PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
NVARCH=x86_64
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NV_CUDA_CUDART_VERSION=12.1.105-1
NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
CUDA_VERSION=12.1.1
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NV_CUDA_LIB_VERSION=12.1.1-1
NV_NVTX_VERSION=12.1.105-1
NV_LIBNPP_VERSION=12.1.0.40-1
NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
NV_LIBCUSPARSE_VERSION=12.1.0.106-1
NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
NV_LIBCUBLAS_VERSION=12.1.3.1-1
NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
NV_LIBNCCL_PACKAGE_NAME=libnccl2
NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
NCCL_VERSION=2.17.1-1
NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
NVIDIA_PRODUCT_NAME=CUDA
NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
NV_NVML_DEV_VERSION=12.1.105-1
NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
NV_LIBNPP_DEV_VERSION=12.1.0.40-1
NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
NV_NVPROF_VERSION=12.1.105-1
NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
LIBRARY_PATH=/usr/local/cuda/lib64/stubs
NV_CUDNN_VERSION=8.9.0.131
NV_CUDNN_PACKAGE_NAME=libcudnn8
NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1
TZ=America/Los_Angeles
LC_ALL=C.UTF-8
LANG=C.UTF-8
HOME=/home/ray
镜像构建历史
# 2024-06-26 05:02:30 4.24KB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.31.0-cp310-cp310-manylinux2014_x86_64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip freeze > /home/ray/pip-freeze.txt # buildkit
# 2024-06-26 05:02:29 864.59MB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.31.0-cp310-cp310-manylinux2014_x86_64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip --no-cache-dir install -c $CONSTRAINTS_FILE `basename $WHEEL_PATH`[all] --find-links $FIND_LINKS_PATH && sudo rm `basename $WHEEL_PATH` # buildkit
# 2024-06-26 05:01:33 93.87MB 复制新文件或目录到容器中
COPY .whl .whl # buildkit
# 2024-06-26 05:01:32 66.21MB 复制新文件或目录到容器中
COPY .whl/ray-2.31.0-cp310-cp310-manylinux2014_x86_64.whl . # buildkit
# 2024-06-26 05:01:32 59.91KB 复制新文件或目录到容器中
COPY requirements_compiled.txt ./ # buildkit
# 2024-06-26 05:01:32 0.00B 定义构建参数
ARG CONSTRAINTS_FILE=requirements_compiled.txt
# 2024-06-26 05:01:32 0.00B 定义构建参数
ARG FIND_LINKS_PATH=.whl
# 2024-06-26 05:01:32 0.00B 定义构建参数
ARG WHEEL_PATH
# 2024-06-24 22:35:52 0.00B 设置工作目录为/home/ray
WORKDIR /home/ray
# 2024-06-24 22:35:52 1.22GB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=nvidia/cuda:12.1.1-cudnn8-devel-ubuntu20.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.10 HOSTTYPE=x86_64 RAY_UID=1000 RAY_GID=100 /bin/bash -c sudo apt-get update -y && sudo apt-get upgrade -y && sudo apt-get install -y git libjemalloc-dev wget cmake g++ zlib1g-dev $(if [ "$AUTOSCALER" = "autoscaler" ]; then echo tmux screen rsync netbase openssh-client gnupg; fi) && wget --quiet "https://repo.anaconda.com/miniconda/Miniconda3-py311_24.4.0-0-Linux-${HOSTTYPE}.sh" -O /tmp/miniconda.sh && /bin/bash /tmp/miniconda.sh -b -u -p $HOME/anaconda3 && $HOME/anaconda3/bin/conda init && echo 'export PATH=$HOME/anaconda3/bin:$PATH' >> /home/ray/.bashrc && rm /tmp/miniconda.sh && $HOME/anaconda3/bin/conda install -y libgcc-ng python=$PYTHON_VERSION && $HOME/anaconda3/bin/conda install -y -c conda-forge libffi=3.4.2 && $HOME/anaconda3/bin/conda clean -y --all && $HOME/anaconda3/bin/pip install --no-cache-dir flatbuffers cython==0.29.37 numpy\>=1.20 psutil && $HOME/anaconda3/bin/pip uninstall -y dask && sudo apt-get autoremove -y cmake zlib1g-dev $(if [[ "$BASE_IMAGE" == "ubuntu:22.04" && "$HOSTTYPE" == "x86_64" ]]; then echo g++; fi) && sudo rm -rf /var/lib/apt/lists/* && sudo apt-get clean && (if [ "$AUTOSCALER" = "autoscaler" ]; then $HOME/anaconda3/bin/pip --no-cache-dir install "redis>=3.5.0,<4.0.0" "six==1.13.0" "boto3==1.26.76" "pyOpenSSL==22.1.0" "cryptography==38.0.1" "google-api-python-client==1.7.8" "google-oauth" "azure-cli-core==2.40.0" "azure-identity==1.10.0" "azure-mgmt-compute==23.1.0" "azure-mgmt-network==19.0.0" "azure-mgmt-resource==20.0.0" "msrestazure==0.6.4"; fi;) # buildkit
# 2024-06-24 22:34:25 0.00B
SHELL [/bin/bash -c]
# 2024-06-24 22:34:25 0.00B 设置环境变量 HOME
ENV HOME=/home/ray
# 2024-06-24 22:34:25 0.00B 指定运行容器时使用的用户
USER 1000
# 2024-06-24 22:34:25 6.53MB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=nvidia/cuda:12.1.1-cudnn8-devel-ubuntu20.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.10 HOSTTYPE=x86_64 RAY_UID=1000 RAY_GID=100 /bin/sh -c apt-get update -y && apt-get install -y sudo tzdata && useradd -ms /bin/bash -d /home/ray ray --uid $RAY_UID --gid $RAY_GID && usermod -aG sudo ray && echo 'ray ALL=NOPASSWD: ALL' >> /etc/sudoers && rm -rf /var/lib/apt/lists/* && apt-get clean # buildkit
# 2024-06-24 22:34:25 0.00B 定义构建参数
ARG RAY_GID=100
# 2024-06-24 22:34:25 0.00B 定义构建参数
ARG RAY_UID=1000
# 2024-06-24 22:34:25 0.00B 定义构建参数
ARG HOSTTYPE=x86_64
# 2024-06-24 22:34:25 0.00B 定义构建参数
ARG PYTHON_VERSION=3.8.16
# 2024-06-24 22:34:25 0.00B 定义构建参数
ARG DEBIAN_FRONTEND=noninteractive
# 2024-06-24 22:34:25 0.00B 设置环境变量 PATH
ENV PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2024-06-24 22:34:25 0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
# 2024-06-24 22:34:25 0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
# 2024-06-24 22:34:25 0.00B 设置环境变量 TZ
ENV TZ=America/Los_Angeles
# 2024-06-24 22:34:25 0.00B 定义构建参数
ARG AUTOSCALER=autoscaler
# 2024-06-24 22:34:25 0.00B 定义构建参数
ARG BASE_IMAGE
# 2023-11-10 13:52:20 2.45GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends ${NV_CUDNN_PACKAGE} ${NV_CUDNN_PACKAGE_DEV} && apt-mark hold ${NV_CUDNN_PACKAGE_NAME} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:52:20 0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.0.131
# 2023-11-10 13:52:20 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:52:20 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:52:20 0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1
# 2023-11-10 13:52:20 0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
# 2023-11-10 13:52:20 0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
# 2023-11-10 13:52:20 0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.0.131
# 2023-11-10 13:25:45 0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
# 2023-11-10 13:25:45 379.49KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
# 2023-11-10 13:25:42 4.77GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends libtinfo5 libncursesw5 cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION} cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION} cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION} cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION} cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION} ${NV_NVPROF_DEV_PACKAGE} ${NV_LIBNPP_DEV_PACKAGE} libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION} ${NV_LIBCUBLAS_DEV_PACKAGE} ${NV_LIBNCCL_DEV_PACKAGE} ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:25:42 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:25:42 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
# 2023-11-10 13:25:42 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
# 2023-11-10 13:14:24 0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
# 2023-11-10 13:14:24 0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
# 2023-11-10 13:14:24 2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
# 2023-11-10 13:14:24 3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
# 2023-11-10 13:14:24 259.50KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
# 2023-11-10 13:14:23 2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-libraries-12-1=${NV_CUDA_LIB_VERSION} ${NV_LIBNPP_PACKAGE} cuda-nvtx-12-1=${NV_NVTX_VERSION} libcusparse-12-1=${NV_LIBCUSPARSE_VERSION} ${NV_LIBCUBLAS_PACKAGE} ${NV_LIBNCCL_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:14:23 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:14:23 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
# 2023-11-10 13:14:23 0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
# 2023-11-10 13:14:23 0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
# 2023-11-10 13:07:30 0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# 2023-11-10 13:07:30 0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
# 2023-11-10 13:07:30 17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
# 2023-11-10 13:07:29 0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
# 2023-11-10 13:07:29 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2023-11-10 13:07:29 46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
# 2023-11-10 13:07:29 149.60MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION} ${NV_CUDA_COMPAT_PACKAGE} && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:07:08 0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
# 2023-11-10 13:07:08 18.32MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends gnupg2 curl ca-certificates && curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - && echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list && apt-get purge --autoremove -y curl && rm -rf /var/lib/apt/lists/* # buildkit
# 2023-11-10 13:07:08 0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
# 2023-11-10 13:07:08 0.00B 定义构建参数
ARG TARGETARCH
# 2023-11-10 13:07:08 0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
# 2023-11-10 13:07:08 0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
# 2023-11-10 13:07:08 0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
# 2023-11-10 13:07:08 0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
# 2023-10-03 18:45:52 0.00B
/bin/sh -c #(nop) CMD ["/bin/bash"]
# 2023-10-03 18:45:51 72.79MB
/bin/sh -c #(nop) ADD file:4809da414c2d478b4d991cbdaa2df457f2b3d07d0ff6cf673f09a66f90833e81 in /
# 2023-10-03 18:45:50 0.00B
/bin/sh -c #(nop) LABEL org.opencontainers.image.version=20.04
# 2023-10-03 18:45:50 0.00B
/bin/sh -c #(nop) LABEL org.opencontainers.image.ref.name=ubuntu
# 2023-10-03 18:45:50 0.00B
/bin/sh -c #(nop) ARG LAUNCHPAD_BUILD_ARCH
# 2023-10-03 18:45:50 0.00B
/bin/sh -c #(nop) ARG RELEASE
镜像信息
{
"Id": "sha256:dd4d581da9190f99e676d519c1b337a9b572bc7faa800519f1951fb225c17d5b",
"RepoTags": [
"rayproject/ray:2.31.0-py310-cu121",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121"
],
"RepoDigests": [
"rayproject/ray@sha256:7d4c2f4940d8bb0cca92d18b1b3d10d34f8caa64e67417983065d50535825495",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray@sha256:7d4c2f4940d8bb0cca92d18b1b3d10d34f8caa64e67417983065d50535825495"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2024-06-25T21:02:30.133261766Z",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "1000",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"NVARCH=x86_64",
"NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
"NV_CUDA_CUDART_VERSION=12.1.105-1",
"NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
"CUDA_VERSION=12.1.1",
"LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
"NVIDIA_VISIBLE_DEVICES=all",
"NVIDIA_DRIVER_CAPABILITIES=compute,utility",
"NV_CUDA_LIB_VERSION=12.1.1-1",
"NV_NVTX_VERSION=12.1.105-1",
"NV_LIBNPP_VERSION=12.1.0.40-1",
"NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
"NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
"NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
"NV_LIBCUBLAS_VERSION=12.1.3.1-1",
"NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
"NV_LIBNCCL_PACKAGE_NAME=libnccl2",
"NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
"NCCL_VERSION=2.17.1-1",
"NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
"NVIDIA_PRODUCT_NAME=CUDA",
"NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
"NV_NVML_DEV_VERSION=12.1.105-1",
"NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
"NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
"NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
"NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
"NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
"NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
"NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
"NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
"NV_NVPROF_VERSION=12.1.105-1",
"NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
"NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
"NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
"NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
"LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
"NV_CUDNN_VERSION=8.9.0.131",
"NV_CUDNN_PACKAGE_NAME=libcudnn8",
"NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1",
"NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1",
"TZ=America/Los_Angeles",
"LC_ALL=C.UTF-8",
"LANG=C.UTF-8",
"HOME=/home/ray"
],
"Cmd": null,
"Image": "",
"Volumes": null,
"WorkingDir": "/home/ray",
"Entrypoint": [
"/opt/nvidia/nvidia_entrypoint.sh"
],
"OnBuild": null,
"Labels": {
"com.nvidia.cudnn.version": "8.9.0.131",
"maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
"org.opencontainers.image.ref.name": "ubuntu",
"org.opencontainers.image.version": "20.04"
},
"Shell": [
"/bin/bash",
"-c"
]
},
"Architecture": "amd64",
"Os": "linux",
"Size": 11727692487,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/be4133cf143da03493307600be5271746eb93935583cdef8fab831b2a344534c/diff:/var/lib/docker/overlay2/421ce123c30ba9b20134c55e5eac937942079bd9fc40cfa5e5e23fccdb2f3310/diff:/var/lib/docker/overlay2/e2d26cdf7c13e57efe3deb2a9731d83949f41a622fbbbec85c56cb8ccca01531/diff:/var/lib/docker/overlay2/a3e461854c2ee404f69dd923f6b759b7eb9dd5d5ee69bd79bad7588b23402c57/diff:/var/lib/docker/overlay2/a366671cca53c2ac83f70709a41a3be67adf8b539f9d7b61f812279722b8bc51/diff:/var/lib/docker/overlay2/eb87fbd35868f5cf85e98c5e0a0e58d8ddbe51648aba8acde0ffeebc09c7a0e7/diff:/var/lib/docker/overlay2/3652e7ea6ed9cd0f22c79289904ddb314fd7be8731f65caa0f25ffb8c9735e03/diff:/var/lib/docker/overlay2/bbcc98e594c744e628cc12b742a4953bec074169843a2ceae37cacb5b169723b/diff:/var/lib/docker/overlay2/1f7f8a090242b747f23d02283900475beae9dd1c809f4e181194ecdcdb2802fc/diff:/var/lib/docker/overlay2/cd3638ea82fd7b809b3dc7fd235a507db8a487b4c41f5005d95214c22cfa8f49/diff:/var/lib/docker/overlay2/53c6aa5828a722f78598a914c64e2f12b90c5375be2ce0391a80be90f82e9f5a/diff:/var/lib/docker/overlay2/54e915e35370cddc0c55985dd64195702f40d2b6ea3c91da6b05044702a20472/diff:/var/lib/docker/overlay2/eefa95eb3229cd598ade33bafc2429dfa80787541ea0814feb9d3188ee61c630/diff:/var/lib/docker/overlay2/1ead4d703df77e2ac9eb7767ec1d1d6e7e107e7503fd18757cd71b30b27504c8/diff:/var/lib/docker/overlay2/17e13e632419f12aafa5ba9596227371a9f7c9755a203dd66133232bd8b7b13f/diff:/var/lib/docker/overlay2/26c07cfa999e97a71b8603b38318a73493c4683af21f76b1fdc82290b5036daa/diff:/var/lib/docker/overlay2/4b2c1fa1c7dab4f9379e2732da9166be9a55b345add155260c65d1d4d8f2614b/diff:/var/lib/docker/overlay2/8e19e86959e9acd36d0662db021c866d6a3f7d0a27bc0fba185601286770ee45/diff:/var/lib/docker/overlay2/5408abd3ec726f4d055e10fddd8f488a8839c8a355fe1fb064cdc9fee660e07b/diff",
"MergedDir": "/var/lib/docker/overlay2/870b1e5a7a3d5cf9c34c79608bc291a882fb5537ecbf4dcbcbea7d0b28cb4a1f/merged",
"UpperDir": "/var/lib/docker/overlay2/870b1e5a7a3d5cf9c34c79608bc291a882fb5537ecbf4dcbcbea7d0b28cb4a1f/diff",
"WorkDir": "/var/lib/docker/overlay2/870b1e5a7a3d5cf9c34c79608bc291a882fb5537ecbf4dcbcbea7d0b28cb4a1f/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:6c3e7df31590f02f10cb71fc4eb27653e9b428df2e6e5421a455b062bd2e39f9",
"sha256:5c0359201b8f5316a9c120cc074c134e6294e6351b6ba4384a843006f6716dd0",
"sha256:f620bf47e83df6cb9d61bf1728402f88549bca976b3047f9cb69d03be03dc21b",
"sha256:8d78458ccbe218dba1de0b340767e15e4693d7041f6407b69b82caed09c08e0b",
"sha256:9dbd6d766fae94f829384e71cf3ff5fedfea9f448d4069d0ce87f3d544d19ecc",
"sha256:379cd604fb89fd203f52b15d2f09fb14f70fc08cbe9655154a4f478ab72c5d93",
"sha256:82adc44e81b3913c7215be048da7cae287149aba6fdcaf08065662a15d8b4e85",
"sha256:cca411d699bf4af0a4bc8f047be6f79365f026d1458f74be6a9b2d80de2514de",
"sha256:226146661e721e03f1d7fc62bbc58adf2e8185f06c3b794624b6f5efefc28b9c",
"sha256:0e5e6a7b15e48919ddbaf00ab643e058050d95a02f4e2f0fc84b8a1a0f56e552",
"sha256:ad6bf06f23c6a368ade44418b3fa62a77964c45a9df1a0533434ec5ea1670a65",
"sha256:3f2f263da0ed97f11f383e9b75db8a060c158e413aabf96ebd2a385c306b8420",
"sha256:8e659db93cee8dd7e5fe0a0e0b3784b4d24ceeb7c36db5445b60dc1b9459aa10",
"sha256:da6a6a430ce5c4b5e8ced79d62ecb50afec41dd165315f2c128cd38b919231d1",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:209dc99dd7b3fcbcd4288aa6bc7cbbc2587a6330ae139e4d9b3e86c4fff8cc0b",
"sha256:983fbf5c8d7feccb004c1e0c466e100f26d72af59c2daa13ec338cfd90ada500",
"sha256:505f28f340de052d651ee1be8a036eacae566e9b15a44db57d7479693945f385",
"sha256:63a0e807de17524e6631f2b3d2b9a9bba9d11a8e9985e776b4356110ffc1e3b1",
"sha256:13bc71a59828260ee0ec72ae1cde1a9675e258562d5cd0ccda1425e7015e3634"
]
},
"Metadata": {
"LastTagTime": "2025-02-22T01:05:45.475193831+08:00"
}
}