docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64 linux/arm64

docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64 - 国内下载镜像源 浏览次数:34 温馨提示: 这是一个 linux/arm64 系统架构镜像
_rayproject/ray_ RAY 是一个基于 Python 的高性能计算框架,可以在多种环境中运行,包括本地、云和集群。Ray 提供了高效的并行计算能力,并且可以与其他库和框架集成。 -Ray 的主要特点有: * 高性能:Ray 使用了高性能的编译器和执行引擎,可以在多种环境中运行。 * 可扩展性:Ray 可以轻松地 scales to thousands of machines and can handle large-scale computations. * 可组合性:Ray 可以与其他库和框架集成,例如 TensorFlow、PyTorch 和 scikit-learn。 总的来说,《RAY》是一个功能强大且灵活的计算框架,可以满足各种计算需求。
源镜像 docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64
镜像ID sha256:3ba1e9bbdbe4798dd3ecdf10ca2548f1675f5b8a4ff2ae60dc994a5586d31882
镜像TAG 2.39.0-py310-cpu-aarch64-linuxarm64
大小 2.40GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD /bin/bash
启动入口
工作目录 /home/ray
OS/平台 linux/arm64
浏览量 34 次
贡献者
镜像创建 2024-11-06T20:32:13.633792785Z
同步时间 2025-03-20 17:16
更新时间 2025-04-02 22:08
环境变量
PATH=/home/ray/anaconda3/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin TZ=America/Los_Angeles LC_ALL=C.UTF-8 LANG=C.UTF-8 HOME=/home/ray
镜像标签
ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64  docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64  docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64

Shell快速替换命令

sed -i 's#rayproject/ray:2.39.0-py310-cpu-aarch64#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64 && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64  docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64 && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64  docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64'

镜像构建历史


# 2024-11-07 04:32:13  4.20KB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.39.0-cp310-cp310-manylinux2014_aarch64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip freeze > /home/ray/pip-freeze.txt # buildkit
                        
# 2024-11-07 04:32:12  935.71MB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.39.0-cp310-cp310-manylinux2014_aarch64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip --no-cache-dir install -c $CONSTRAINTS_FILE     `basename $WHEEL_PATH`[all]     --find-links $FIND_LINKS_PATH && sudo rm `basename $WHEEL_PATH` # buildkit
                        
# 2024-11-07 04:30:53  93.15MB 复制新文件或目录到容器中
COPY .whl .whl # buildkit
                        
# 2024-11-07 04:30:52  65.38MB 复制新文件或目录到容器中
COPY .whl/ray-2.39.0-cp310-cp310-manylinux2014_aarch64.whl . # buildkit
                        
# 2024-11-07 04:30:52  61.33KB 复制新文件或目录到容器中
COPY requirements_compiled.txt ./ # buildkit
                        
# 2024-11-07 04:30:52  0.00B 定义构建参数
ARG CONSTRAINTS_FILE=requirements_compiled.txt
                        
# 2024-11-07 04:30:52  0.00B 定义构建参数
ARG FIND_LINKS_PATH=.whl
                        
# 2024-11-07 04:30:52  0.00B 定义构建参数
ARG WHEEL_PATH
                        
# 2024-11-05 01:14:05  0.00B 设置工作目录为/home/ray
WORKDIR /home/ray
                        
# 2024-11-05 01:14:05  1.23GB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=ubuntu:22.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.10 HOSTTYPE=aarch64 RAY_UID=1000 RAY_GID=100 /bin/bash -c sudo apt-get update -y && sudo apt-get upgrade -y     && sudo apt-get install -y         git         libjemalloc-dev         wget         cmake         g++         zlib1g-dev         $(if [ "$AUTOSCALER" = "autoscaler" ]; then echo         tmux         screen         rsync         netbase         openssh-client         gnupg; fi)     && wget --quiet         "https://repo.anaconda.com/miniconda/Miniconda3-py311_24.4.0-0-Linux-${HOSTTYPE}.sh"         -O /tmp/miniconda.sh     && /bin/bash /tmp/miniconda.sh -b -u -p $HOME/anaconda3     && $HOME/anaconda3/bin/conda init     && echo 'export PATH=$HOME/anaconda3/bin:$PATH' >> /home/ray/.bashrc     && rm /tmp/miniconda.sh      && $HOME/anaconda3/bin/conda install -y libgcc-ng python=$PYTHON_VERSION     && $HOME/anaconda3/bin/conda install -y -c conda-forge libffi=3.4.2     && $HOME/anaconda3/bin/conda clean -y --all     && $HOME/anaconda3/bin/pip install --no-cache-dir         flatbuffers         cython==0.29.37         numpy\>=1.20         psutil         setuptools==71.1.0     && $HOME/anaconda3/bin/pip uninstall -y dask     && sudo apt-get autoremove -y cmake zlib1g-dev         $(if [[ "$BASE_IMAGE" == "ubuntu:22.04" && "$HOSTTYPE" == "x86_64" ]]; then echo         g++; fi)     && sudo rm -rf /var/lib/apt/lists/*     && sudo apt-get clean     && (if [ "$AUTOSCALER" = "autoscaler" ];         then $HOME/anaconda3/bin/pip --no-cache-dir install         "redis>=3.5.0,<4.0.0"         "six==1.13.0"         "boto3==1.26.76"         "pyOpenSSL==22.1.0"         "cryptography==38.0.1"         "google-api-python-client==1.7.8"         "google-oauth"         "azure-cli-core==2.40.0"         "azure-identity==1.10.0"         "azure-mgmt-compute==23.1.0"         "azure-mgmt-network==19.0.0"         "azure-mgmt-resource==20.0.0"         "msrestazure==0.6.4";     fi;) # buildkit
                        
# 2024-11-05 01:11:41  0.00B 
SHELL [/bin/bash -c]
                        
# 2024-11-05 01:11:41  0.00B 设置环境变量 HOME
ENV HOME=/home/ray
                        
# 2024-11-05 01:11:41  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2024-11-05 01:11:41  6.63MB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=ubuntu:22.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.10 HOSTTYPE=aarch64 RAY_UID=1000 RAY_GID=100 /bin/sh -c apt-get update -y     && apt-get install -y sudo tzdata     && useradd -ms /bin/bash -d /home/ray ray --uid $RAY_UID --gid $RAY_GID     && usermod -aG sudo ray     && echo 'ray ALL=NOPASSWD: ALL' >> /etc/sudoers     && rm -rf /var/lib/apt/lists/*     && apt-get clean # buildkit
                        
# 2024-11-05 01:11:41  0.00B 定义构建参数
ARG RAY_GID=100
                        
# 2024-11-05 01:11:41  0.00B 定义构建参数
ARG RAY_UID=1000
                        
# 2024-11-05 01:11:41  0.00B 定义构建参数
ARG HOSTTYPE=x86_64
                        
# 2024-11-05 01:11:41  0.00B 定义构建参数
ARG PYTHON_VERSION=3.8.16
                        
# 2024-11-05 01:11:41  0.00B 定义构建参数
ARG DEBIAN_FRONTEND=noninteractive
                        
# 2024-11-05 01:11:41  0.00B 设置环境变量 PATH
ENV PATH=/home/ray/anaconda3/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-11-05 01:11:41  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2024-11-05 01:11:41  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2024-11-05 01:11:41  0.00B 设置环境变量 TZ
ENV TZ=America/Los_Angeles
                        
# 2024-11-05 01:11:41  0.00B 定义构建参数
ARG AUTOSCALER=autoscaler
                        
# 2024-11-05 01:11:41  0.00B 定义构建参数
ARG BASE_IMAGE
                        
# 2024-09-12 00:26:06  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2024-09-12 00:26:06  69.22MB 
/bin/sh -c #(nop) ADD file:53ce73ebbd6d87a234a33414686f12909aaaf28b7238593f746a327c7d004ce7 in / 
                        
# 2024-09-12 00:26:04  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2024-09-12 00:26:04  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2024-09-12 00:26:04  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2024-09-12 00:26:04  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:3ba1e9bbdbe4798dd3ecdf10ca2548f1675f5b8a4ff2ae60dc994a5586d31882",
    "RepoTags": [
        "rayproject/ray:2.39.0-py310-cpu-aarch64",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64-linuxarm64"
    ],
    "RepoDigests": [
        "rayproject/ray@sha256:37a81d94dfb6ed5d690f96982cbbc40de7c1637e64503520630d0e1d2a9910ab",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray@sha256:37a81d94dfb6ed5d690f96982cbbc40de7c1637e64503520630d0e1d2a9910ab"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-11-06T20:32:13.633792785Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "1000",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/home/ray/anaconda3/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "TZ=America/Los_Angeles",
            "LC_ALL=C.UTF-8",
            "LANG=C.UTF-8",
            "HOME=/home/ray"
        ],
        "Cmd": [
            "/bin/bash"
        ],
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home/ray",
        "Entrypoint": null,
        "OnBuild": null,
        "Labels": {
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        },
        "Shell": [
            "/bin/bash",
            "-c"
        ]
    },
    "Architecture": "arm64",
    "Variant": "v8",
    "Os": "linux",
    "Size": 2395268480,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/c5616e19527b72ef34c96fd8e48cf42f3ea47e0020921606eb2b43308a45cf3e/diff:/var/lib/docker/overlay2/72f77c0085a0aa294ee86d7e7304c3e667963357847cadb1650aafb6a2da7ac8/diff:/var/lib/docker/overlay2/cde5b5bbd97357aa2361b644ff6a5cc2a5e2109b61134d93018463dabd9c3b65/diff:/var/lib/docker/overlay2/84cee1d301fc217676e7b0e05fc0bf7a969278e1edc79427a94cd3c0184b6693/diff:/var/lib/docker/overlay2/50073594ef31448db8798f84283277649a99f8a08a0328546e015254f924da9c/diff:/var/lib/docker/overlay2/96b1efa28273a9e25061c909fe709eecd9207ff09a151b66b8ca3be97fe4fde7/diff:/var/lib/docker/overlay2/5b55fe768592e1147fb399581b3630e77a60d135bf70d16f34c1a60bf4147184/diff:/var/lib/docker/overlay2/6930c47f789393aae5403785dce97ab7620cbd2f2c834db52eb4ca19c201b50a/diff",
            "MergedDir": "/var/lib/docker/overlay2/b5d8f608077324df0ccb2b14e7b6bdb9743b78d739ffeeb0b2e4f288f5e93e63/merged",
            "UpperDir": "/var/lib/docker/overlay2/b5d8f608077324df0ccb2b14e7b6bdb9743b78d739ffeeb0b2e4f288f5e93e63/diff",
            "WorkDir": "/var/lib/docker/overlay2/b5d8f608077324df0ccb2b14e7b6bdb9743b78d739ffeeb0b2e4f288f5e93e63/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:54cb91f3fa5e8005668ad67d5394b63a3d741f0893588c1632e1e2ff415c8dcc",
            "sha256:0edb2abde57f6f07abbe62fde2f52377e196f7a39d1e5d01fb8cc1e161d9dd7d",
            "sha256:46367caee75e1911c195110e655432b0929459a36a8845973b710d55f3cb5410",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:e81ccc7d2dc2a806b83f1f9ab5523c8f88968cc2e1623b536c155be8676ae06e",
            "sha256:b58c1723221394687319d85867ff9c1d499a09d55eca49cbb9fcddbec32d7d83",
            "sha256:1554a23676e7a04ca5f0e2596126048e2521689d6544f27e5c0de9c607ccdc71",
            "sha256:0090c083d5f2038383f0cee630b1fa6e17761b1a27ae6cefa4cafacf8d1243e7",
            "sha256:32a3ebd1d685b7361982d509455641170015327152086ac0315d5689c1ce999c"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-03-20T17:14:10.818705327+08:00"
    }
}

更多版本

docker.io/rayproject/ray:2.9.0

linux/amd64 docker.io2.20GB2024-07-17 10:33
483

docker.io/rayproject/ray-ml:2.30.0-py310-gpu

linux/amd64 docker.io21.88GB2024-09-27 00:30
240

docker.io/rayproject/ray:nightly-gpu

linux/amd64 docker.io11.57GB2024-11-21 02:01
107

docker.io/rayproject/ray:2.10.0-py38

linux/amd64 docker.io2.13GB2025-01-06 16:31
103

docker.io/rayproject/ray:2.40.0.160e35-py312-cu123

linux/amd64 docker.io10.23GB2025-01-18 01:27
100

docker.io/rayproject/ray:2.34.0

linux/amd64 docker.io2.22GB2025-02-13 11:57
93

docker.io/rayproject/ray:2.31.0-py310-cu121

linux/amd64 docker.io11.73GB2025-02-22 01:07
110

docker.io/rayproject/ray-ml:2.33.0.914af0-py311

linux/amd64 docker.io23.01GB2025-03-10 04:27
50

docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64

linux/arm64 docker.io2.40GB2025-03-20 17:16
33