd199/diff:/var/lib/docker/overlay2/9ee9feaaaea8db7780df30d91017ccee95a866e9cadf082aff80e24d3e2d5d84/diff:/var/lib/docker/overlay2/dfa43c9492b4f815a0b29aa780f1af769d02e530b4afd3432d6cd128784e7a06/diff:/var/lib/docker/overlay2/6f519393095b93f3ed9b54b40699ce4d9047780f2bf3222ba036708c7c2304cd/diff:/var/lib/docker/overlay2/1e4cb1357004889cc5370a88b61ef8bcb764e8f23d7c4032df286bbc09e5de4c/diff:/var/lib/docker/overlay2/2a1faf62aaa7f16df38d39981ee6687784b7edb3318a1f735f86daff4270a771/diff:/var/lib/docker/overlay2/57841391b10c26ddaa4c82a88a7826503f4981dae6f1d959b0fa8c16c760f29c/diff:/var/lib/docker/overlay2/d674a20125c1bd9799d353262445ebd8a7635b3fa31379ff9473bbe18159d223/diff:/var/lib/docker/overlay2/7b841247a563a55de24eaedca51eca5c3e41b9aaaca43d488a599eb8f0343efb/diff:/var/lib/docker/overlay2/8d08bb389df9334646e45d040c0c782676350c2d400c8e4a7db54d5698abbe34/diff:/var/lib/docker/overlay2/51be8c73f24bd667116a869cbf31e147d86b1483eeeefebb63977a5baf6ee022/diff:/var/lib/docker/overlay2/758c0692a26f6f0e565ba9020e6590bb5d6db1923eadd35b6e27dc666aba6453/diff:/var/lib/docker/overlay2/f573bf9392e28d9806d03b45e59021a9a7f71e74aab8d9f3bffc812e86c33600/diff:/var/lib/docker/overlay2/661c9a0370b89ac303f885a8a9010b10cca1bb94799d5b81c6e2baffce47d38d/diff:/var/lib/docker/overlay2/8593cb92e97e42aca9a7c4aca66f6c82843d3da9dee3739471e29101ec1b0bce/diff:/var/lib/docker/overlay2/804f0900c22a22c0ab47f8a0a361f520535ca58c85e6793865a1afff531414a9/diff",
            "MergedDir": "/var/lib/docker/overlay2/a7759461f772813b7e54f271292cd0fe8bcd6d060f190eaaf114cfedc0894e13/merged",
            "UpperDir": "/var/lib/docker/overlay2/a7759461f772813b7e54f271292cd0fe8bcd6d060f190eaaf114cfedc0894e13/diff",
            "WorkDir": "/var/lib/docker/overlay2/a7759461f772813b7e54f271292cd0fe8bcd6d060f190eaaf114cfedc0894e13/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:8901a649dd5a9284fa6206a08f3ba3b5a12fddbfd2f82c880e68cdb699d98bfb",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:04d63d8d6192024fb76fe5ff3b4dbbdf1c5525a7e566c0c6d575251ed6974491",
            "sha256:261dd6ce2db8fc09070cb6938667466eb45027384cec2b20c377bd43ccbf8e34",
            "sha256:e70befb623977c7a495f3b4c9bcec5cfb3f492bc1c61139da04be6162910f1cc",
            "sha256:74b431e8e4c1d2cb42d306fd5bc335df86102c95adedf3c60a259ba30aa4c654",
            "sha256:8baae5d0e2f1d4c69af2b6b99ff7642067ade8ab30439538fea88f18f5d951c0",
            "sha256:5be4749445a709a20eebb83a3fac11073c605546bf0ca774bf1a0051c117ce15",
            "sha256:f85fae2533b1caf1a02816393a08637d2e18c85d36925476f71f720b1cf60477",
            "sha256:2376e045cc7955851e3e2aa62f642f986559d537c51d8d4ded8753037ed89e18",
            "sha256:01c6adcd728c958428cd8d65a564a82c0d778202c79d83c0323d6a874a67196b",
            "sha256:5ca4c71f1ccd4a91afee91bb2dcd8f33f8dcb85956f6a3f69656f6932e3f0ed0",
            "sha256:900cb8a04129d56ac6ccd6202b19e323545949bd5b55c00afdea676fc9e78ae9",
            "sha256:c6edfce02c7a42fd0a54662058c594133afeaf3cfd89637cdd7a952506fb0738",
            "sha256:de6941693e07fc917fcb13cc5e48412f7d92a59cd6e51c8e3fd027b4d71273c4",
            "sha256:911e6a49a72cff1b24ad9b5d9df99b6faaf1350a9e516749c0a60651b0f196ce",
            "sha256:35171b6926ca4cb8c518221dd3880a470c2e1e1d3ae40aa6baf81943b3a5358a",
            "sha256:78f080159b4adbc9676ae0e3b6077c9f190040acbb9a7dcfbae7518ed4482b8c",
            "sha256:b28f95233b842311311c394d9ab863f70d7987a212e6b0a6a0b2977e2787681c",
            "sha256:3da001ca56dff14e7c914e34d64a6265cead922b9ff0a5bcd0bdbac6040508d7",
            "sha256:2c08a2d0200ce83cfa39dbeb605268df2b9a2454e906aad6cd708e491f4d56d8",
            "sha256:208aadc4575ae180bb2a91c54a9e5b3f06f0063f1e02619b6ea338cc4df4ac8c",
            "sha256:36cb7a07c547fee091c09d71909aa8a46c264b4bc2fa46cf62dcbe51aa4a44f3",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:21f968b1612099b96b7e5c9cd3c7c6b479107995a18c2dd44c8ad2e189dfccdb",
            "sha256:35ea4b6da7e5f8153022e4d153f4b77ae555212a9255828dafa20367bc999a59",
            "sha256:d438d6c51da4fa40b64aa75474a0a65566eea1f5be6b01be8110345181fb931b",
            "sha256:0964de763a1662f45f68c8ab8f6b8a2dc7b68f7feadf086f3010522ea05793db",
            "sha256:505aba1b4d9a6ff3b3eede7efcbab630dd71597e7982375aae900f2c422c72ae",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:ea2244fe92613e41b532c539ef6ebe8b393c915a53f6e332d6d33616b9535335",
            "sha256:b2fff2e7b4b115a28ffa27230ba84d7de828a0c58bf818795864d6243d94d376",
            "sha256:04f6ee2723d0f4423fbf1f756260a1a423ec506a44114cd75738fd887f6e7116",
            "sha256:ddc83412e930190b4a230d56de596ddb5441861c1ae96ec08796bb7c3e66aeb5",
            "sha256:76ac4406db4bac7e1e2799895e0424aa7dcbff3cf54b7f30547dd92141635685",
            "sha256:20c73c473d51c69bd01cf2c263b5125906d59f7014b68fd2a0573430ae2f8f66",
            "sha256:308894e7b531bb0bdc6cc3fff3fc8ffec07d6239cd379b3e4cb057f6318651be",
            "sha256:01501a4a323dd9cdee01ed3a8b271038e30d737349a4db524f22218fa3571f92",
            "sha256:3f2c36a64995c3ffe7114c01e45dc18c79e7e61bbc9c4a2fe9dca4609e605580",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:1ac1fe4b92eafb0d6600b32afb7edac3074321d1d51e093c4ab80610748fe969",
            "sha256:f71deeb7bc0262ef02a41f4d2cdd16ada732b8d21c246aab5194253b9bb77982",
            "sha256:02823391c6f2765c5cb8923d7906403fb785371ea1a88ab1846cfac9c84c8ad1",
            "sha256:b5b74bee31b360f36e9d91eef6b39db2daea2a5316cb86683293cf762ffe7b28",
            "sha256:cde6b0bb6a5ea73c3d7e4a8f02d124ef8287e1f30e774dcc64a0b53b4cf2a278",
            "sha256:fa856baf48ec3f54a5b885fa6c93179c6f07bc579573ed8011e546832299296a",
            "sha256:cd4629d6f9b6e5390bc1ac3694992d251715c1c0c226ca0f0863f92ad2f92f90",
            "sha256:b0219599cf21a6d722a1356e70f2348f12e243e68774d989b5e2b5d1315c7a6f",
            "sha256:ab9fbb5e65464cf7d49ab8d49f48d279211834b57d46d7b4dd7a159ee4604105",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:f236698abb3cc9bffe51be66c7c732e64eb9a39081b34c1cd2cd594787ffb26b",
            "sha256:fa70e56435fce3ecb1d7477458ab3fbfa486a9e13a02bfdf6c08c9706e7bbbc2",
            "sha256:84681501eb657332f22ee8f24a5b4c71f37281ca402b59d16bcb6ff346278a3c",
            "sha256:c707bc6c76b07ce052ebcca81ccd91a5d848c11c0b5b11cf775e6c116038f5f8",
            "sha256:dd03414824e9b78a9d8753ba91fa7140120ba655ea4be107ec3217299ee44701",
            "sha256:d9d889137cf697b86e26862c364e5bc919e8cb9d54f83500adbd2d81ee0e4fe9",
            "sha256:5768890284e776c6e92973dafd09f2254b772bb49787c4435c3e8b547fb5190b",
            "sha256:069bf6227773191ceb2366792a72ce0b2d2b1282e7647fc7b76f8ad21d65f006",
            "sha256:86f5df45e7fba478ca1a40002af0c650fa88670a46edd92837223e2d58138cfa",
            "sha256:10734e53413c6c621cfe7aef64cbbd50aafca7a87d79e69b2c9c51d2943cf056",
            "sha256:4d0fc38f7c0d004ab5dab3294ad69106c8cf9aaee7b8849953a43e7abe9aa002",
            "sha256:73e8d83c6b673865a58d6a9318817bcff2212dc3a52dea4321edc1fd9f25cb0a",
            "sha256:c7ade3d062a433850d6c4fb358e0aa909a1bdd1695cd0f82d793e8544b6302b1"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-06-04T08:49:17.332276606+08:00"
    }
}

更多版本

docker.io/nvcr.io/nvidia/pytorch:24.01-py3

linux/amd64 docker.io22.02GB2024-09-20 00:38
1031

docker.io/nvcr.io/nvidia/pytorch:22.12-py3

linux/amd64 docker.io18.27GB2024-10-17 00:56
618

docker.io/nvcr.io/nvidia/pytorch:23.04-py3

linux/amd64 docker.io20.38GB2024-10-18 01:26
531

docker.io/nvcr.io/nvidia/pytorch:24.06-py3

linux/amd64 docker.io19.15GB2024-10-22 00:29
624

docker.io/nvcr.io/nvidia/pytorch:21.11-py3

linux/amd64 docker.io14.47GB2024-10-22 10:38
560

docker.io/nvcr.io/nvidia/pytorch:24.07-py3

linux/amd64 docker.io20.19GB2025-01-09 00:29
700

docker.io/nvcr.io/nvidia/pytorch:24.02-py3

linux/amd64 docker.io22.21GB2025-02-23 20:44
973

docker.io/nvcr.io/nvidia/pytorch:24.05-py3

linux/amd64 docker.io18.78GB2025-03-18 01:37
250

docker.io/nvcr.io/nvidia/pytorch:24.11-py3

linux/amd64 docker.io21.77GB2025-04-04 03:43
219

docker.io/nvcr.io/nvidia/pytorch:24.10-py3

linux/amd64 docker.io21.03GB2025-04-04 03:50
194

docker.io/nvcr.io/nvidia/pytorch:24.12-py3

linux/amd64 docker.io21.66GB2025-04-11 02:13
351

docker.io/nvcr.io/nvidia/pytorch:25.04-py3

linux/amd64 docker.io24.66GB2025-05-23 01:14
131

docker.io/nvcr.io/nvidia/pytorch:23.09-py3

linux/amd64 docker.io22.01GB2025-05-29 03:30
39

docker.io/nvcr.io/nvidia/pytorch:25.04-py3

linux/arm64 docker.io22.42GB2025-06-04 07:57
34

docker.io/nvcr.io/nvidia/pytorch:25.05-py3

linux/amd64 docker.io25.72GB2025-06-04 09:16
28