docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel linux/amd64

docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel - 国内下载镜像源 浏览次数:75 安全受验证的发布者-Pytorch

PyTorch是一个深度学习框架,旨在简化机器学习算法的实现和部署。该镜像提供了一个基于Python 3.x的环境,可以用于快速启动和测试PyTorch项目。

源镜像 docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel
镜像ID sha256:730572d0c0ddf5884066e32294d6fd06d698105c7cb5f4a84a8395cfa71063bf
镜像TAG 1.11.0-cuda11.3-cudnn8-devel
大小 13.71GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD bash
启动入口
工作目录 /workspace
OS/平台 linux/amd64
浏览量 75 次
贡献者
镜像创建 2022-03-10T09:05:02.590393656-08:00
同步时间 2025-03-18 02:23
更新时间 2025-03-31 12:20
环境变量
PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.3 brand=tesla,driver>=418,driver<419 brand=tesla,driver>=440,driver<441 driver>=450 NV_CUDA_CUDART_VERSION=11.3.58-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-3 NV_ML_REPO_ENABLED=1 NV_ML_REPO_URL=https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 CUDA_VERSION=11.3.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.3.0-1 NV_NVTX_VERSION=11.3.58-1 NV_LIBNPP_VERSION=11.3.3.44-1 NV_LIBNPP_PACKAGE=libnpp-11-3=11.3.3.44-1 NV_LIBCUSPARSE_VERSION=11.5.0.58-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-3 NV_LIBCUBLAS_VERSION=11.4.2.10064-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-3=11.4.2.10064-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.9.6-1 NCCL_VERSION=2.9.6-1 NV_LIBNCCL_PACKAGE=libnccl2=2.9.6-1+cuda11.3 NV_CUDA_CUDART_DEV_VERSION=11.3.58-1 NV_NVML_DEV_VERSION=11.3.58-1 NV_LIBCUSPARSE_DEV_VERSION=11.5.0.58-1 NV_LIBNPP_DEV_VERSION=11.3.3.44-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-3=11.3.3.44-1 NV_LIBCUBLAS_DEV_VERSION=11.4.2.10064-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-3 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-3=11.4.2.10064-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.9.6-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.9.6-1+cuda11.3 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.2.0.53 NV_CUDNN_PACKAGE=libcudnn8=8.2.0.53-1+cuda11.3 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.2.0.53-1+cuda11.3 NV_CUDNN_PACKAGE_NAME=libcudnn8 PYTORCH_VERSION=v1.11.0
镜像标签
8.2.0.53: com.nvidia.cudnn.version nvidia_driver: com.nvidia.volumes.needed NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel  docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel  docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel

Shell快速替换命令

sed -i 's#pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel  docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel  docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel'

镜像构建历史


# 2022-03-11 01:05:02  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2022-03-11 01:04:53  0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=v1.11.0
                        
# 2022-03-11 01:04:53  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2022-03-11 01:04:53  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2022-03-11 01:04:53  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2022-03-11 01:04:53  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2022-03-11 01:04:53  5.72GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2022-03-11 00:54:18  2.97MB 执行命令并创建新的镜像层
RUN |1 PYTORCH_VERSION=v1.11.0 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends         ca-certificates         libjpeg-dev         libpng-dev &&     rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-03-11 00:54:18  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
                        
# 2022-03-11 00:54:18  0.00B 定义构建参数
ARG PYTORCH_VERSION
                        
# 2022-01-07 09:02:18  4.02GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME} &&     rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-01-07 09:02:18  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.2.0.53
                        
# 2022-01-07 09:02:18  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-01-07 09:02:18  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-01-07 09:02:18  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2022-01-07 09:02:18  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.2.0.53-1+cuda11.3
                        
# 2022-01-07 09:02:18  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.2.0.53-1+cuda11.3
                        
# 2022-01-07 09:02:18  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.2.0.53
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2022-01-07 08:40:23  366.10KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2022-01-07 08:40:23  2.21GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-11-3=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-3=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-3=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-3=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-3=${NV_NVML_DEV_VERSION}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-3=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-01-07 08:40:23  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-01-07 08:40:23  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.9.6-1+cuda11.3
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.9.6-1
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.9.6-1
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-3=11.4.2.10064-1
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-3
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.4.2.10064-1
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-3=11.3.3.44-1
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.3.3.44-1
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.5.0.58-1
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.3.58-1
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.3.58-1
                        
# 2022-01-07 08:40:23  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.3.0-1
                        
# 2022-01-07 08:32:51  254.37KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2022-01-07 08:32:51  1.64GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-3=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-3=${NV_NVTX_VERSION}     libcusparse-11-3=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-01-07 08:32:51  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-01-07 08:32:51  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.9.6-1+cuda11.3
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.9.6-1
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.9.6-1
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-3=11.4.2.10064-1
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.4.2.10064-1
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-3
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.5.0.58-1
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-3=11.3.3.44-1
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.3.3.44-1
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.3.58-1
                        
# 2022-01-07 08:32:51  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.3.0-1
                        
# 2022-01-07 08:28:31  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2022-01-07 08:28:31  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2022-01-07 08:28:31  16.05KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2022-01-07 08:28:31  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2022-01-07 08:28:31  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2022-01-07 08:28:31  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2022-01-07 08:28:30  34.18MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-3=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && ln -s cuda-11.3 /usr/local/cuda &&     rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-01-07 08:28:20  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.3.0
                        
# 2022-01-07 08:28:20  16.53MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/${NVARCH}/7fa2af80.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     if [ ! -z ${NV_ML_REPO_ENABLED} ]; then echo "deb ${NV_ML_REPO_URL} /" > /etc/apt/sources.list.d/nvidia-ml.list; fi &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-01-07 08:28:20  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-01-07 08:28:20  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-01-07 08:28:20  0.00B 设置环境变量 NV_ML_REPO_URL
ENV NV_ML_REPO_URL=https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64
                        
# 2022-01-07 08:28:20  0.00B 设置环境变量 NV_ML_REPO_ENABLED
ENV NV_ML_REPO_ENABLED=1
                        
# 2022-01-07 08:28:20  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-3
                        
# 2022-01-07 08:28:20  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.3.58-1
                        
# 2022-01-07 08:28:20  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand driver>
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.3 brand=tesla,driver>=418,driver<419 brand=tesla,driver>=440,driver<441 driver>=450
                        
# 2022-01-07 08:28:20  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2021-10-01 10:23:24  0.00B 
/bin/sh -c #(nop)  CMD ["bash"]
                        
# 2021-10-01 10:23:23  63.14MB 
/bin/sh -c #(nop) ADD file:0d82cd095966e8ee78b593cb47a352eec842edb7bd9d9468e8a70154522447d1 in / 
                        
                    

镜像信息

{
    "Id": "sha256:730572d0c0ddf5884066e32294d6fd06d698105c7cb5f4a84a8395cfa71063bf",
    "RepoTags": [
        "pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel"
    ],
    "RepoDigests": [
        "pytorch/pytorch@sha256:9bfcfa72b6b244c1fbfa24864eec97fb29cfafc065999e9a9ba913fa1e690a02",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch@sha256:9bfcfa72b6b244c1fbfa24864eec97fb29cfafc065999e9a9ba913fa1e690a02"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2022-03-10T09:05:02.590393656-08:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.3 brand=tesla,driver\u003e=418,driver\u003c419 brand=tesla,driver\u003e=440,driver\u003c441 driver\u003e=450",
            "NV_CUDA_CUDART_VERSION=11.3.58-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-3",
            "NV_ML_REPO_ENABLED=1",
            "NV_ML_REPO_URL=https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64",
            "CUDA_VERSION=11.3.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.3.0-1",
            "NV_NVTX_VERSION=11.3.58-1",
            "NV_LIBNPP_VERSION=11.3.3.44-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-3=11.3.3.44-1",
            "NV_LIBCUSPARSE_VERSION=11.5.0.58-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-3",
            "NV_LIBCUBLAS_VERSION=11.4.2.10064-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-3=11.4.2.10064-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.9.6-1",
            "NCCL_VERSION=2.9.6-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.9.6-1+cuda11.3",
            "NV_CUDA_CUDART_DEV_VERSION=11.3.58-1",
            "NV_NVML_DEV_VERSION=11.3.58-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.5.0.58-1",
            "NV_LIBNPP_DEV_VERSION=11.3.3.44-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-3=11.3.3.44-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.4.2.10064-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-3",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-3=11.4.2.10064-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.9.6-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.9.6-1+cuda11.3",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.2.0.53",
            "NV_CUDNN_PACKAGE=libcudnn8=8.2.0.53-1+cuda11.3",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.2.0.53-1+cuda11.3",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "PYTORCH_VERSION=v1.11.0"
        ],
        "Cmd": [
            "bash"
        ],
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": null,
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.2.0.53",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 13710363237,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/26a380f4fb3b75c44175623b43b3cf28bce607117deddbc78ae5dcc18510d4e3/diff:/var/lib/docker/overlay2/5588b7072a8707c5d001fe5071d290fb91e2a56e5fa740b898f30b469e056853/diff:/var/lib/docker/overlay2/aa533de9aa78e95ff72bb398d5f31edfad3eab77a1f994554ef13499e1d87a69/diff:/var/lib/docker/overlay2/1ea71b3f2dc81a1d874b555e97468352a6ffc712bc641f43f88f9e961ed5ea2e/diff:/var/lib/docker/overlay2/62947b6d05affc11dcd2cedd34768cdbdac93fd472c2d7a68b3e8479ebafa5f7/diff:/var/lib/docker/overlay2/5e2151b333e383ef982e6947eff8fa6451fd58b8090d98d5e99f9d0b561a3de0/diff:/var/lib/docker/overlay2/f252fc49436f64ad7d155a9c20b6e8ef42bf4d4ebd01458a66141e67dff6c2ef/diff:/var/lib/docker/overlay2/9f6ae177ed40a8736d96d3cbf0f5e9785e1db067628fb474a7381e5c15a22a59/diff:/var/lib/docker/overlay2/3171f36345d3c69f20bc4fc23390c3ecf79943d50504ea2f1acd355a703299c1/diff:/var/lib/docker/overlay2/f2cbbc933f949bf8c5635c80217b2f28914ff8449e080fbf0eb705e0eb12ba62/diff:/var/lib/docker/overlay2/391d213af5b1b515a7204df0f33bf6a329bc2b63f50b8aaf8852f836acc2a41a/diff:/var/lib/docker/overlay2/7e9514c344246757b67ad1c637a73ff811d426929ba88f871a24e31c2517fdc9/diff",
            "MergedDir": "/var/lib/docker/overlay2/2bc7b89e05430eb8fbe8f0ef94f932ff63a5c0efe6bf5ac057adc862856cec4a/merged",
            "UpperDir": "/var/lib/docker/overlay2/2bc7b89e05430eb8fbe8f0ef94f932ff63a5c0efe6bf5ac057adc862856cec4a/diff",
            "WorkDir": "/var/lib/docker/overlay2/2bc7b89e05430eb8fbe8f0ef94f932ff63a5c0efe6bf5ac057adc862856cec4a/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:824bf068fd3dc3ad967022f187d85250eb052f61fe158486b2df4e002f6f984e",
            "sha256:dc433ce51f6b4f9f941757564a74c10c0bd7abda22c208cbac6281cb07eac404",
            "sha256:198b620bc52bb7dcac4e756640b0a6c7059e2a6c700d8e9f914c631219d18715",
            "sha256:ba3a1469f301a2d6af0db1ce0a1ab29fb4abb600701fc5390be8f049bd8dfe4f",
            "sha256:24add2ed7faca19857c8c861c7c14da9af40923a7b1d97e9c57f1bb695effe56",
            "sha256:fe4fe4d02bda38e9cf9a7a9391a27650674047fda8b8795955f90a159c6ce789",
            "sha256:8ded2fcffedcda7ea0f27b8adec5683756ce0204a5facc73fd439ffc940f7ba7",
            "sha256:fe82f664aa4b6e10cefbdcc411af82d150684bf6608fb320da914afc0a997d98",
            "sha256:0b5768f6be539ec892188eb6069af654c0161ea4386f6d4141faa7878d7eaf61",
            "sha256:b0cd8e56af8606fad5cf6731aaba10f4a19e40f2802bc0d561454ea4aa925c50",
            "sha256:02e819395f5c883150f79ef1c3fda0b06a851c2815b051a2bb749e38f6ecabd5",
            "sha256:2ba37b416435cb1f9575540de2904fc36bc26639f19b6ca9d81a62bd47683bb4",
            "sha256:322e6cfa717f28a9727926a8c0f109cbea98c767b0d9e774f4475b392b70da28"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-03-18T02:09:07.191611081+08:00"
    }
}

更多版本

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.71GB2024-07-18 11:25
1669

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime

linux/amd64 docker.io6.48GB2024-07-26 13:31
1164

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-08-06 11:11
815

docker.io/pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io5.99GB2024-09-21 01:42
916

docker.io/pytorch/pytorch:2.2.1-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.60GB2024-09-25 04:29
400

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-runtime

linux/amd64 docker.io6.36GB2024-09-28 00:59
508

docker.io/pytorch/pytorch:2.1.0-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.39GB2024-10-02 00:43
392

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel

linux/amd64 docker.io13.63GB2024-10-23 00:32
310

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.17GB2024-11-01 00:22
429

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.31GB2024-11-06 01:09
452

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.14GB2024-11-06 01:24
607

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.13GB2024-11-06 01:38
265

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.30GB2024-11-06 01:51
239

docker.io/pytorch/pytorch:2.5.1-cuda12.1-cudnn9-runtime

linux/amd64 docker.io5.90GB2024-11-07 00:14
368

docker.io/pytorch/pytorch:2.3.1-cuda11.8-cudnn8-runtime

linux/amd64 docker.io8.17GB2024-11-08 00:19
187

docker.io/pytorch/pytorch:2.3.1-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-11-08 00:39
224

docker.io/pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel

linux/amd64 docker.io17.52GB2024-11-08 01:12
266

docker.io/pytorch/pytorch:2.1.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.33GB2024-12-10 00:33
147

docker.io/pytorch/pytorch:2.2.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.99GB2024-12-15 00:21
145

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.58GB2024-12-20 00:05
203

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.22GB2025-01-10 00:32
122

docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.10GB2025-01-11 00:22
137

docker.io/pytorch/pytorch:2.2.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.74GB2025-01-18 01:16
105

docker.io/pytorch/pytorch:2.2.1-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.70GB2025-02-18 00:39
90

docker.io/pytorch/pytorch:2.6.0-cuda12.6-cudnn9-devel

linux/amd64 docker.io13.16GB2025-02-18 01:17
372

docker.io/pytorch/pytorch:2.6.0-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.06GB2025-02-27 00:51
265

docker.io/pytorch/pytorch:2.5.1-cuda12.1-cudnn9-devel

linux/amd64 docker.io12.84GB2025-02-28 02:38
191

docker.io/pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.23GB2025-03-08 01:36
105

docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel

linux/amd64 docker.io13.71GB2025-03-18 02:23
74