docker.io/rayproject/ray:2.31.0-py310-cu121 linux/amd64

docker.io/rayproject/ray:2.31.0-py310-cu121 - 国内下载镜像源 浏览次数:10
_rayproject/ray_ RAY 是一个基于 Python 的高性能计算框架,可以在多种环境中运行,包括本地、云和集群。Ray 提供了高效的并行计算能力,并且可以与其他库和框架集成。 -Ray 的主要特点有: * 高性能:Ray 使用了高性能的编译器和执行引擎,可以在多种环境中运行。 * 可扩展性:Ray 可以轻松地 scales to thousands of machines and can handle large-scale computations. * 可组合性:Ray 可以与其他库和框架集成,例如 TensorFlow、PyTorch 和 scikit-learn。 总的来说,《RAY》是一个功能强大且灵活的计算框架,可以满足各种计算需求。
源镜像 docker.io/rayproject/ray:2.31.0-py310-cu121
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121
镜像ID sha256:dd4d581da9190f99e676d519c1b337a9b572bc7faa800519f1951fb225c17d5b
镜像TAG 2.31.0-py310-cu121
大小 11.73GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /home/ray
OS/平台 linux/amd64
浏览量 10 次
贡献者
镜像创建 2024-06-25T21:02:30.133261766Z
同步时间 2025-02-22 01:07
更新时间 2025-02-22 22:09
环境变量
PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.105-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.1 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.1-1 NV_NVTX_VERSION=12.1.105-1 NV_LIBNPP_VERSION=12.1.0.40-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 NV_LIBCUSPARSE_VERSION=12.1.0.106-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.3.1-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=12.1.105-1 NV_NVML_DEV_VERSION=12.1.105-1 NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1 NV_LIBNPP_DEV_VERSION=12.1.0.40-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1 NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1 NV_NVPROF_VERSION=12.1.105-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.9.0.131 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1 TZ=America/Los_Angeles LC_ALL=C.UTF-8 LANG=C.UTF-8 HOME=/home/ray
镜像标签
8.9.0.131: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 20.04: org.opencontainers.image.version
镜像安全扫描 查看Trivy扫描报告

系统OS: ubuntu 20.04 扫描引擎: Trivy 扫描时间: 2025-02-22 01:11

低危漏洞:137 中危漏洞:1530 高危漏洞:41 严重漏洞:2

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121  docker.io/rayproject/ray:2.31.0-py310-cu121

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121  docker.io/rayproject/ray:2.31.0-py310-cu121

Shell快速替换命令

sed -i 's#rayproject/ray:2.31.0-py310-cu121#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121  docker.io/rayproject/ray:2.31.0-py310-cu121'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121  docker.io/rayproject/ray:2.31.0-py310-cu121'

镜像构建历史


# 2024-06-26 05:02:30  4.24KB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.31.0-cp310-cp310-manylinux2014_x86_64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip freeze > /home/ray/pip-freeze.txt # buildkit
                        
# 2024-06-26 05:02:29  864.59MB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.31.0-cp310-cp310-manylinux2014_x86_64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip --no-cache-dir install -c $CONSTRAINTS_FILE     `basename $WHEEL_PATH`[all]     --find-links $FIND_LINKS_PATH && sudo rm `basename $WHEEL_PATH` # buildkit
                        
# 2024-06-26 05:01:33  93.87MB 复制新文件或目录到容器中
COPY .whl .whl # buildkit
                        
# 2024-06-26 05:01:32  66.21MB 复制新文件或目录到容器中
COPY .whl/ray-2.31.0-cp310-cp310-manylinux2014_x86_64.whl . # buildkit
                        
# 2024-06-26 05:01:32  59.91KB 复制新文件或目录到容器中
COPY requirements_compiled.txt ./ # buildkit
                        
# 2024-06-26 05:01:32  0.00B 定义构建参数
ARG CONSTRAINTS_FILE=requirements_compiled.txt
                        
# 2024-06-26 05:01:32  0.00B 定义构建参数
ARG FIND_LINKS_PATH=.whl
                        
# 2024-06-26 05:01:32  0.00B 定义构建参数
ARG WHEEL_PATH
                        
# 2024-06-24 22:35:52  0.00B 设置工作目录为/home/ray
WORKDIR /home/ray
                        
# 2024-06-24 22:35:52  1.22GB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=nvidia/cuda:12.1.1-cudnn8-devel-ubuntu20.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.10 HOSTTYPE=x86_64 RAY_UID=1000 RAY_GID=100 /bin/bash -c sudo apt-get update -y && sudo apt-get upgrade -y     && sudo apt-get install -y         git         libjemalloc-dev         wget         cmake         g++         zlib1g-dev         $(if [ "$AUTOSCALER" = "autoscaler" ]; then echo         tmux         screen         rsync         netbase         openssh-client         gnupg; fi)     && wget --quiet         "https://repo.anaconda.com/miniconda/Miniconda3-py311_24.4.0-0-Linux-${HOSTTYPE}.sh"         -O /tmp/miniconda.sh     && /bin/bash /tmp/miniconda.sh -b -u -p $HOME/anaconda3     && $HOME/anaconda3/bin/conda init     && echo 'export PATH=$HOME/anaconda3/bin:$PATH' >> /home/ray/.bashrc     && rm /tmp/miniconda.sh      && $HOME/anaconda3/bin/conda install -y libgcc-ng python=$PYTHON_VERSION     && $HOME/anaconda3/bin/conda install -y -c conda-forge libffi=3.4.2     && $HOME/anaconda3/bin/conda clean -y --all     && $HOME/anaconda3/bin/pip install --no-cache-dir         flatbuffers         cython==0.29.37         numpy\>=1.20         psutil     && $HOME/anaconda3/bin/pip uninstall -y dask     && sudo apt-get autoremove -y cmake zlib1g-dev         $(if [[ "$BASE_IMAGE" == "ubuntu:22.04" && "$HOSTTYPE" == "x86_64" ]]; then echo         g++; fi)     && sudo rm -rf /var/lib/apt/lists/*     && sudo apt-get clean     && (if [ "$AUTOSCALER" = "autoscaler" ];         then $HOME/anaconda3/bin/pip --no-cache-dir install         "redis>=3.5.0,<4.0.0"         "six==1.13.0"         "boto3==1.26.76"         "pyOpenSSL==22.1.0"         "cryptography==38.0.1"         "google-api-python-client==1.7.8"         "google-oauth"         "azure-cli-core==2.40.0"         "azure-identity==1.10.0"         "azure-mgmt-compute==23.1.0"         "azure-mgmt-network==19.0.0"         "azure-mgmt-resource==20.0.0"         "msrestazure==0.6.4";     fi;) # buildkit
                        
# 2024-06-24 22:34:25  0.00B 
SHELL [/bin/bash -c]
                        
# 2024-06-24 22:34:25  0.00B 设置环境变量 HOME
ENV HOME=/home/ray
                        
# 2024-06-24 22:34:25  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2024-06-24 22:34:25  6.53MB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=nvidia/cuda:12.1.1-cudnn8-devel-ubuntu20.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.10 HOSTTYPE=x86_64 RAY_UID=1000 RAY_GID=100 /bin/sh -c apt-get update -y     && apt-get install -y sudo tzdata     && useradd -ms /bin/bash -d /home/ray ray --uid $RAY_UID --gid $RAY_GID     && usermod -aG sudo ray     && echo 'ray ALL=NOPASSWD: ALL' >> /etc/sudoers     && rm -rf /var/lib/apt/lists/*     && apt-get clean # buildkit
                        
# 2024-06-24 22:34:25  0.00B 定义构建参数
ARG RAY_GID=100
                        
# 2024-06-24 22:34:25  0.00B 定义构建参数
ARG RAY_UID=1000
                        
# 2024-06-24 22:34:25  0.00B 定义构建参数
ARG HOSTTYPE=x86_64
                        
# 2024-06-24 22:34:25  0.00B 定义构建参数
ARG PYTHON_VERSION=3.8.16
                        
# 2024-06-24 22:34:25  0.00B 定义构建参数
ARG DEBIAN_FRONTEND=noninteractive
                        
# 2024-06-24 22:34:25  0.00B 设置环境变量 PATH
ENV PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-06-24 22:34:25  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2024-06-24 22:34:25  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-06-24 22:34:25  0.00B 设置环境变量 TZ
ENV TZ=America/Los_Angeles
                        
# 2024-06-24 22:34:25  0.00B 定义构建参数
ARG AUTOSCALER=autoscaler
                        
# 2024-06-24 22:34:25  0.00B 定义构建参数
ARG BASE_IMAGE
                        
# 2023-11-10 13:52:20  2.45GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:52:20  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.0.131
                        
# 2023-11-10 13:52:20  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:52:20  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:52:20  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 13:52:20  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 13:52:20  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 13:52:20  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.0.131
                        
# 2023-11-10 13:25:45  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 13:25:45  379.49KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:25:42  4.77GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     libtinfo5 libncursesw5     cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:25:42  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:25:42  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:42  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:14:24  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 13:14:24  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 13:14:24  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 13:14:24  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 13:14:24  259.50KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:14:23  2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:14:23  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:14:23  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
                        
# 2023-11-10 13:14:23  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:07:30  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:07:30  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:07:30  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:07:29  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:07:29  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:07:29  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:07:29  149.60MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:08  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
                        
# 2023-11-10 13:07:08  18.32MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:08  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:07:08  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:07:08  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:07:08  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
                        
# 2023-11-10 13:07:08  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:07:08  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-03 18:45:52  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-03 18:45:51  72.79MB 
/bin/sh -c #(nop) ADD file:4809da414c2d478b4d991cbdaa2df457f2b3d07d0ff6cf673f09a66f90833e81 in / 
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=20.04
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-03 18:45:50  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:dd4d581da9190f99e676d519c1b337a9b572bc7faa800519f1951fb225c17d5b",
    "RepoTags": [
        "rayproject/ray:2.31.0-py310-cu121",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.31.0-py310-cu121"
    ],
    "RepoDigests": [
        "rayproject/ray@sha256:7d4c2f4940d8bb0cca92d18b1b3d10d34f8caa64e67417983065d50535825495",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray@sha256:7d4c2f4940d8bb0cca92d18b1b3d10d34f8caa64e67417983065d50535825495"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-06-25T21:02:30.133261766Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "1000",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.105-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.1",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.1-1",
            "NV_NVTX_VERSION=12.1.105-1",
            "NV_LIBNPP_VERSION=12.1.0.40-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
            "NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
            "NV_NVML_DEV_VERSION=12.1.105-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
            "NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
            "NV_NVPROF_VERSION=12.1.105-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.9.0.131",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1",
            "TZ=America/Los_Angeles",
            "LC_ALL=C.UTF-8",
            "LANG=C.UTF-8",
            "HOME=/home/ray"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home/ray",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.0.131",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "20.04"
        },
        "Shell": [
            "/bin/bash",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 11727692487,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/be4133cf143da03493307600be5271746eb93935583cdef8fab831b2a344534c/diff:/var/lib/docker/overlay2/421ce123c30ba9b20134c55e5eac937942079bd9fc40cfa5e5e23fccdb2f3310/diff:/var/lib/docker/overlay2/e2d26cdf7c13e57efe3deb2a9731d83949f41a622fbbbec85c56cb8ccca01531/diff:/var/lib/docker/overlay2/a3e461854c2ee404f69dd923f6b759b7eb9dd5d5ee69bd79bad7588b23402c57/diff:/var/lib/docker/overlay2/a366671cca53c2ac83f70709a41a3be67adf8b539f9d7b61f812279722b8bc51/diff:/var/lib/docker/overlay2/eb87fbd35868f5cf85e98c5e0a0e58d8ddbe51648aba8acde0ffeebc09c7a0e7/diff:/var/lib/docker/overlay2/3652e7ea6ed9cd0f22c79289904ddb314fd7be8731f65caa0f25ffb8c9735e03/diff:/var/lib/docker/overlay2/bbcc98e594c744e628cc12b742a4953bec074169843a2ceae37cacb5b169723b/diff:/var/lib/docker/overlay2/1f7f8a090242b747f23d02283900475beae9dd1c809f4e181194ecdcdb2802fc/diff:/var/lib/docker/overlay2/cd3638ea82fd7b809b3dc7fd235a507db8a487b4c41f5005d95214c22cfa8f49/diff:/var/lib/docker/overlay2/53c6aa5828a722f78598a914c64e2f12b90c5375be2ce0391a80be90f82e9f5a/diff:/var/lib/docker/overlay2/54e915e35370cddc0c55985dd64195702f40d2b6ea3c91da6b05044702a20472/diff:/var/lib/docker/overlay2/eefa95eb3229cd598ade33bafc2429dfa80787541ea0814feb9d3188ee61c630/diff:/var/lib/docker/overlay2/1ead4d703df77e2ac9eb7767ec1d1d6e7e107e7503fd18757cd71b30b27504c8/diff:/var/lib/docker/overlay2/17e13e632419f12aafa5ba9596227371a9f7c9755a203dd66133232bd8b7b13f/diff:/var/lib/docker/overlay2/26c07cfa999e97a71b8603b38318a73493c4683af21f76b1fdc82290b5036daa/diff:/var/lib/docker/overlay2/4b2c1fa1c7dab4f9379e2732da9166be9a55b345add155260c65d1d4d8f2614b/diff:/var/lib/docker/overlay2/8e19e86959e9acd36d0662db021c866d6a3f7d0a27bc0fba185601286770ee45/diff:/var/lib/docker/overlay2/5408abd3ec726f4d055e10fddd8f488a8839c8a355fe1fb064cdc9fee660e07b/diff",
            "MergedDir": "/var/lib/docker/overlay2/870b1e5a7a3d5cf9c34c79608bc291a882fb5537ecbf4dcbcbea7d0b28cb4a1f/merged",
            "UpperDir": "/var/lib/docker/overlay2/870b1e5a7a3d5cf9c34c79608bc291a882fb5537ecbf4dcbcbea7d0b28cb4a1f/diff",
            "WorkDir": "/var/lib/docker/overlay2/870b1e5a7a3d5cf9c34c79608bc291a882fb5537ecbf4dcbcbea7d0b28cb4a1f/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:6c3e7df31590f02f10cb71fc4eb27653e9b428df2e6e5421a455b062bd2e39f9",
            "sha256:5c0359201b8f5316a9c120cc074c134e6294e6351b6ba4384a843006f6716dd0",
            "sha256:f620bf47e83df6cb9d61bf1728402f88549bca976b3047f9cb69d03be03dc21b",
            "sha256:8d78458ccbe218dba1de0b340767e15e4693d7041f6407b69b82caed09c08e0b",
            "sha256:9dbd6d766fae94f829384e71cf3ff5fedfea9f448d4069d0ce87f3d544d19ecc",
            "sha256:379cd604fb89fd203f52b15d2f09fb14f70fc08cbe9655154a4f478ab72c5d93",
            "sha256:82adc44e81b3913c7215be048da7cae287149aba6fdcaf08065662a15d8b4e85",
            "sha256:cca411d699bf4af0a4bc8f047be6f79365f026d1458f74be6a9b2d80de2514de",
            "sha256:226146661e721e03f1d7fc62bbc58adf2e8185f06c3b794624b6f5efefc28b9c",
            "sha256:0e5e6a7b15e48919ddbaf00ab643e058050d95a02f4e2f0fc84b8a1a0f56e552",
            "sha256:ad6bf06f23c6a368ade44418b3fa62a77964c45a9df1a0533434ec5ea1670a65",
            "sha256:3f2f263da0ed97f11f383e9b75db8a060c158e413aabf96ebd2a385c306b8420",
            "sha256:8e659db93cee8dd7e5fe0a0e0b3784b4d24ceeb7c36db5445b60dc1b9459aa10",
            "sha256:da6a6a430ce5c4b5e8ced79d62ecb50afec41dd165315f2c128cd38b919231d1",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:209dc99dd7b3fcbcd4288aa6bc7cbbc2587a6330ae139e4d9b3e86c4fff8cc0b",
            "sha256:983fbf5c8d7feccb004c1e0c466e100f26d72af59c2daa13ec338cfd90ada500",
            "sha256:505f28f340de052d651ee1be8a036eacae566e9b15a44db57d7479693945f385",
            "sha256:63a0e807de17524e6631f2b3d2b9a9bba9d11a8e9985e776b4356110ffc1e3b1",
            "sha256:13bc71a59828260ee0ec72ae1cde1a9675e258562d5cd0ccda1425e7015e3634"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-02-22T01:05:45.475193831+08:00"
    }
}

更多版本

docker.io/rayproject/ray:2.9.0

linux/amd64 docker.io2.20GB2024-07-17 10:33
371

docker.io/rayproject/ray-ml:2.30.0-py310-gpu

linux/amd64 docker.io21.88GB2024-09-27 00:30
185

docker.io/rayproject/ray:nightly-gpu

linux/amd64 docker.io11.57GB2024-11-21 02:01
81

docker.io/rayproject/ray:2.10.0-py38

linux/amd64 docker.io2.13GB2025-01-06 16:31
63

docker.io/rayproject/ray:2.40.0.160e35-py312-cu123

linux/amd64 docker.io10.23GB2025-01-18 01:27
49

docker.io/rayproject/ray:2.34.0

linux/amd64 docker.io2.22GB2025-02-13 11:57
33

docker.io/rayproject/ray:2.31.0-py310-cu121

linux/amd64 docker.io11.73GB2025-02-22 01:07
9